It’s Gettin’ Hot in Here: Cytology Case Study

In my previous post here on Lablogatory, I discussed the diagnosis and comparison of two mediastinal fine needle aspiration (FNA) cases – thymoma and thymic carcinoma. I tooted my own horn of how I instantly recognized the tumors on Rapid On-Site Evaluation (ROSE), as the characteristics were exactly how I remembered them from my cytology knowledge bank formulated in grad school. Here’s a case that completely threw me off my game. I had never seen this type of tumor nor heard of it, at least not to my memory, but that’s the beauty of lab medicine—we’re continuously learning.

A 43 year old female with hypertension and no cancer history presented to a vascular surgery clinic for treatment of varicose veins, and an ultrasound was performed, noting a mass in the left inguinal region. The patient subsequently had an MRI, which demonstrated a predominantly fatty mass in that area with enhancement and probable necrosis within the lesion. The differential diagnosis determined by imaging was fat necrosis versus liposarcoma. With this risk of malignancy, the patient came to our institution for biopsy and further guidance. The ultrasound department visualized the left inguinal mass of mixed echogenicity, measuring 3 centimeters with a focal area of central necrosis.

After receiving two FNA passes of the patient’s left inguinal mass from the radiologist, I made mirror-image smears of the samples, air-drying one slide for Rapid On-Site Evaluation (ROSE), fixing the other in 95% Ethanol, and rinsing the needles in Hanks Balanced Salt Solution to later make a FFPE-Cell Block.

Image 1. Left inguinal FNA, DQ-stained smear.
Image 2. Left inguinal FNA, Pap stained smear.
Image 3. Left inguinal FNA. H&E cell block section.

I remember my differentials – Lipomatous tumor of unknown etiology versus clear cell renal cell carcinoma versus adrenal cortical carcinoma. I knew it was a neoplasm of sorts and that we had adequate material for a diagnosis. But I could not make a definitive diagnosis, and it mind-boggled me. That’s when my cytopathology director reviewed the case with me, and I went straight to the cytology encyclopedias.

The FNA specimen was signed out as a “Benign-appearing adipose tissue neoplasm, consistent with hibernoma.

Image 4. Left inguinal core biopsy, H&E section 100X.
Image 5. Left inguinal core biopsy, H&E section 400x.

Hibernoma was also diagnosed on the concurrent core biopsy specimen by the surgical pathologist on service.

Hibernomas are rare brown fat tumors that typically develop where brown fat is normally distributed throughout the body, such as the upper back, thigh, and retroperitoneum.2 Brown fat, or brown adipose tissue is responsible for non-shivering, mitochondria-rich thermogenesis.3 From the cytology images, one can appreciate the small, eccentric nuclei and capillaries, featuring three cell types: mature adipocytes (think lipoma), lipoblast-like cells (think liposarcoma), and hibernoma cells, which appear to be highly, but uniformly vacuolated adipocytes with granular cytoplasm.

Two months after the initial biopsy, the patient underwent a radical resection of her left thigh hibernoma en bloc with a portion of the iliopsoas muscle and femoral nerve neurolysis. The intraoperative findings showed a 5.2 centimeter well-circumscribed mass directly beneath the femoral vessels, beginning at the common femoral artery and extending to the level of bifurcation of the superficial femoral artery and profunda. The mass was adherent to the posterior wall of the vessel, but fortunately did not involve the adventitial layer. The mass, however, was more adherent to the pectineus muscle and inseparable from the middle portion of the iliopsoas muscle. The mass was also adherent to the hip, and in order to clear the mass from that space, an arthrotomy was made.

Image 6. Left inguinal resection, H&E section 100 x.
Image 7. Left inguinal mass resection, H&E section 400x.

The surgical pathologist signed out the case as follows:

– Hibernoma with focal myxoid changes, 5.3. cm. The inked margins showed no tumor.

 In the middle of the hibernoma, there was a nodular myxoid lesion with spindle cells. Due to a question of liposarcoma, cytogenomic microarray analysis (CMA) was performed which was negative for genomic imbalances. Immunostain performed on a frozen section of tissue showed that the atypical cells were positive for Desmin, confirming that they are skeletal muscle.

