Review: Blood Supplies During the COVID-19 Pandemic

When I first thought of writing a blog on blood supplies amid the COVID-19 pandemic, it was early March. Fast forward a couple months and a lot of things have changed. So, where were we, and where are we now?

January 6, 2020

At this time, most people in the US were not even aware of the novel coronavirus. (unless you were taking my Introduction to Human Disease course and were searching online for media articles about infectious disease!)

I first became aware of this ‘mystery’ virus in early January, when I was teaching an online Winter session course called Introduction to Human Disease. I developed this course a number of years ago as a STEM course for non-science majors. The intent of the course is to familiarize students with diseases and disease terminology that they will use in their everyday lives. The course gives students a chance to learn basic medical concepts that will enable them to become their own (or their family’s) medical advocate. In addition, the course covers many diseases that are ‘in the news’ and allows students to gain some knowledge and insight into the myths and facts surrounding these diseases. Topics covered include general mechanisms of disease, including inflammation, infectious disease, immunity, heredity, and cancer. Emphasis is placed on emerging and pandemic …. so, when this disease emerged, we were right there to take note!

I asked the students to find an article in the media on an infectious disease, and to summarize and answer questions about the article and the mechanism of the disease. Three students chose different articles about this yet unnamed mystery illness affecting people in Wuhan, China. We had active discussion board conversations about this emerging severe respiratory disease and pneumonia, that at the time had infected around 40 people, with no reported deaths, and no human to human transmission. In my comments, I compared this novel virus to seasonal influenza, H1N1, SARS and MERS and tried to reassure students that this would hopefully follow the same path as H1N1 or SARS and MERS.

Feb 21, 2020

The first confirmed case in the United States was on Jan 21 in Washington state. (CDC)1 On Jan 31, the Health and Human Services Secretary declared Coronavirus a Public Health Emergency in the US. (HHS.gov)2 We began hearing news of restrictions on flights from China, passengers affected on Princess Cruise ships and outbreaks at a long term care facility in Washington State. 

As a Medical laboratory Scientist, I became concerned with this virus early on, and started watching statistics. I was concerned not only for the health of my family, friends and coworkers, but also for the health or our laboratories and our blood supply.

The first journal articles I read about COVID-19 and blood safety were published in Transfusion Medicine Reviews on Feb 21, 2020. In the very early days of this novel coronavirus, researchers in China reviewed publications about SARS and MERS to help give us a better understanding of SARS-CoV-2, the virus that causes our current pandemic of COVID-19. When discussing blood safety, one of the first things to consider is if the virus is transmittable via blood transfusions. If the virus is transmittable, we also must consider if there is an asymptomatic time when there is virus in the blood. One review stated that SARS, MERS and SARS-CoV-2 can all be found in the serum or plasma, but, at the time of this review, it was still uncertain if SARS-CoV-2 could be transmitted from those with pre-symptomatic or asymptomatic infections.3

March 18, 2020

On March 18, Blood Transfusion published an article written by a group at several Blood Centers in a few provinces in China. This article discussed efforts to minimize the impact of blood shortages due to COVID-19. It was noted that the rising pandemic had had a profound impact on the number of blood donations, and on blood safety. Because it was now recognized that there is a long incubation period and a significant number of asymptomatic cases, this posed a huge challenge in recruiting blood donors. In China, strictly restricted mobility led to a decrease in donations across the country. Donors were recruited through various methods, including the use of social media. Social distancing during blood donations and thorough cleaning and disinfecting of donor areas were enforced. Screening procedures were enhanced to include temporary isolation of blood products for 14 days after collection and delaying release for clinical use. At the same time, donors were followed up until the expiration of the products. If a donor was found to test positive for COVID-19 after donation, the blood products were recalled. These new protocols in place were helping to insure adequate donations and the safety of blood products. ne interesting note is that this article referred to the epidemic as “effectively controlled” and that “normal medical services had been resumed”.4

Meanwhile, in the US, American Red Cross was pleading for blood donors. On March 17 it was reported that 2,700 mobile blood drives had been cancelled at a loss of 86,000 units of blood potentially collected. On March 21, 4 days later, that number had risen to more than 5,000 blood drives canceled at a loss of 170,000 units. As more schools, workplaces, churches and college campuses closed down in response to the pandemic, those institutions had to cancel their blood drives. Social distancing guidelines and shelter in place orders resulted in fewer people donating blood. In addition, an FDA mandate from February, that people who had traveled to areas with COVID-19 outbreaks should wait at least 28 days before donating blood, most likely contributed to the shortage. Dr. Justin Kreuter, from the Mayo Clinic Blood Donor Center, stated that the blood shortage was not due to more COVID-19 patients needing blood products. Rather, “it’s a lack of donations coming in.”5

April 1, 2020

procedures that the Chinese had instated. Mobile blood drives were shut down, but collection centers remained open. TV commercials, radio ads, You Tube videos and social media called for blood donors, assuring them that this was essential and that donating blood was safe. Donations were arranged through appointments only, and potential donors contacted and verbally screened for symptoms and risk factors before appearing to donate. On arrival at the centers, temperatures were taken and travel and symptoms questions were asked before a donor was allowed to enter the center. The use of masks and social distancing, along with extra cleaning and donor chair decontamination between donors were all implemented.

