Blood Bank Case Study: Hemolytic Disease of the Fetus and Newborn due to anti-K

A 28 year old woman, gravida 1 para 0 presented to her OB/GYN for her first prenatal visit. A type and screen was ordered and the patient typed as A pos, with a positive antibody screen. Maternal history indicated that she had received several transfusions, for a total of 5 units of blood, following an automobile accident 15 months previously. An antibody identification was performed and Anti-K was identified in her plasma. The patient sample was phenotyped and was confirmed to be K negative.

Is the fetus at risk for Hemolytic Disease of the Fetus and Newborn (HDFN)? How can we know? And, if so, how should this pregnancy be monitored?

The answer to these questions is not a simple answer, and depends on several factors. Let’s look first at HDFN and its causes. HDFN is destruction of the RBC’s of the fetus and newborn by antibodies produced by the mother. This happens in 2 steps. The first step is that  blood containing a foreign antigen enters the maternal blood stream and stimulates the mother to produce unexpected IgG antibody. But, how is a mother exposed to these foreign antigens? The mother is exposed either via a blood transfusion or a previous pregnancy. In this case, this was the mother’s first pregnancy, however her history revealed that she had been previously transfused. In order for the mother to produce anti-K , she must be K antigen negative, which was confirmed in the Blood Bank testing. She was exposed to the K antigen through transfusion and produced the anti-K antibody to the foreign antigen. The second step in the development of HDFN occurs when the mother’s antibody crosses the placenta and binds to this foreign antigen present on the red blood cells of the fetus. This can lead to RBC suppression, destruction, and fetal anemia.

Again, certain criteria must be met. First of all, the antibody must be IgG. Only IgG antibodies can cross the placenta. Active transport of IgG from mother to fetus begins in the second trimester and continues until birth. Secondly, the mother’s antibody is only of concern if the baby possesses the antigen that the mother lacks. Where does the baby get an antigen that is foreign to the Mom?? It’s the Dad’s Fault!! In HDFN, the mother lacks the antigen in question and the fetus possesses the antigen, which is of paternal origin.

How do we determine if the fetus has the K antigen and is at risk? If you remember your genetics and Punnett squares, if the mother does not have the antigen and the baby does, the father must possess the antigen, because the baby gets an allele from each parent. This means that the fetus affected by HDFN is always heterozygous for the antigen in question. Figures 1, 2 and 3 below illustrate the possible inheritance patterns. In the first scenario, shown in Figure 1, the baby would not inherit a K antigen and would not be at risk for HDFN. In the Figure 2 scenario, the father is homozygous for K, and 100% of offspring from these parents would be K positive. Figure 3 illustrates a heterozygous father who would have a 50% chance of passing this gene to their offspring.

Figure 1. Punnett square showing inheritance of K antigen. Mother (on side) is negative for K (kk), father (at top) is also negative, homozygous kk
Figure 2. Punnett square showing inheritance of K antigen. Mother is negative for K (kk), father is homozygous KK
Figure 3. Punnett square showing inheritance of K antigen. Mother is negative for K, father is heterozygous Kk

The father was phenotyped as K positive. The father’s blood sample was sent out for further zygosity testing, and he was found to be heterozygous for the K antigen. Thus, the fetus had a 50% chance of being affected by HDFN, and further testing was performed. The mother’s antibody titer was 1:4. To avoid an invasive procedure such as amniocentesis or chorionic villus sampling (CVS) which may worsen maternal alloimmunization, fetal DNA was isolated from the mother’s plasma at 12 weeks’ gestation and the fetal genotype was determined. The fetus was determined to be K positive and at risk for HDFN.

The mother’s titer and the fetus continued to be monitored. Diagnostic ultrasounds were performed to monitor fetal size, age, and structural changes. At 16-18 weeks’ gestation, ultrasounds of the middle cerebral artery (MCA-PSV) were performed to assess fetal anemia. MCV-PCA of 1.29 -1.5 multiples of mean (MoM) for the gestational age is indicative of mild anemia. Higher values predict moderate to severe anemia which require further intervention. At 18 weeks the MCV-PCA was 1.27 MoM and the fetus was determined to be developing normally.