If this case was diagnosed as a liposarcoma rather than hibernoma, one would see atypical lipoblasts with more prominent capillaries, like a well-differentiated liposarcoma. Depending on the type of liposarcoma, one might also identify a myxoid stroma or round cells.2

Hibernomas are a unique kind of tumor where the consensus on how to manage them remains split – some favor observation, while others suggest surgical intervention. From the literature, there are no reports to suggest metastasis or malignant degeneration/transformation, but many do favor a resection if feasible.1

References

  1. AlQattan, A. S., Al Abdrabalnabi, A. A., Al Duhileb, M. A., Ewies, T., Mashhour, M., & Abbas, A. (2020). A Diagnostic Dilemma of a Subcutaneous Hibernoma: Case Report. American Journal of Case Reports, 21, 1–5. https://doi.org/10.12659/ajcr.921447
  2. Cibas, E. S., & Ducatman, B. S. (2009). Cytology: Diagnostic Principles and Clinical Correlates, Expert Consult – Online and Print (3rd ed.). Saunders.
  3. Cypress, A., & Khan, C. (2010). The Role and Importance of Brown Adipose Tissue in Energy Homeostasis. Curr Opin Pediatr, 22(4), 478–484. https://doi.org/10.1097/MOP.0b013e32833a8d6e

Taryn Waraksa, MS, SCT(ASCP)CM, CT(IAC), has worked as a cytotechnologist at Fox Chase Cancer Center, in Philadelphia, Pennsylvania, since earning her master’s degree from Thomas Jefferson University in 2014. She is an ASCP board-certified Specialist in Cytotechnology with an additional certification by the International Academy of Cytology (IAC). She is also a 2020 ASCP 40 Under Forty Honoree.

Microbiology Case Study: 83 Year Old Male with Bladder Cancer

Case History An 83 year old male with bladder cancer was treated with Mycobacterium bovis Bacillus Calmette-Guérin (BCG), his last treatment occurring 1.5 months prior to presentation. He has a past medical history of chronic obstructive pulmonary disease, hypertension, obstructive sleep apnea, obesity, and diabetes. The patient has been hospitalized four times over the last two months and his symptoms include generalized weakness, malaise, shortness of breath and recurrent fever. He was found to have patchy lung infiltrates and he was diagnosed with pneumonia, COPD exacerbation and symptoms of heart filature. He was treated previously with antibiotics, steroids and fluid management which would temporarily relieve his symptoms. He presents to the hospital again, four days after his last hospital discharge, with generalized weakness, malaise, shortness of breath and recurrent fever. On initial evaluation he was found to be pancytopenic.  

Laboratory Identification

Blood cultures were negative. A bone marrow biopsy was performed for fever of unknown origin and pancytopenia. The biopsy showed non-caseating granulomas which were negative for acid-fast bacilli (AFB) by Ziehl-Neelsen stain and fungal elements by Gomori Methenamine Silver Stain (GMS). A laboratory-develped PCR test for Mycobacterium tuberculosis complex (MTBC) was performed on the bone marrow and was negative. AFB culture of bone marrow was positive for after 30 days of incubation and the organism was confirmed to be acid-fast bacilli by auramine-rhodamine fluorescent dye and Kinyoun stain. A second laboratory-developed test that uses heat shock protein (HSP) 2 and HSP3 to determine species level identification of Mycobacteria identified the organism as M. tuberculosis complex. Due to the patient’s history, further identification was performed at a reference lab using specific oligonucleotides targeting the gyrb DNA sequence polymorphisms which is able to separate different members of the MTBC. The patient’s isolate contained a RD1 deletion which is specific for Mycobacterium bovis bacillus Calmette-Guérin (BCG).

Discussion

Mycobacterium bovis is a slow growing mycobacterium which produces rough, dry colonies on growth solid media. It is one of the species in the MTBC with a natural host of domestic and wild animals. Routine molecular tests will not accurately differentiate between members of the MTBC. For definitive identification of M. bovis, 16S rRNA and gyrB gene sequencing is necessary. Safe handling procedures should be followed prior to molecular testing of MTBC.