In an effort to open up the pool of potential donors, the FDA reviewed current studies and epidemiological data and concluded that certain donor eligibility criteria could be modified without compromising the safety of the blood supply. On April 2, 2020 the FDA approved several important changes in donor qualifications. These revisions included the following:

  • For male donors deferred for having sex with another male: the recommended deferral period changed from 12 months to 3 months.
  • For female donors deferred for having sex with a man who had sex with another man: the recommended deferral period changed from 12 months to 3 months
  • The deferral period for recent tattoos and piercing was changed from 12 months to 3 months
  • For people who have traveled to malaria-endemic areas, the recommended deferral period was changed from 12 months to 3 months. In addition, the guidance notes that deferral can be waived for these donors, provided the blood components are pathogen-reduced using an FDA-approved pathogen reduction device.
  • For donors who spent time in European countries or on military bases in Europe who were previously deferred due to potential risk of transmission of Creutzfeldt-Jakob Disease or Variant Creutzfeldt-Jakob Disease, the FDA has eliminated the deferrals and these individuals may now qualify to donate.6

Despite loosening requirements, advertising, and calls from the blood centers for additional donors, the shortages remained. To address the decline in blood product availability, it became essential to review the principles of patient blood management (PBM). PBM is defined as “the timely application of evidence-based medical and surgical concepts designed to maintain hemoglobin concentration, optimize hemostasis and minimize blood loss in an effort to improve patient outcome.”7 Firstly, elective procedures were put on hold, thus freeing up units for the most needy patients. Despite this, many blood banks still had their standing orders decreased. In many cases, Blood bank Medical Directors approved changes in transfusion triggers. At the hospital where I work, the transfusion trigger was changed from a hemoglobin of 8g/dL to 7 g/dL. New changes of SOP were approved to issue to all patients, except females of child bearing age, Rh positive units instead of more scarce Rh negative units. We also have a large NICU unit and baby units were not available from ARC, so we were using the newest units available, when necessary for these patients.

By April 8, 15,000 blood drives had been cancelled across the US, at a potential loss of almost 500,000 donated units. One technologist reported in an online Blood bank professionals group, that “Our supplier downgraded us in terms of standard inventory (about 40%), but our transfusion numbers have dropped at least as much.”8 With the decrease in usage and the careful patient blood management, blood needs were met.

May 12, 2020

AABB began sending out a weekly COVID impact survey for hospital transfusion services survey in late March. Many questions on the survey, and the resulting charts and graphs, are related to COVID convalescent plasma practices and procedures (details in my next blog!), but one important graph produced by this survey shows the increase in inventory wastage due to changes related to COVID-19. These changes due to COVID-19 can be a decrease in patients and elective surgeries or changes in transfusion protocols. In early April, in the first few weeks of the survey, 25%-28% of hospitals responding reported an increase in inventory wastage. This corresponds to when donors started coming back to donate, and usage dropped. This percent of hospitals reporting wastage increased each week until the week of May 4-7 when 54% of hospitals reported inventory wastage. This may be due to several factors. The units collected at the end of March and early April, have reached their 42 day expirations. Donors came out initially in response to the call for blood, but now, these units have expired, and it has not yet been 56 days when these donors can donate again. Usage also decreased during this time. COVID patients have not generally had heavy use of red cells, in particular, and doctors have been very conservative in usage with all patients. For the week of May 11-14, as more hospitals are planning to resume elective surgeries, and for the first time in the 8 weeks, fewer hospitals (52.0%) reported an increase in wastage due to changes related to the pandemic. Of the 100 respondents, 59% reported they are resuming “some” elective surgeries before mid-May and 28.0% are doing so after mid-May.9

What does this mean for the future of our blood supply during this pandemic? On May 12, a group of Blood bank professionals, when asked in an informal online survey, had had varying answers. These were likely dependent on location, both geographic and city vs. rural, and size of the hospital. One comment was that “We have gone from huge shortages to throwing away massive units not being used. Hospital is empty.” Another tech said “We were way overstocked a week ago, now we’re dipping way below average.” Technologists in Florida, Oregon and Pennsylvania reported low inventory. Techs in Ohio and Maryland reported their inventory to be very healthy. But these reports could easily vary between areas of the individual state, and even different hospitals in the same city. Another technologist commented “We had a mass of donors when this all started and now all those units are expiring!” The shortage of donors will likely continue, but may relax a bit with some states beginning to lift restrictions. We likely won’t see a huge drove of donors, all at once, which is actually good because it will spread out expiration dates. But, though things may be opening up, it is unlikely that we will see blood drives at schools, workplaces and churches for some time, and this is a huge source of our countries blood supply.

We have seen a big swing in both inventories and usage. After elective and with surgeries have been put on hold for months, we may see an increase over the typical number of elective surgeries, which will mean we will see an increase in blood usage, and with a lack of donors, inventories may drop again.

As far as blood safety, we know now that SARS-CoV-2 did not follow the path of SARS and MERS. We know that it can definitely be transmitted from person to person, and can be transmitted by people who are asymptomatic. But, we also know that, in general, respiratory viruses are not known to be transmitted by blood transfusion. So, from what we know at this time, it is likely not necessary to routinely screen blood products for SARS-CoV-2, and not necessary to isolate blood products after collection and delay release of the products. It is recommended that blood centers encourage self-deferral for donors who have traveled to a COVID-19 affected area or been in contact with an infected person in the past 14 days and to screen donors carefully for fever and respiratory symptoms. With these practices in place, we can ensure an adequate and safe blood supply. We will continue to see swings in volumes, but with careful patient blood management, we will ride these waves and come out on top. Thanks to all our wonderful Blood Bank Technologists who are helping manage our country’s blood supplies!