A type and screen and antibody titer at 28 weeks showed the mother’s titer had increased, to 1:32, indicating that fetal RBCs with K antigen had entered the mother’s circulation and were stimulating further antibody production. Repeat MCV-PCA was 1.33, indicating mild anemia. Weekly measurements of MCA-PCV were recommended. At 32 weeks, a sudden increase was recorded, with MCV-PCA of 1.65 MoM. Cordocentesis was performed and fetal hemoglobin was 6.2g/dl. Fetal DAT was positive and anti K was identified in the eluate. An intrauterine transfusion (IUT) was performed. IUT was repeated at 34 and 36 weeks. The infant was delivered at 37weeks. The newborn required several neonatal transfusions while in the hospital and was discharged to home 3 weeks later.

Kell isoimmunization is the third most common cause of HDN after Rh and ABO and the most clinically significant of the non-Rh system antibodies in the ability to cause HDFN.  It tends to occur in mothers who have had several blood transfusions in the past, but it may also occur in mothers who have been sensitized to the K antigen during previous pregnancies. Anti-K HDFN may cause rapidly developing severe fetal anemia. Anemia and hypoproteinemia are dangerous to the unborn child because they can lead to cardiac failure and edema, a condition known as hydrops fetalis. The MCA-PSV is a non-invasive doppler measurement of peak systolic velocity which is used to monitor fetal anemia. As mentioned previously, MCV-PCA of 1.29 -1.5 multiples of mean (MoM) is indicative of mild anemia. Values greater than 1.5 MoM are very sensitive and can be used to predict moderate to severe anemia that would need intervention.

HDFN due to anti-K differs from ABO and Rh HDFN in that, in HDFN due to K alloimmunization, Anti-K targets the RBC precursors. Remember that the K antigen can be detected on fetal RBCs as early as 10 weeks. The  primary mechanism of K HDFN is due to maternal anti-K antibody actually suppressing the fetal production of RBCs, rather than hemolysis of mature fetal RBCS as seen in ABO and Rh HDFN. With reduced hemolysis, amniotic fluid bilirubin levels also do not correlate well with the degree of anemia. In addition, alloimmunization due to Anti-K differs in that even a relatively low maternal anti-K titer can cause erythropoietic suppression and severe anemia. In Rh HDFN, a critical titer is considered to be 16. In anti-K HDFN, a critical titer is considered to be 8, and newer research  suggests a titer of 4 should be used to target clinical monitoring.4 Since fetal anemia can occur even with low titers, and the titer does not necessarily correlate to the degree of anemia, fetal MCA-PSV measured by Doppler ultrasound is the investigation of choice in the evaluation of anemia related to maternal K alloimmunization.

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Blood Bank Case Study: A 54 Year Old Woman with Lethargy

The patient is a 54 year old woman, presenting to the Emergency Room with complaints of abdominal cramps and feeling lethargic for the past few days. She also reports her stools have been black and sticky.  Her chart reveals a history of ulcers and GI bleeding.  She was transfused with 2 units packed RBCs 2 months ago for the same symptoms. CBC results are shown below.

The patient was admitted to the hospital and four units of blood were ordered. The patient is type A pos with a negative antibody screen. One unit of packed red blood cells would be expected to raise the Hgb by 1g/dl. Because the patient was actively bleeding, 4 units were crossmatched and transfused.

Two days later, the patient was discharged, with orders to follow up with her GI doctor for further testing and treatment. Three days after discharge she still felt weak and returned to the ER. On examination, it was noted that the patient’s eyes and skin appeared jaundiced. The patient had a fever of 100F. Repeat lab results are shown below.

The Physician ordered a type and crossmatch for 2 units of packed red blood cells. The patient’s antibody screen was now positive. A transfusion reaction workup was initiated

Transfusion workup

Clerical Check- No clerical errors found.

Segments from all 4 transfused units were phenotyped for Jka antigen. Three of the four units transfused typed as Jka positive.