Mycobacterium bovis BCG is a live, attenuated strain of Mycobacterium bovis that was created for vaccine and is used in the treatment of superficial bladder cancer. The treatment may cause localized symptoms including hematuria, fever, nausea, and dysuria which are marker of anti-tumor effect. Serious complications occur in <5% of patients with complications including sepsis, pneumonitis, hepatitis, lymphocytic meningitis, bone marrow involvement, and mycotic aneurysms. The cardinal sign of BCG infection is a relapsing fever with drenching night sweats persisting beyond 48 hours. Disseminated infection can occur days to years after the therapy. Clinical suspicion should be high for M. bovis BCG dissemination if there are symptoms and a high grade fever ≥72 hours. Treatment includes a regiment of isoniazid, rifampin and ethambutol. Most isolates of M. bovis are resistant to pyrazinamide.

References

  1. Lamm DL. Efficacy and safety of bacille Calmette-Guérin immunotherapy in superficial bladder cancer. Clin Infect Dis 2000; 31 Suppl 3:S86.
  2. Shelley MD, Court JB, Kynaston H, et al. Intravesical Bacillus Calmette-Guerin in Ta and T1 Bladder Cancer. Cochrane Database Syst Rev 2000; :CD001986.
  3. Richter E, Weizenegger M, Rusch-Gerdes S, Niemann S. Evaluation of Genotype MTBC Assay for Differentiation of Clinical Mycobacterium tuberculosis Complex Isolates. Journal of Clinical Microbiology 2003; 41(6): 2672-2675
  4. UpToDate

-Crystal Bockoven, MD is a 4th year anatomic pathology resident at University of Chicago (NorthShore). Crystal has an interest in and will be doing a fellowship in pediatric and perinatal pathology. In her spare time, she enjoys reading, hiking and biking. 

-Erin McElvania, PhD, D(ABMM), is the Director of Clinical Microbiology NorthShore University Health System in Evanston, Illinois. Follow Dr. McElvania on twitter @E-McElvania. 

Floating in a Sea of Uncertainty: Finding a Lifeboat

As we all find ourselves 9 months into 2020, which is arguably the worst year in living memory for many people, we face daily ongoing challenges of completing our work, finding work, adapting our work, feeding our children, schooling our children, preserving our health, caring for loved ones, and trying to not let the daily stress piped in from every communication channel send us over the edge. There are many people who have had a stellar year and have become richer beyond anyone’s imagining as the multitude of crises have fed their business models. There are many people we have lost prematurely due to an uncontrolled viral plague who would have contributed so much had they lived. Amidst all of this, there are individuals dealing with everyday problems in the chaotic setting of 2020—cancer, mental illness, disability, disparities, financial burdens, etc. Personally, I have a dear friend who was on the brink of a complete mental breakdown in 2019 for who I now feel I am on suicide watch 24/7. Life is normally hard, but it has certainly been abnormally hard for the past 9 months. I do not wish to point fingers, place blame, use hindsight, or make astute observations that are of no value—what my sports colleagues call the Monday quarterback effect. What I do want to do is open up to anyone reading this with a few of the things I have done in the last 9 months that have provided comfort and reminded me that, “This too shall pass.”

Take a stroll down memory lane – When I was younger, I used to take a lot of photographs with an actual camera and film. I would probably pass out if I knew exactly how much money I have spent in my life on buying and developing film. My dad was also an amazing photographer and probably knew more about taking traditional photographs than I know about infectious disease. During a certain period (end of high school through the beginning of residency – about 10 years), I was always taking photos and had at least three cameras all the time: a polaroid, an SLR, and point-and-shoot. I was not a very good photographer overall and most people quickly got annoyed with my constant snapping. But I am a collector so every photo I took was placed in an album. In organizing my garage on a Saturday recently when I was looking for anything to do because there was nothing really to do socially outside of my home, I made the decision to reorganize all of my photos into boxes by year and/or event and get rid of the photo albums. I do not recommend that unless you have a lot of time on your hands. But what I do recommend, and I greatly enjoyed, was going through EVERY photograph in my collection. There is a small box from when I was young that were taken by others as well as high school. There is a small box from college. There are literally 12 boxes from medical school and 6 boxes of my family. What did that mean in reality? I was incredibly happy in medical school. I remember being unhappy in high school and college. I have only a handful of friends each from high school, college, and medical school that I am in contact with regularly so no bias in that regard. But I wanted to remember medical school to a much greater degree than I had college or high school. My family is similar as I love my family. Seeing pictures of my grand parents who have all passed and my little cousins before they became grandparents made me feel happy and nostalgic. You have got photos somewhere (and I don’t mean the loads of ridiculous selfies on your Facebook account). Go dig them out and flip through them. If you find some true gems, post them on your social media. Share your memories and you will naturally smile.