References

  1. First Travel-related Case of 2019 Novel Coronavirus Detected in United States – CDC, January 21, 2020
  2. https://www.hhs.gov/about/news/2020/01/31/secretary-azar-declares-public-health-emergency-us-2019-novel-coronavirus.html
  3. L. Chang, Y. Yan, L. Wang Coronavirus disease 2019: coronaviruses and blood safety. Transfus Med Rev (2020)
  4. Xiaohong, et al. Blood transfusion during the COVID-19 outbreak, Blood Transfusion (2020)
  5. https://newsnetwork.mayoclinic.org/discussion/critical-blood-shortages-because-of-covid-19/
  6. https://www.fda.gov/media/92490/download
  7. http://sabm.org
  8. Facebook Blood Bank professionals page, May 12, 2020
  9. http://www.aabb.org/advocacy/regulatorygovernment/Documents/AABB-COVID-19-Impact-Survey-Snapshot.pdf

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Transfusion Medicine Case Study: Positive Pretransfusion Test

A 72 year old man was admitted to the hospital for an aneurysm repair. The physician ordered a type and crossmatch for 6 units of blood in preparation for surgery. The patient history included surgery in 2016 during which he was transfused with 4 units of RBCs.

patient’s blood type: A positive

antibody screen: negative

history: anti Jkb  (2016)

6 Jkb negative units were found and full crossmatches were performed. One of the 6 donor units was incompatible. What is the most probable explanation for these findings?

If the patient has a negative antibody screen, and no history of an antibody, most facilities would do an electronic crossmatch or an immediate spin crossmatch. The immediate spin (abbreviated) crossmatch will simply verify ABO compatibility. However, if the patient has a positive antibody screen, we must identify the antibody, phenotype the patient, and do a full AHG crossmatch with donor units that are antigen negative for the corresponding antibody. In this case, the patient had a history of an antibody, so the antibody must be honored, and antigen negative units must be chosen for transfusion.

Kidd antibodies demonstrate dosage, are often weak, and can be found in combination with other antibodies. Because if this, they can be notoriously difficult to detect. They are usually IgG and are made in response to transfusion or pregnancy. Jkb has an antigen frequency of about 73% in the white population and about 43% in the black population. To find antigen negative blood, we consider that about 27% of units would be antigen negative. The tech working on the sample screened 21 units and found 6 that were Jkb negative.

AHG crossmatch results:

unit 1: compatible

unit 2: compatible

unit 3: compatible

unit 4: 3+ at AHG

unit 5: compatible

unit 6: compatible

There are 2 possible scenarios for the above results. A crossmatch is a test between donor’s red blood cells and patient’s plasma. Antigens, we know, are on red blood cells and antibodies are detected in the plasma. So, with a negative antibody screen, crossmatch incompatibility is due either to a patient antibody to a low incidence antigen on the donor red blood cells, or a donor cells with a positive direct antiglobulin test. We can easily rule in or out a positive donor DAT by performing a DAT on the segment. If the donor unit has a positive DAT, the unit should be quarantined and the positive DAT reported to the collecting facility. If the donor unit has a negative DAT, the patient likely has an antibody to a low incidence antigen.

Low frequency antigens are uncommon, but antibodies that recognize them are less rare. Fortunately, for patients with these antibodies to low frequency antigens, finding antigen negative compatible blood is easy. As we can see, 5 of the 6 chosen units were negative for the unknown low frequency antigen and were antiglobulin crossmatch compatible. The low prevalence of the antigen makes compatible blood readily available. If transfusion is necessary, it should not be delayed while waiting for identification of the antibody.

In this case, the antibody screen was repeated and the negative result was verified. In many cases, it may not be possible for a lab to identify the antibody because the lab may not have the necessary panel cells or typing reagents. Yet, these antibodies to low incidence antigens that react at AHG can be clinically significant and cause severe hemolytic transfusion reactions. To identify the antibody, you may need to send the sample to a reference lab for testing against a panel of reagent red cells that express low incidence antigens. Alternately, the donor red cells that were incompatible can be tested against known antibodies to low prevalence antigens  to help identify the antibody.

In this patient, anti-Wra was identified. The incompatible donor unit was verified to be Wra positive. Wra is part of the Diego system, usually IgG, and has ben implicated in hemolytic transfusion reactions.

One of the reasons I have written up this case is questions my Transfusion Medicine students often ask about exam and exam prep questions concerning incompatibility. Below are 2 questions to give examples of the confusion.

“At the indirect antiglobulin phase of testing, there is no agglutination between patient serum and screening cells. One of 3 donor units was incompatible.. The most probable explanation for these findings is that the:

  1. patient has an antibody directed against a high incidence antigen
  2. patient has an antibody directed against a low incidence antigen
  3. donor has an antibody directed against donor cells
  4. donor has a positive antibody screen”5

answer: b

“Which of the following would most likely be responsible for an incompatible antiglobulin crossmatch?