A transfusion reaction is defined as any transfusion-related adverse event that occurs during or after transfusion of whole blood, or blood components. Transfusion reactions can be classified by time interval between the transfusion and reaction, as immune or non-immune, by presentation with fever or without fever, or as infectious or non-infectious.

A delayed transfusion reaction is defined as one whose signs or symptoms typically present days to several weeks after a transfusion. In Transfusion Medicine, we do not want to give the patient an antigen that is not present on their red blood cells. However, we do not routinely phenotype patients, so, in the patient with a negative antibody screen and history, it is always possible that the patient receives units with foreign antigens. The more immunogenic the antigen, and the greater number units received that expose the patient to this antigen, the greater likelihood that the patient will develop an antibody to the foreign antigen. Therefore, this type of reaction would also be categorized as immune.

In a delayed hemolytic transfusion reaction (DHTR) investigation, the units transfused would have appeared compatible at initial testing. This type of adverse event is fairly common in patients who have been immunized to a foreign antigen from previous transfusion or pregnancy. The antibody formed may fall to a very low level and therefore not be detected during pretransfusion screening. If the patient is subsequently transfused with another red cell unit that expresses the same antigen, an anamnestic response may occur.  The antibody level rises quickly and leads to the DHTR. In the transfusion reaction workup, this antibody can often be detected when testing is repeated. However, in some cases, particularly with Kidd antibodies, the levels again drop off so quickly they may not be detected!  The diagnosis of DHTR is often difficult because antibodies against the transfused RBCs are often undetectable and symptoms are inconclusive.

This case is a classical example of a DHTR.  Kidd antigens are notorious for causing DHT because their levels can drop off quickly and disappear, making them difficult to detect in screening. In this case, the transfusion two months earlier exposed the patient to the Jka antigen and the patient produced the corresponding antibody. The levels then dropped quickly, as elusive Kidds are known to do! When the patient returned to the ER in crisis, the antibody levels had dropped below detectable levels and the antibody screen was negative. The patient was given 4 units and returned to the ER five days after transfusion. This patient did exhibit mild jaundice and a low-grade fever. However, often, the only symptom of a DHTR is the unexpected drop in Hgb and Hct, making them even more difficult to diagnose.

The new antibody screen, sent to the Blood Bank on day 5, detected anti-Jka. The DAT was positive mixed field due to the transfused cells. Elution was performed and anti-Jka was recovered in the eluate. In the DHTR, only the transfused cells are destroyed. Phenotyping segments from the transfused units can estimate amount of transfused RBCs that may have shortened survival. Management of this case patient would be to provide antigen negative units for all future transfusions.

Kidd  (Anti-Jka and Anti-Jkb), Rh, Fy, and K have all been associated with DHTR and occur in patients previously immunized to foreign antigens through pregnancy and transfusion. These types of reactions are generally self-limiting but can be life threatening, especially in multiply transfused patients, such as those with sickle cell anemia. Antigen negative blood must always be given, even if the current sample is not demonstrating the antibody in question. For that reason, it is vitally important to always do a thorough Blood Bank history check on all samples!

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

A Tale of Two Types

“It was the best of times, it was the worst of times.” In the blood bank, some of the best days can come from some of the worst days. When we come together as a team to work on a puzzling antibody problem, or to respond to a trauma, we can take pride in our work and know we have done our best to help the patient. In the blood bank we are constantly being called upon to learn and to be “disease detectives.” These are the best times. I tell my students that antibody panels are like puzzles and ABO discrepancies are mysteries to solve. Of course, when the Emergency Room is calling for blood for a trauma, or the Operating Room has an emergency surgery on a patient not previously type and crossed, any “problem” to solve can be a bit stressful.

ABO discrepancies are one challenge we face in blood banking. These are generally not clinical problems, but are serologic problems encountered by the blood bank technologists. Some discrepancies are easier to resolve than others, but still usually require a bit of investigation, and time. We don’t see these every day, so they can set us back a step when we do come across them.