Learn something new – We are inundated with information constantly but most of it is not knowledge. Most of it is simply status—the current state of people around us, all of whom will be dead and dust one day. One of my favorite lines from “The Terminator” is, “Look at it this way… In a hundred years, who’s gonna care?” All the tweets, all the posts, all the photos are fleeting moments of fluff (and probably rot your brain—scientific studies to be complete). But knowledge is forever and is precious. Do you know how to refinish an old piece of furniture? Do you know how to grow any type of plant from a cutting? When is the next time we will see Saturn chasing Jupiter across the sky? What happens to stuff you put in a recycling bin? Where does the electricity you use in your home come from? Can you name all 80 unique cultures in Ethiopia? The internet is full of a lot of garbage, but it is also full of incredible sources of knowledge. Sometimes (most of the time) we are so tired of looking at a computer or a smartphone or a tablet if we are working remotely that the last thing we want to do is engage with it further. Libraries are open so you can always resort to dusty old books which are also full of knowledge. Online classes are available for many things. Although cliché, TED talks can be cool. If you are feeling overwhelmed by all of the negativity, opinions, and bandwidth that’s given to things no one will care about in 100 years, turn your attention towards something pure and lose yourself in the nonpolitical world of knowledge. An expert is someone who knows everything that is true about a subject as well as everything that is false. Pick a topic, preferably something that does not come up in your work and set a goal to become an expert in that topic. There will always be people who know more than you do on any topic—but not every topic—but the point is to gain knowledge, grow your brain, and appreciate the permanence of truth.

Mindfulness, it’s really NOT a fad – I wouldn’t dare try to completely address the topic of mindfulness in a short blog, but I will challenge you to investigate it for yourself. Where my last suggestion is one to fill your brain with new ideas, information, processes, and thoughts so you master something external to yourself, mindfulness is the exact opposite. Learning to “turn your brain off” is an amazing skill that does take practice but has enormous benefits. And it is not really turning your brain off but rather turning down the volume on all the negative thoughts you have and may not even know it. Negative thoughts—internal or external—do not control you! They are your thoughts and the most powerful thing you can do is control them. There are many books on this subject, but my favorite is, “Mindfulness: An Eight-week Plan for Finding Peace in a Frantic World”. I will not lie to you. I read this book 5 years ago and have been practicing the techniques since then which did give me a leg up on the horror hurricane that is 2020. But it is never too late to reach inside yourself and find inner strength to deal with outer challenges. It is a bargain at less than $15 and will give you some amazing tools to use if you give it a chance. On a side note, if you are dealing with mental illness or you have a loved one who is dealing with mental illness, the most important first step is recognition, acceptance, and treatment. No one can be expected to defeat the external demons of the world when your internal demons have the chemical advantage. Recognize the signs and recognize the external amplifiers so you can be the hero for those who need you most during this time.

You’ve got to have friends – I remember in the not too distant past listening to “old people” say, “These darn kids need to stop playing video games and texting friends in the same room and get outside and play.” True? Yes. But now our reality has shifted to digital communications as the safest way to go to work, go to school, and see our friends. Zoom parties and the like have become extremely popular and I wrote about etiquette for these tools previously. But they are not the only way to communicate. Did you know that your smartphone is a phone? You can call and talk to people! All that paper junk mail that shows up in your snail mailbox is bidirectional. You can send people letters! This is all obvious and the vast majority if not all of you reading this have used some form of communication to talk to non-work people at least once in the last 24 hours. But do not take this for granted. There were people before our virally induced confinement that did not have large social networks or even limited ones. The isolation of our current situation is amplifying their loneliness. What am I asking you to do? You have a phone. You have social media. Dig through your contacts, find someone you have not talked to in a while, and reach out. Check on them. Check on your distant family members. Ask about them, how they are doing, and what is new in their life. Hearing their voice and laughing with them will make you smile on the inside and the outside.

Move – Your body. Daily.

milner-small


-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.

Doctors are Patients, Too

Hello again everyone, and welcome back!