  1. recipient’s red cells possess a low incidence antigen
  2. anti-K antibody in donor serum
  3. recipient’s red cells are polyagglutinable
  4. donor red cells have a positive direct antiglobulin test”4

answer: d

I am asked why is one answer “low prevalence antigen” and one answer “positive DAT”? I typically ask questions of my students to let them reason out the answer. Take a careful look at the words antigen and antibody. Remember that a DAT is a test of red cells, the IAT tests for antibodies in plasma. A crossmatch uses donor red cells against patient plasma. Therefore, even though these are both reasons for the incompatibility of one out of multiple units, each question only has one answer of a common reason for such incompatibility. Be sure to read questions and use your theory and knowledge of testing when encountering discrepancies and problems in Blood Bank. To all of my students: Happy Studying for your ASCP exam!

References

  1. Fung, Mark K., Technical Manual 18th ed, Bethesda: AABB, 2014.
  2. Harmening, Denise M. Modern Blood Banking and Transfusion Practices, 7th edition, 2019.
  3. Schonewille, Henk, et al. “The importance of antibodies against low‐incidence RBC antigens in complete and abbreviated cross‐matching”. The Journal of AABB. 20 June 2003.
  4. BOC Study Guide, 5th edition. Clinical Laboratory Certification Examinations.  ASCP, 2016
  5. BOC Study Guide, 6th edition. Clinical Laboratory Certification Examinations.  ASCP, 2018

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

The Best Gift of the Season: A Gift of Self

We few, we happy few, we band of brothers;

For he today that sheds his blood with me

Shall be my brother.

Henry V (Act 4, scene 3), Shakespeare.

Good morning! We’re entering the holiday season, and it’s an exciting time for all. I love seeing the ethnic and cultural diversity as we all celebrate our favorite holidays with family and friends. I myself look forward to the holiday season. It’s a festive time and a season of giving and sharing. It’s a favorite time of year to share traditions and create new ones. However, at a time when stores have Christmas candy on the shelves, holiday lights up and holiday music playing on the day after Halloween, I feel a bit rushed and want to slow down and find better ways to celebrate and enjoy the season. Over the past few years I have been making a special effort to become more environmentally conscious; remembering my reusable bags at stores, purchasing more reusable products, and reusing, recycling, and upcycling whenever I can. I belong to a community ‘buy nothing’ group and am warmed by the generosity of strangers to others in the community. It’s wonderful to give from our abundance and to receive wish list items from neighbors without having to exchange money. And it’s great for the environment, too. Used items are being put to use by others, and not into landfills. People in the community have asked for or gifted furniture, clothing, tools, toys and many other goods and services. I have gifted no longer needed clothing, household items, excess fabric from my fabric stash, and donated my time to participate in a career fair at a local high school. I have been given a car set for my grandchildren when they visit, toys, and someone even loaned me a bike trailer so we could take my granddaughter out for a bike ride. The generosity makes it feel like the holiday season all year round.

So, you may be asking, “where is this blog going?” I saw a memo from Red Cross this week that there is a critical need for blood and platelets and thought that giving to our community with the gift of blood would be a wonderful way to make this holiday season even better! It’s one of the most generous gifts we can give, and costs nothing. Every 2 seconds in the US, someone needs a blood product. That’s about 36,000 units of red blood cells, 7,000 units of platelets and 10,000 units of plasma needed every day. 21 million blood products are transfused every year.1 That’s a lot of blood. And, these blood products cannot be manufactured, so must come from volunteer donors.

In the US, we need to collect about 13,000 units a day to meet demand. Approximately 14 million units of whole blood are collected each year from roughly 7 million donors.1 The blood is processed into components and used in the treatment of surgical, obstetric, oncology, and other patients. One unit of whole blood can be made into up to 3 components and used to help up to 3 patients. Yet, even with all these donations we still cannot keep up with demand. Weather, holidays, illness and travel can all affect blood donations. Shortages are not just apparent during the winter holiday season. This past summer, the Red Cross announced a critical blood shortage around the July 4th holiday. Compared to other weeks, there were 17,000 fewer blood donations during the week of July 4th. As of July 9, the Red Cross had less than a three-day supply of most blood types and less than a two-day supply of Type O blood. 2 During the summer, and particularly during the holiday week, people are busy with other activities or traveling. In the winter, busy schedules, holiday travel, winter weather and seasonal illnesses contribute to fewer blood and platelet donations. Severe weather can also cause the cancellation of blood drives which greatly impact the blood supply.

Some people donate blood because they see this critical need and hear the calls for blood. Others donate because a classmate or friend asked them to. Some people feel it’s their civic duty. For some, it just makes them feel good to help another person. And, others donate for the cookies and tee shirt. Yet, for all donors, it is a form of volunteerism and giving to the community. But, did you know that, other than the benefits from helping others, there are benefits to the donor, as well? Helping others can improve our emotional and physical health. It can help reduce stress, improve emotional well-being and help people feel a sense of belonging. A study conducted in Sweden concluded that regular blood donors enjoy better than average health.Blood donors had an overall mortality 30% lower and a cancer incidence 4% lower than the control population.3 Donating blood may help reduce high iron stores, a risk factor for heart attack. In addition, there have been several studies over the past few years, exploring the hypothesis that regular blood donations may help in the management of hypertension and high cholesterol.