One such situation that I recall was a young man in the ER who arrived by ambulance after a motor cycle accident. My trauma beeper went off and I called the ER to see if they wanted blood right away. Typically in these cases we bring them O blood in a cooler, and continue to use type O until we have a blood sample and current type, (performed twice if no prior history) and an antibody screen. In this case we were fortunate in that we got a sample almost immediately, before they started any transfusions. The type and screen was put on our Provue, but the instrument flagged an error on the type. When looking at the gel card, I could see mixed field reactions. Serology results are shown.

Anti-A Anti-B Anti-D Rh cont A cells B cells ABO/Rh
2+mf 0 2+ 0 0 4+ ?

ABO discrepancies occur when unexpected reactions occur in the forward or reverse grouping or the forward typing does not match the reverse typing. In general, RBC and serum grouping reactions are very strong; therefore reactions less than 3+ usually represent the discrepancy. In this case, testing patient cells with anti-A gave a 2+ mixed field reaction and patient cells and anti-D was only a 2+ reaction. The first step was repeating the test with the same sample. The repeat tube typing gave the same results. Additional steps included testing a new sample, completing the antibody screen, which was negative, and reviewing the patient history. At this time, we did have a positive identification on the patient and a medical record number. The patient had no previous Blood Bank history. However, reviewing the ER admission notes, it was noted that the patient had received 2 units of O negative packed cells in the ambulance en route to the hospital. Viewing the anti-A and the anti-D tubes under the microscope confirmed presence of mixed field agglutination.

Mixed field agglutination describes the presence of two populations of red cells. Mixed field agglutination is seen as small or large agglutinates in a field of many unagglutinated cells. In this case, we observed mixed field agglutination with the patient’s own circulating type A positive red blood cells agglutinating with the anti-A antisera, and the type O donor cells he received remaining unagglutinated. Patients can show mixed field reactions after recent out of group transfusions of as few as 1 or 2 units of packed cells. As well, when group O packed RBCs are transfused to a group A, B or AB recipient, there is always a small amount of plasma transfused. Thus, anti-A, anti-B and anti-A,B are almost always passively transferred. Even though it is unlikely that the passively acquired ABO antibodies will cause in vivo hemolysis, it would be recommended to continue transfusing O blood instead of type specific blood for the duration of the immediate episode and until anti-A antibodies are no longer detectable in the patient’s serum.

This case is an example of an artificial chimerism. Chimerism is the presence of 2 cell populations in a single individual and, in this case, was easily explained by the recent out of group transfusions.  This patient was sent to surgery and continued receiving several more units of group O RBCs during and after surgery. The patient’s blood type continued to appear as a mixed cell population during his hospital admission.

There are a number of other scenarios in which mixed field reactions could cause a discrepancy in a patient’s ABO/Rh typing. Some weak subgroups of A (A3) are known for giving mixed field reactions. Mixed field reactions can also be seen in other artificial chimera cases, such as are seen with transplanted bone marrow or peripheral blood stem cells of a different blood type.  If mixed field reactions are present, review the patient’s transfusion history to determine if the patient has been transfused with non-group specific RBC components in the past 3 months or received an ABO-mismatched stem cell or bone marrow transplant. More uncommon and unusual are cases of true chimerism, which can occur with fraternal twins.  Stay tuned for my next transfusion medicine blog for a discussion of chimerism!

A few key tips to remember when encountering an ABO discrepancy:

  • Retest the sample first, using a different method, if available
  • Check for technical or clerical errors
  • Remember that the weakest reactions are usually the ones that are in doubt
  • Complete the antibody screen and note positive reactions
  • Check the patient diagnosis
  • Check Blood Bank history
  • Most of all, take a deep breath and relax. You can solve this!

References

  1. Charles Dickens. A Tale of Two Cities. 1859
  2. George Garratty. Problems Associated With Passively Transfused Blood Group Alloantibodies. AJCP, June 1998
  3. Denise M. Harmening, Modern Blood banking and Transfusion Practices, Sixth edition, 2012.
  4. Christopher Sharpe, et al. Mixed field reactions in ABO and Rh typing chimerism likely resulting from twin haematopoiesis. Blood Transfus. 2014 Oct; 12(4): 608–610.