Last time we talked a bit about what exactly pathology and laboratory medicine training looks like—a much-needed peek behind the curtain, if you ask me. This time, I’d like to discuss something that’s been challenging me way before I started working as a resident: something that’s made both clinical medicine and academic collaboration difficult (to say the least). I talk a lot about how medicine works best when we all come together and contribute our expertise from disciplines across the board for the sake of improving patient care; I even talk about how, too often, people don’t hear the messages coming through from their colleagues and that negatively impacts our field. We’re all guilty of it, some more than others. And in the last few weeks, I’ve been nearly deaf to my colleagues.

No literally, this article is about my Meniere’s disease and how those of us with invisible illness(es) can really impact the collaborative spirit of medical science. Trigger warning: frustration, anxiety, and pathology (mine, specifically). So here’s a reminder that everyone you meet and work alongside has issues they’re dealing or struggling with. And, to those outside of medicine, remember doctors are people too. Dr. Jena Martin, a dermatopathologist I admire and follow on social media recently promoted the topic #DoctorsArePatientsToo—she writes, shares, and promotes fantastic topics on social media and I suggest you check her content out at @jenamartinmd.

Image 1. By poet and patient Ronny Allen who was diagnosed with neuroendocrine cancer in July of 2010. He is passionate about education and awareness and advocates for patients everywhere. (Source: ronnyallan.com)

So, I’ve got a couple things to explain here. Come with me on a journey through the inner ear and out into the reaches of global pandemics!

An MD with MD

So what is Meniere’s disease (MD) and why does it deserve its own article? Well, first of all, it doesn’t deserve anything, it’s a garbage disorder with dumb symptoms and I’m only using it/myself as an example to highlight the struggle for other people working in medicine who also deal with invisible problems. But, since you asked…

Without belaboring any detail, Meniere’s is a somewhat understood inner ear disorder in which the potassium-rich, sound-signal inducing endolymphatic fluid builds up in the inner ear. This causes the organ of Corti (Image 2b) to swell up, along with the rest of the cochlea, the vestibule, and the fluid containing parts of the inner ear (Image 2a). The super pressurized vestibular-cochlear balloon is in a confined bone-space so what happens often is that small fistulas form, mixing the endo and perilymphatic fluids causing all sorts of problems not limited to but including: aural fullness, deafness, ridiculous multi-tonal/pulsatile tinnitus, distorted hearing, frequency loss, imbalance, severe peripheral/rotational vertigo lasting for hours, occasional tachycardia, anxiety, and more! There is no cure; therapy is symptom-dependent and purely aimed at management and mitigation of fulminant hearing loss. Did I mention that most times it’s one-sided, but mine is bilateral? Fun. I’ll be donating my ears to science and/or the garbage in some odd decades from now…

Image 2a and 2b. Dr. Strange-sound, or how I learned to stop worrying and love endolymph. Inner workings of the inner ear, note the marked swelling of fluid (hydrops) associated with the disease state compared to normal. (Sources: Nature and University of Iowa)

Let me put it this way: Over time, I will lose a stark majority of my natural hearing. I will continue to get occasional vertigo attacks, and related symptoms, until the disease (eventually…hopefully?) “burns out” and has no more capacity to damage any more already-damaged inner ear hair cells. I’ll probably get hearing aids or cochlear implants. (Whatever, I’ve always wanted to be half bionic…) I’ll probably keep a cane with me most times. (Dr. House anyone? Right? Or I could keep a sword in there? Legal issues?) But it’s not the long term that bothers me most. It’s the flare-ups. This disorder has periods of acute attacks, periods of mixed-symptom flare ups, and periods of remission. I can handle the remissions, hah. I can even handle the acute episodes—I’ve had great ENT colleagues and discovered great medication plans to manage the attacks. So that leaves the flares, which inspire writings like this one obviously. I wear my hearing aid, but it’s minimally helpful, and I practice patience until my hearing returns. But that isn’t as easy as it sounds, especially when you’re a working resident MD!

The Sound of Silence

Technically, I haven’t experienced true silence since 2015. And, during flare-ups, most of my hearing is almost entirely replaced by the only sound my ears can accommodate and attenuate for which is their own local vasculature. If Edgar Allan Poe could see me know…telltale ears, anyone? Let me paint a picture of what I’m hearing right now on a pretty rough flare-up day, at work, at my desk in the resident room. I’m drinking tea, I can’t hear myself swallowing. I monitor my heartrate on my watch and it’s about 80-90 beats per minute, in my ear, all day, whoosh-whoosh. The pot of tea the robots have been making, whistles non-stop, 24/7. The mosquitoes I’ve been writing about for years now on Lablogatory never leave my cochlea. Cool, on top of that I’ve got hearing loss and aural fullness that makes me not able to hear low-volume pages/phone rings (vibrate mode FTW) and most talking—especially behind masks. (I’ll get to that in a second.) If I turn my hearing aid too high, there’s a squeaky feedback explosion, not to mention the occasional adjustments for quiet and/or super loud talkers, yikes. Just overall, me no hear too good right now. Basically if hearing was reading text, the printer is out of toner and the paper is provolone cheese. And the cheese is on fire. Opa!