Another interesting benefit of blood donation is being able to contribute to science and research. For example, there is currently a study being conducted on donor blood to test an investigational nucleic acid test for Babesia microti. Babesia microti is responsible for most transfusion-transmitted babesiosis cases in the United States, but there is no licensed test for screening for B. microti in donated blood. Participation in this study can help obtain FDA approval for a screening test. By giving your consent to use your blood sample, there is no additional blood taken and no further time commitment, but you can help protect the public health by supporting the development of a new blood safety test.

How can we, as individuals, help? About 38% of the population is eligible to donate blood, but less than 10% of the population actually donates. To be eligible to donate, you should be in good general health and feeling well. You must be at least 17 years old in most states (16 years old with parental consent in some states) but there is no age limit to donation. Adult doors must weigh 110 lbs, but there are additional height and weight requirements for donors 18 years old and younger. There have also been some recent changes to blood donor requirements. I will not be able list all of them here, but some of them don’t change a deferral, only the reasoning behind the deferral. One of the most prominent changes is, as of 2016, the indefinite deferral for men who have had sex with men, has been changed to a 12 month deferral since the last sexual contact with another man . Also changed is the minimum hemoglobin for male donors. This has been raised from 12.5g/dl to 13.0 g/dl. Until this time, the cutoff was the same for both males and females. Males with a Hgb below 13.0 g/dl are considered anemic and are no longer eligible to donate blood. On the other hand, the criteria for females to be mildly anemic is a Hgb below 12.0 g/dl, so females between 12.0 g/dl and 12.5 g/dl, though not considered anemic, are still not eligible to donate. The minimum hemoglobin for females has not changed and remains 12.5 g/dl. To review other eligibility requirements, visit https://www.redcrossblood.org/donate-blood/how-to-donate/common-concerns/first-time-donors.html

So, in this busy season, we often find ourselves with little time to get our own “to do” lists done, yet alone volunteer our time for others. But most of us would welcome an hour to reduce stress and improve our emotional well-being. Please consider a gift of self this season. It takes about an hour of your time, you get to sit and relax with your feet up, to feel good about yourself, and you’ll even get a snack!

Happy Holidays!

References

  1. redcrossblood.org
  2. https://news.azpm.org/p/news-splash/2019/7/19/155196-fourth-of-july-donation-slowdown-leads-to-blood-shortage/
  3. Edgre, G et al. Improving health profile of blood donors as a consequence of transfusion safety efforts. Transfusion. 2007 Nov;47(11):2017-24.
  4. Kamhieh-Milz S, et al.Regular blood donation may help in the management of hypertension: an observational study on 292 blood donors. Transfusion. 2016 Mar;56(3):637-44. doi: 10.1111/trf.13428. Epub 2015 Dec 8.

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Blood Bank Case Study: “Oh I’m so confused! What type am I?” Weak D Phenotypes in Pregnant Women

In my July post, “Blood Bank Case Study: What’s Your Type?” I discussed some of the dilemmas when dealing with a weak D phenotype and the fact that there is no standard or general consensus as to the testing performed or terminology to be used in resulting a weak D patient. Results obtained on patient testing also vary depending on the method used, and the anti-D reagent and enhancement used in testing. This can be confusing to medical technologists, physicians and to patients.

For anyone who has not been in the Blood bank for a while, the Du variant was first recognized in 1946 and renamed weak D in 1992. To review last month’s blog, serologic studies have distinguished three broad categories of D variants, weak D, partial D, and DEL, from conventional D. A serologic weak D phenotype is one that has no or weak reactivity (≤2+) of RBCs with an anti‐D reagent at immediate spin, but does agglutinate with antihuman globulin. Since there is no general consensus on how labs perform and report patient testing for weak D, it is left up to individual interpretation as to what type blood these patients should receive, and, if pregnant, if they should receive Rh D immune globulin (Rhogam). Last month I focused on testing, resulting, donors and blood administration. In this blog I will focus on issues concerning weak D in the obstetric population and how labs can move forward now and in the future towards the best patient care and blood management.

About 15% of Caucasians are RhD negative. About 3% are weak D phenotypes.In the genral population, this means that about 0.2% to 1.0% inherit RHD genes that code for serologic weak D phenotypes.2 In Europe and the US, weak D phenotypes are the most common D variants found, but we also know that the prevalence of weak D phenotypes varies by race and ethnicity. Today we have much more information about D antigen expression than we had in the past, because we have the availability to genotype these weak D RBCs. We know that more than 84 weak D types have been identified, but types 1, 2, and 3 account for more than 90% of these in people of European ethnicity.1  Currently, with the mixed ethnicity population in the US, about 80% of people who inherit RHD genes for serologic weak D phenotypes are found to be weak D type 1, 2, or 3.3 We also know that types 1, 2 and 3 are unlikely to become alloimmunized to anti-D, so they can safely be treated as RhD positive and receive RhD positive units.

The introduction of RhD immune globulin in 1968 is one of the great success stories in obstetrics. Rhogam has been used very successfully in developed countries in the prevention and treatment of hemolytic disease of the fetus and newborn due to RhD alloimmunization. The routine recommendation is that women who are candidates for Rhogam receive one dose at approximately 28 weeks’ gestation and a second dose after the delivery of an Rh pos baby. Additional recommendations are for administration of Rhogam after threatened miscarriage, abdominal trauma during pregnancy and before invasive diagnostic procedures.