Socha-small

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Blood Bank Case Study: Once Upon a Discrepancy

I have taught Transfusion Medicine to MLS students for a number of years, and one of the more challenging concepts for my students is that of ABO discrepancies. We use ‘dry’ labs for ABO discrepancy examples because it would be difficult to create actual samples that illustrate the various scenarios. Without seeing this in the lab, and actually performing the steps to resolve, visual learners in particular can be at a disadvantage. In reality, some of the more unusual ABO discrepancy problems are found more often on exams than in real life. Consequently, in the Blood Bank lab, when a technologist comes upon an ABO discrepancy, it can be something they are not very experienced with and it can be more scary than exciting. I have always felt that one of the best things about being a medical technologist is that we get to solve puzzles and find answers. So, let’s put on our detective hats and follow along with our case history story of an ABO typing discrepancy.

Once upon a discrepancy… a forward typing did not match a back typing. The first thing the tech did was to repeat the typing. Many labs recommend using a different method in the repeat, so if typings are routinely done by an automated method, a repeat testing might be done by tube typing. In this case, we can see the results of the initial testing and the results of the tube typing below:

Automated typing

Reagent Anti-A Anti-B Anti-D A1 Cells B Cells Interpretation
Results  4+  0  4+  1+  3+  ??

Repeat tube typing

Reagent Anti-A Anti-B Anti-D D Control A1 Cells B Cells Interpretation
Results  4+  0  4+  NT  1+  4+  ??

 

As you can see, the repeat typing simply rules out technical or clerical errors and confirmed that the testing was performed correctly. So far so good. However, since we got the same results on repeat testing, what is the next step in resolving this discrepancy?

I teach my students to think of a few ground rules when working on ABO discrepancy problems. The first is that, typically in these situations, it is the weak reaction that is the discrepant one. We have a patient who front types as an A, but the back type looks like an O. With ABO typing we usually get fairly strong reactions, so the 1+ reaction with A1 Cells is the suspect one. The second rule of thumb is that antibody problems are much more common than antigen problems. Having and extra antibody reaction or missing an antibody reaction is more common than extra or missing antigens. In this case we have an extra antibody reaction. This patient looks like a group A who is making anti-A1 which has reacted with our A1 cells.

Our next step is to discover why we have an extra antibody. I would like to emphasize the importance of looking up the patient’s history to help you resolve a discrepancy. This is the third thing that should always be done when investigating an ABO discrepancy. Accurate patient history including any previous Blood Bank results, age, pregnancy history, medications and diagnosis can all be used to help resolve these problems.

At this point techs are probably thinking ‘This is easy!’ and thinking about A subgroups. Remember that about 80% of group A people are group A1 and about 20% are group A2. There are also other less common subgroups of A, but A2 is the one that we encounter most often. Some group A2 people can make anti-A1, either naturally or as an immune response. This patient is a 30 year old woman who is in the Emergency Room and has just been scheduled for surgery. The physician has ordered a type and crossmatch for 2 units of blood. A look at her medical history shows she has never been pregnant nor has ever received blood products. We have no previous Blood bank history on the patient. While an anti-A1 can be from previous transfusions or pregnancy, it can also be naturally occurring. This seems to support our speculation that she is an A2 subgroup with a naturally occurring anti A1, so while we are waiting for our screen results, we perform A1 lectin testing. The results are shown below:

abo-disc

If our patient was group A2 as we thought, her A2 cells would not react with anti-A1 and her plasma would not have anti-A2 and would not react with A2 cells. Our results do not match our original hypothesis that the patient is group A2 and we can rule out a subgroup of A. What is her type, and what is causing the discrepancy?

To help solve this discrepancy, the tech looked at the solid phase screening results only to find that the screen was negative, thus making this puzzle even more perplexing. He repeated the screen in tube at IS, 37C and AHG and found positive reactions. Working up the panel, Anti-M was identified!