But, who is a candidate? Any unsensitized woman who is RhD negative and who may be carrying or who delivers an RhD positive baby is a candidate for Rhogam. And, that brings us back to the problem that we have no standardization for the reporting of serological weak D phenotypes.

As an example, let’s look at a patient who has 3 children. Many labs do not do weak D testing on patients and report anyone who is RhD negative at immediate spin as RhD negative. This patient was typed at such a lab (Lab #1) as RhD negative, and received Rhogam for her first pregnancy. During her 2nd pregnancy, she had moved to a different state, and went to another lab (Lab #2) for prenatal testing. This lab performed serologic weak D testing and found this patient to be weak D positive and reported her type as RhD positive. Rhogam was not further discussed during this pregnancy and the patient did not receive Rhogam. The patient had blood drawn during her 3rd pregnancy at yet a third hospital (Lab #3). Some labs distinguish women who are pregnant or of childbearing age from the general population, and have different procedures on the reporting of RhD type on these women. This hospital’s procedure was to do weak D testing on all patients, but, in women of childbearing age, if weak D positive, they report these women as RhD negative. The patient was told she was RhD negative and would be a candidate for Rhogam. At this time the woman thought she remembered that she didn’t get Rhogam with her second pregnancy and was a little confused, but with 2 young children and pregnant with her 3rd, she simply followed the doctor’s recommendation and didn’t question further. When her 3rd child was 4 months old, she attended a Red Cross blood drive at work and donated a unit of blood. Soon she received a blood donor card in the mail that said she was RhD positive. At this point she was thoroughly confused and questioned all the lab results she had had done over the past 6 years. On her next visit to the doctor she questioned her obstetrician. The obstetrician recommended RhD genotyping. The woman was found to be weak D type 2. The doctor explained to her that all blood donors who are weak D are treated as RhD positive, but, that as a patient, policies and procedures vary. However, he also informed her that now that they had her genotype, she would be considered RhD positive. He explained that the genotype was DNA testing, would not need to be repeated, she would not need Rhogam for any future pregnancies and she could safely receive RhD positive blood products.

The American College of Obstetricians and Gynecologists (ACOG) guidance practice bulletin of 1981 recommended that recommended that RhD‐negative women “whether Du positive or Du negative” were candidates for Rhogam. Shortly afterwards, that recommendation was reversed and revised to read “[a] woman who is genetically Du‐positive is Rh‐positive and administration of Rh immune globulin is unnecessary.1 This remained the recommendation of the group until the latest version of this publication in 2017. The 2017 ACOG guidelines recommend giving Rhogam to weak D positive patients, “in appropriate clinical situations, until further studies are available.”3 Another comparative study published in 2018 reported inconsistency between national groups over how to treat weak D phenotypes and recommended the creation of international guidelines.4

Thus, the controversy over whether a pregnant woman who is weak D positive is RHD positive or RHD negative continues. The latest recommendations, and those of ACOG, are for a move to genotyping patients with a serological weak D phenotype. There are several benefits to this. As we can see from my case study example, genotyping put this woman at ease and gave her definitive answers about her blood type. It also can do the same thing for medical technologists and physicians. RHD genotyping only needs to be performed once on a patient. If performed at the first prenatal appointment, this would alleviate much confusion as to procedures and how to report the results. I have in blood bank, that whenever we have a weak D on a prenatal patient, there are questions about how to result them, and we refer to the SOPs. We also occasionally get a patient who had previously been typed elsewhere where the reporting procedures were different and there is therefore an apparent discrepancy between the current and historical typing. This causes frequent phone calls from physicians and nurses asking for clarifications on weak D types, and questions about Rhogam. Lastly, RHD genotyping could avoid confusion which could lead to transcription and computer entry errors when entering types on these patients. RHD genotyping would solve all of these problems and eliminate confusion.

Additional benefits of RHD genotyping are, if RHD genotyping was performed on all weak D transfusion recipients, we could save as many as 47,700 units of RHD negative RBCs annually.3 With the availabilityof molecular testing, there is no reason to administer RhD negative units to patients who can use RhD positive units. This could help alleviate the constant shortage of RHD negative units. With RHD molecular testing, these critical units could be reserved for patients who are truly RhD negative.

It may not be feasible for all laboratories to perform molecular testing for RHD genotypes, but reference laboratories should offer affordable testing for the most prevalent and clinically relevant RHD genotypes. From a study done of over 3100 laboratories, it was found that, at this time in the US, most labs are managing weak D phenotypes as RhD negative. Laboratories not performing weak D testing are essentially avoiding their detection. Clinical laboratories should instead increase the detection of serological weak D and interpret these with the use of RHD genotyping. Rhogam shortages exists, and RHD genotyping could save thousands of injections of Rhogam annually in the US alone, and at the same time, avoid the unnecessary administration of products to patients. The work group study calculated that annually, approximately 24,700 doses of unnecessary Rhogam could be avoided.1 It is time to move forwards to molecular testing for the best patient care and blood management.

References

  1. Sandler SG, Flegel, WA, Westhoff CM, et al. It’s time to phase in RHD genotyping for patients with a serologic weak D phenotype. Transfusion 2015;55:680‐9
  2. Garratty G. Do we need to be more concerned about weak D antigens? Transfusion 2005;45:1547‐1551.
  3. Practice Bulletin No. 181: Prevention of Rh D AlloimmunizationObstetrics & Gynecology: August 2017 – Volume 130 – Issue 2 – p e57-e70 doi: 10.1097/AOG.0000000000002232
  4. Sperling, JD et al. Prevention of RhD Alloimmunization: A Comparison of Four National Guidelines. Am J Perinatol. 35(2):110-119. doi: 10.1055/s-0037-1606609. Epub 2017 Sep 14.