So, what type is this patient? She is group A1 pos with an cold reacting anti-M antibody. The policies of the medical center would determine if this patient should be given cross match compatible units that are not antigen typed or crossmatch compatible M negative units.

Anti-M is a naturally occurring cold antibody. Most examples of Anti-M are IgM, do not react at 37C and are not considered to be clinically significant. However, anti M can also present with an IgG component and react at 37C and AHG. In this case, it would be considered clinically significant and any units transfused must be negative for the M antigen.

This patient’s anti-M was only reacting at IS and determined to be not clinically significant. Despite this, we have seen that non-ABO alloantibodies can and do interfere with ABO typing and are a common cause of unexpected reactivity in ABO reverse typing. Performing the ABO testing at warm temperatures or repeating the reverse grouping with reagent A1 and B cells that are negative for M antigen can eliminate the cold reactivity and help resolve the discrepancy. It is important to remember that we must not only recognize discrepant results, but also resolve them adequately. Correct blood typing of patients is essential to prevent ABO incompatible transfusions and to help prevent alloimmunization.

References

  1. http://www.haabb.org/images/14_Hamilton-Neg_Ab_screen_For_website.pdf
  2. Harmening, Denise M. Modern Blood banking and Transfusion Practices, 6th Ed. 2012
  3. Safoorah Khalid, Roelyn Dates, et al. Naturally occurring anti M complicating ABO grouping. Indian Journal of Pathology and Microbiology. Vol 54, Issue 1, 2011. P 170-172

 

Socha-small

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

The Occurrence of Lewis Antibodies in Pregnancy

A 36 year old woman presented to the delivery room at a local county hospital at 39 weeks’ gestation. The doctor ordered a type and screen on the patient, the blood was drawn and sent to the Blood Bank lab. The Blood Bank tech looked up the patient’s Blood Bank history and noted that an antibody screen done at 28 weeks was positive, with an anti-Lea identified. The Blood Bank’s policy is to have 2 units of blood available for any patient with an antibody. As the Blood Bank tech was working on the sample, the physician sent a STAT order for 2 units RBCs for intrapartum hemorrhage.

Are Lewis antibodies clinically significant? AABB defines a clinically significant antibody as one that causes decreased red blood cell survival of transfused cells, one that causes hemolytic transfusion reaction or one that causes Hemolytic Disease of the Fetus and Newborn (HDFN).3 In the Blood Bank, we would always be cognizant of all three criteria, but in this case, we are particularly concerned with HDFN.

The Lewis system is of great interest in immunohematology because of its unique characteristics. The Lewis blood group system is the only one where the antigens are not produced by the red blood cell itself. We learn in immunohematology that red cell antigens are structures that are usually formed on red blood cell membranes, but Lewis stands alone in that the antigens are glycolipids that are formed in the plasma and then passively absorbed onto the red blood cell membrane. This forms a loose attachment and these antibodies can shed or elute off the RBCs in certain circumstances.

Because Lewis antigens are not formed on RBCs, Lewis antigens are not present at birth and therefore not found on cord blood cells. Cord blood and RBCs from newborns will phenotype as Le(a-b-). The saliva of these newborns will have Lea and/or Leb antigens depending on the genes inherited, but the RBCs will test negative for these antigens at birth. By about 10 days of age, the Lewis antigens can be detected in plasma, and they will shortly thereafter begin to be absorbed onto the RBCs. Yet, children do not exhibit their true Lewis phenotype until about age 6.

The development of Lewis antigens is also unique. Lewis antigens are not antithetical, as they result from the interaction of two fucosyltransferases encoded by the Le and Se genes. The Le gene is needed for the production of Lea antigen and the Se gene is needed to form Leb antigen. The three common Lewis phenotypes, Le(a+b-), Le(a-b+) and Le(a-b-) indicate the presence or absence of the Le and Se transferase enzymes.

In pregnancy a mother’s plasma volume increases, and because Lewis antigens are not an integral part of the RBC membrane, they can elute off her RBCs. This causes a decrease in Lewis antigen and some pregnant women, regardless of their true Lewis antigen type, will temporarily type as Le(a-b-). At the same time, because they are now typing Le(a-b-), pregnant women often acquire Lewis antibodies.

Anti-Lea is the most frequently found Lewis antibody, is IgM, and is usually detected at room temperature. In most cases, it is acceptable to give patients with Lewis antibodies RBC units that are crossmatch compatible at 37C without giving antigen negative units. One reason for this is that, as we saw above, Lewis antigens are merely absorbed onto RBCs and can be eluted from transfused red cells within days of transfusion. In addition, when Lewis antigen positive blood is given to Lewis-negative recipients, the Lewis substance in plasma neutralizes antibodies in the recipient. This is why it is extremely rare for anti-Leato cause hemolysis of transfused RBCs. Regardless of Lewis phenotype, RBCs would be expected to have normal in vivo survival.

For an antibody to cause HDFN it must be able to cross the placenta. The antibody must also react with antigens on the red blood cells. Because Lewis antibodies are IgM and do not cross the placenta, and because Lewis antigens are not present on fetal and neonatal erythrocytes, Lewis antibodies have not been implicated in HDFN and this baby is not at risk.

What does this all means in practice? Though the presence of anti-Lewis antibodies in pregnant women is fairly common, both anti-Leaand anti-Leb are naturally occurring IgM antibodies that are not generally considered to be clinically significant. They have low immunogenicity, they do not cause HDFN, they rarely cause hemolysis and do not cause decreased survival of transfused RBCs. This baby is not at risk for HDFN. The mother can safely be transfused with crossmatch compatible RBCs. Her Lea antibodies may be neutralized with a transfusion or will naturally disappear, and her true Lewis phenotype should return within about 6 weeks after delivery.

References

  1. Harmening DM: The Lewis System. In Harmening DM, (6th ed): Modern Blood Banking and Transfusion Practices. FA Davis, Philadelphia 2012, pp. 177-180
  2. Fung, Mark K, ed.: The Lewis System. 18th ed: AABB Technical manual, Bethesda, Md. 2014, pp 304-306
  3. Fung, Mark K, ed.: PreTransfusion testing. 18th ed: AABB Technical manual, Bethesda, Md. 2014, pp 376
  4. D. Radonjic et al, The Presence of antibodies in anti-Lewis system in our pregnant women. Giorn.It.Ost.Gin. Vol. XXXII-n.4.Luglio-Agosto 2010.

 

Socha-small

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Blood Bank Case Study: Transfusion Transmitted Malaria

Case Study

A 26 year old African American female with sickle cell anemia presented to a New York emergency room with cough, chest pain, fever and shortness of breath. Laboratory results showed an increased white blood cell count, slightly decreased platelet count and a hemoglobin of 6.2 g/dl. Her reticulocyte count was 7%, considerably below her baseline of 13%. Consulting the patient’s medical records revealed history of stroke as a child and subsequent treatment with chronic blood transfusions. She was admitted to the hospital for acute chest syndrome and aplastic crisis and care was transferred to her hematologist. Two units of RBCs were ordered for transfusion.

The blood bank technologists checked the patient’s blood bank history and noted her blood type was A, Rh(D) positive, with a history of a warm autoantibody and anti-E. The current blood bank sample confirmed the patient was blood type A, RH(D) positive with a negative DAT but the antibody screen was positive. Anti-E was identified. Per request of the hematologist, phenotypically similar units were found and the patient was transfused with 2 units of A RH(negative), C/E/K negative, HgS negative, irradiated blood. The patient’s hemoglobin rose to 8g/dl and she was discharged from the hospital 3 days after transfusion.