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Blood Bank Case Study: “What’s Your Type?”

The general public doesn’t always know a lot about laboratory testing in general, but most people know a little about blood types, even if it’s what they have learned from TV! Blood types do seem to come up in casual conversation. We might hear a conversation about blood type after someone has donated blood, or between family members comparing notes, who ask “What’s your type?” Yet, even with medical technologists, there can still be some confusion about blood types and blood typing, particularly if one has not worked in Blood Bank in many years. I recently received an email from a colleague who had a few questions about blood types, as she has not worked in Blood Bank for over 40 years. I always tell my students that no question is a bad question, and indeed, she asked some very good questions, which I will address with this case study.

  • What blood type is listed on a patient’s chart if they type “O Du”?
  • What blood type is recorded on a donated unit of blood typed “O Du”?
  • What type of blood does an “O Du” patient receive?
  • Can an “O Du” patient have a transfusion reaction if they are transfused with O positive blood? Would she need to receive O negative blood in a transfusion?
  • Does an “O Du” patient need to receive RhoGAM if she pregnant and her husband is Rh positive?

If you have ever wondered or can’t remember details about any of these questions, you’re in the right place. So, what’s new, if anything, with blood types?

Landsteiner discovered the ABO blood group system in 1901, and identified A, B and O blood types, using experiments performed on blood from coworkers in his laboratory. The discovery of the codominant AB blood type soon followed, but it was not until around 1940 that the Rh blood group was first described. In 1946, Coombs and coworkers described the use of the antihuman globulin (AHG) to identify weak forms of Rh antibodies in serum. For us old blood bankers, the original name for this test was the Coombs’ test. (You will still find physicians ordering a Coombs’ test!) The current and proper name for this is the direct antibody test (DAT), which is used to detect in vivo sensitization of RBCs. AHG can also be used to detect in- vitro sensitization of RBCs using the 2 stage indirect antibody test (IAT).

Since Landsteiner’s work, we have not discovered any new blood groups that are part of the routine blood type. The ABO and Rh blood groups are still the most significant in transfusion medicine, and are the only groups consistently reported. However, we currently recognize 346 RBC antigens in 36 systems.1 Serological tests determine RBC phenotypes. Yet, today we can also determine genotype with family studies or molecular testing. This case study and 2 part blog reviews some terminology in phenotyping, some difficulties and differences encountered, and explores the possibility of RHD genotyping to assess a patient’s true D status.

Our case study involves a 31 year old woman who is newly married. She is not currently pregnant, has never been pregnant, is not scheduled for surgery but has had a prior surgery 15 years ago, and has never received any blood products. She and her husband recently donated blood and, as first time blood donors, just got their American Red Cross (ARC) blood donor cards in the mail. The husband noted that his card says that he is type O pos. The woman opens her card, and, with a puzzled look on her face, says “My card says I’m an O Pos, too. There must be a mistake.” She knows she has been typed before and checks her MyChart online. Sure enough, her blood type performed at a local hospital is listed in her online MyChart as O negative. She further checks older printed records and discovers that 15 years ago, before surgery, she was typed at a different hospital as “O Du”. She is very upset, wondering how she can have 3 different blood types. She is additionally concerned because they are planning to have children and recalls being told that because she is Rh negative, that she would need Rhogam. Is she Rh negative or positive, and what does Du mean? Will she need Rhogam when pregnant? She has many questions and calls the ARC donor center for an explanation.

What blood type is listed on a patient’s chart if they type “O Du”?

What is happening here, what is this woman’s actual blood type, and what testing can be done to ensure accuracy in Rh typing? From the patient reports, it appears that this woman has what today we call a “weak D.” Du is an older terminology that should no longer be used, and that has been replaced by the term “weak D.” But, why does she have records that show her to be an O neg, a type O, Du (today, this would be written O weak D), and now, a card from ARC stating she is O pos?

RhD negative phenotypes are ones that lack detectable D antigen. The most common Rh negative phenotype results from the complete deletion of the RHD gene. Serologic testing with anti-D is usually expected to produce a strong 3+ to 4+ reaction. A patient with a negative anti-D at IS and at IAT would be Rh negative. If the patient has less than 2+ strong reaction at immediate spin (IS), but reacts at IAT, they would be said to have a serologically weak D.1 Historically, weak D red blood cells (RBCs) are defined as having decreased D antigen levels which require the IAT for detection. Today’s reagents can detect many weak D types that may have been missed in the past, without the need for IAT. However, sometimes IAT is still necessary to detect a weak D. When this is necessary is dependent on lab SOPs and whether this is donor testing or patient testing. The reported blood type of this patient also depends on the SOPs of the laboratory that does the testing. And, the terminology used for reporting is also lab dependent. It is not required by AABB to test patient samples for weak D (except for babies of a mother who is D negative). There is also no general consensus as to the terminology to be used in reporting a weak D. Some labs would result this patient as O negative, weak D pos. Some labs may result O pos, weak D pos. Others may show the individual reactions but the resulted type would be O pos. Labs who do not perform weak D testing would report this patient as O, Rh negative. The following chart explains why this patient appears to have 3 types on record.