Ten days after discharge the patient returned to the emergency room with symptoms including aching muscles, fever and chills. A delayed transfusion reaction was suspected. A type and screen was immediately sent to the blood bank. The post transfusion type and screen remained positive for anti-E, DAT was negative. No additional antibodies were identified. However, a CBC sent to the lab at the same time revealed malarial parasites on the peripheral smear. The patient was consulted for a more complete medical history and reported that she had never traveled outside of the country. A pathology review was ordered and the patient was started on treatment for Plasmodium falciparum.

plasfal1

Discussion

Red Blood cell transfusions can be life saving for patients with sickle cells anemia. These patients are frequently transfused by either simple transfusion of red cell units or by exchange transfusion. Because of this, alloimmunization is reported to occur in 20% to 40% of sickle cell patients.1 Blood bank technologists are very diligent in adhering to strict procedures and follow a standard of practice aimed to prevent transfusion reactions. While preventing immune transfusion reactions may be the most forefront in our minds when transfusing the alloimmunized patient, it is important to consider transfusion transmitted diseases as a potential complication of blood transfusions.

Malaria is caused by a red blood cell parasite of any of the Plasmodium species. Mosquito transmitted infection is transmitted to humans through the bite of an infected mosquito. Transfusion-transmitted malaria is an accidental Plasmodium infection caused by a blood transfusion from a malaria infected donor to a recipient.

Donors, especially those from malarial endemic countries who may have partial immunity, may have very low subclinical levels of Plasmodium in their blood for years. Even these very low levels of parasites are sufficient to transmit malaria to a recipient of a blood donation. Though very rare, transfusion-transmitted malaria remains a serious concern for transfusion recipients. These transfusion-transmitted malaria cases can cause high percent parisitemia because the transfused blood releases malarial parasites directly into the recipient’s blood stream.

Blood is considered a medication in the United States, and, as such, is closely regulated by the FDA. Blood banks test a sample of blood from each donation to identify any potential infectious agents. Blood donations in the US are carefully screened for 8 infectious diseases, but malaria remains one infectious disease for which there is no FDA-approved screening test available. For this reason, screening is accomplished solely by donor questioning.2 A donor is deferred from donating if they have had possible exposure to malaria or have had a malarial infection. Deferral is 12 months after travel to an endemic region, and 3 years after living in an endemic region. In addition, a donor is deferred from donating for 3 years after recovering from malaria. It is important, therefore, for careful screening to take place by questionnaire and in person, to make sure that the potential donor understands and responds appropriately to questions concerning travel and past infection.

Malaria was eliminated from the United States in the early 1950’s. Currently, about 1700 cases of malaria are reported in the US each year, almost all of them in recent travelers to endemic areas. From 1963-2015, there have been 97 cases of accidental transfusion-transmitted malaria reported in the United States. The estimated incidence of transfusion-transmitted malaria is less than 1 case in 1 million units.4 Approximately two thirds of these cases could have been prevented if the implicated donors had been deferred according to the above established guidelines.3 While the risk of catching a virus or any other blood-borne infection from a blood transfusion is very low, a blood supply with zero risk of transmitting infectious disease may be unattainable. With that being said, the blood supply in the United Sates today is the safest it has ever been and continues to become safer as screening tests are added and improved. Careful screening of donors according to the recommended exclusion guidelines remains the best way to prevent transfusion-transmitted malaria.

References

  1. LabQ, Clinical laboratory 2014 No.8, Transfusion Medicine. Jeanne E. Hendrickson, MD, Christopher Tormey, MD, Department of Laboratory Medicine, Yale University School of Medicine
  2. Technical Manual, editor Mark K. Fung-18th edition, AABB. 2014. P 201-202
  3. https://www.cdc.gov/malaria/about/facts.html. Accessed April 2018
  4. The New England Journal of Medicine. Transfusion-Transmitted Malaria in the United States from 1963 through 1999. Mary Mungai, MD, Gary Tegtmeier, Ph.D., Mary Chamberland, M.D., M.P.H., June 28, 2001. Accessed April 2018
  5. Malaria Journal. A systematic review of transfusion-transmitted malaria in non-endemic areas. 2018; 17: 36. Published online 2018 Jan 16. doi: 1186/s12936-018-2181-0. Accessed April 2018
  6. http://www.aabb.org/advocacy/regulatorygovernment/donoreligibility/malaria/Pages/default.aspx

 

Socha-small

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.