Figure 1. Tube typing results of same patient from different labs with different SOPs.

What blood type is recorded on a donated unit of blood typed “O Du?”

AABB Standards for Blood Banks and Transfusion Services requires all donor blood to be tested using a method that is designed to detect weak D. This can be met through IAT testing or another method that detects weak D. If the test is positive, the unit must be labeled Rh positive. This is an important step to prevent alloimmunization in a recipient because weak D RBCs can cause the production of anti-D in the recipient. This also explains why the ARC donor card this patient received lists her type as O pos.

What type of blood does an “O Du” patient receive?

Historically, weak D red blood cells (RBCs) were defined as having decreased D antigen levels which require the IAT for detection. A patient who is serologic weak D has the D antigen, just in fewer numbers. This type of weak D expression primarily results from single-point mutation in the RHD gene that encodes for a single amino acid change. The amino acid change causes a reduced number of D antigen sites on the RBCs. Today we know more about D antigen expression because we have the availability to genotype these weak D RBCs. More than 84 weak D types have been identified, but types 1, 2, and 3 represent more than 90% of all weak D types in people of European ethnicity.2 An Rh negative patient has no D antigen and should, under normal circumstances, only receive Rh negative blood. Yet, there has been a long history of transfusing weak D patients with Rh positive RBCs. 90% of weak D patients genotype as Type 1, 2 or 3 and may receive Rh positive transfusions because they rarely make anti-D. 2

It is now known that weak D can actually arise from several mechanisms including quantitative, as described above, position effect, and partial D antigen. Molecular testing would be needed to differentiate the types, but, with the position effect, the D antigen is complete and therefore the patient may receive Rh positive blood with no adverse effects. On the other hand, a partial D patient may type serologically as Rh negative or Rh positive and can be classified with molecular testing. It is important to note that these partial D patients are usually only discovered because they are producing anti-D. If anti-D is found, the patient should receive Rh negative blood for any future transfusions.

Thus, 3 scenarios can come from typing the same patient. With a negative antibody screen, and because 90% of weak D patients have been found to be Type 1, 2 or 3 when genotyped, many labs do not routinely genotype patients and will report the blood type as Rh pos and transfuse Rh pos products. However, depending on the lab medical director and the lab’s SOPs, these same patients may be labeled Rh neg, weak D and receive Rh negative products. There is no general consensus on the handling and testing of weak D samples. The 3rd scenario is that many labs do not test for weak D in patients at all, and a negative D typing at IS would result in reporting the patient as Rh neg, with no further testing. In this case, the patient would be transfused with Rh negative products.

Can an “O Du” patient have a transfusion reaction if they are transfused with O positive blood? Would she need to receive O negative blood in a transfusion?

This question was covered somewhat in the above discussion. Policies regarding the selection of blood for transfusion are lab dependent, dictated by the lab medical director, and are based on the patient population, risk of developing anti-D, and the availability or lack of availability of Rh negative blood products. Anti-D is very immunogenic. Less than 1 ml of Rh pos blood transfused to an Rh negative person can stimulate the production of anti-D. However, not all patients transfused with Rh positive blood will make and anti-D. As discussed above, 90% of weak D patients are types 1, 2 or 3, would be unlikely to become alloimmunized to anti-D. If a weak D patient with a negative antibody screen receives a unit of D pos RBCs, there is a very small possibility that they are a genotype who could become alloimmunized to the D antigen and produce anti-D. However, as stated above, the majority of weak D patients can be transfused with D positive RBCs. Thus, with few exceptions, from a historical perspective, one can safely classify the weak D as D positive.

This question gets a little trickier when dealing with females of childbearing age. We particularly want to avoid giving Rh positive blood to females to avoid anti-D and the complications of Hemolytic Disease of the Fetus and Newborn. Therefore, when dealing with these patients, lab policies and physicians tend to be more conservative in their approach to transfusion. The consequences, however, in males and older females are less serious and these patients could be given Rh positive blood if there exists a shortage of Rh negative units. Any patient who becomes alloimmunized to the D antigen, would thereafter be transfused with Rh negative products.

Does an “O Du” patient need to receive RhoGAM if she pregnant and her husband is Rh positive?

This, again, would be up to the medical director, the lab’s SOPs or the patient’s physician. Depending on lab practice, the lab may or may not perform weak D testing. If the lab does not perform weak D and results this patient as Rh neg, the patient would get Rhogam. If the lab does do weak D testing and finds a weak D phenotype, the decision whether or not to give Rhogam would be up to lab practices and the practitioners involved. The lab’s policy on terminology used in resulting the type may also reflect the decision whether or not to give Rhogam. This brings up a lot of questions in the lab because we know that a patient who would not make anti-D would not need Rhogam. So, what is the best course of action? Read my next blog to learn more about troubleshooting and resolving D typing discrepancies!

From the discrepancies in reported type in this individual, and putting all the pieces of the puzzle together, we can conclude that this patient is a weak D phenotype. However, the type reported and the terminology used varies from lab to lab. Molecular testing is available, yet most labs are still using serological testing for blood types for both donors and patients. This is based on several factors within the lab setting. Stay tuned for my next Blood Bank blog exploring D typing discrepancies and the financial aspects of performing genotype on pregnant patients to clarify Rh type.

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.