Image 3. My flaming-cheese metaphor captured, a xerox copy being made by a waiter in Chicago’s Greektown, the original home of the flaming-cheese saganaki dish. (Source: Chicago Sun Times)

Global Pandemic? Sounds Pretty Bad…

The SARS-CoV-2 pandemic has created very interesting situations at work and elsewhere, all over the globe. People are utilizing the most effective measure against spreading the illness: which up to this point is the non-pharmaceutical intervention of social distancing. Nearly every single person working today, in any field, doing anything, reading this blog, has been a part of email chains, and conference calls, and …. sigh… Zoom meetings. I know, I know… there are pro’s and con’s to this but consider these three points for those with #InvisibleIlnesses:

  1. Working from home has liberated chronically ill folks

Okay so I have an intermittent vestibular/cochlear disorder. What about folks with chronic pain, or Lyme-sequelae, or brain fog, or any other host of hurdles before they can jump onto a video call. Pretend you’re sick at home with a (non-COVID) viral bug. Can you imagine how nice it would feel to have hot tea, your medications, your cat, your spouse, and (most importantly) your couch/bed/TV nearby? Within reason, you’ve just given people who would have needed to excuse themselves a way to participate productively!

2. Imagine having a supplementary PowerPoint or chat box during conversations IRL

One of my specific challenges is missing a word here, a sentence there, and not being able to catch up in a conversation. Usually it ends up with my smile-nodding through to the next topic or checkpoint, but in the current age of virtual meetings I can un-obtrusively ask “What was that last bit?” without seeming like I tuned out. And bonus: I can often get a text translation of a point or two I might have missed from keen colleagues aware of my AV troubles. I can only imagine what it would be like for those more permanently affected.

3. The explosion of inclusivity and accessibility is remarkable

Speaking of which, the number of videos and presentations I am now seeing with closed captions/text supplements are astounding. Usually when I’m in the midst of a flare, I have to check out from audiovisual stimuli and stick to reading only. This can be quite the challenge for work sometimes. But with chat boxes and videos with captions, I feel like I can catch right up. Now, I said I’m only like this part of the time, so for those that have felt excluded and marginalized I’m happy to say that inclusivity and accessibility are growing. I’ve often thought that the importance of a news story or press conference could be measured by the presence or absence of a sign-language interpreter. Over 100 press conferences by Governor Andrew Cuomo in NY, or in Chicago, Illinois with Governor JB Pritzker and Mayor Lori Lightfoot, and each of them was accompanied by ASL accessibility. Fantastic! Just look at one of many efforts online, like @ProjectHearing on Instagram, which promotes the advancement of these topics every day!

Image 4. “Deaf people problems” is a meme collection I’ve seen over and over on social media. Awareness, check. Clear message, check. Super creative visual way to demonstrate a better version of my flaming cheese analogy, super check.
Image 5. Don’t tell anyone, but sometimes, I’m literally stuck on mute. Video conferences might become the new normal. If they are, remember to speak clearly and keep things out of the way between your talking and your microphone. Consider captions for videos and make nice PowerPoints. Please, haha.

Your Lips Move but I Can’t Hear What You’re Saying

So why, when the world is literally aflame with a viral pandemic, am I drudging you through my rant against my inner ears? And why did I just commit the travesty of endorsing zoom calls and captions (I know some people hate captions—you came for a movie not a book, I get it).

Well this whole topic illustrates to big things about working both as a physician and as a person with an invisible condition. First, like most things in medicine, to achieve success you have to adapt, improvise, and overcome. Solving patients’ problems and advocating for their best outcomes takes a little finessing of the system sometimes, you’ve got to do the same thing for yourself. Second, since doctors are patients too, its okay to ask for help. I matched with some of the best residents I’ve ever met, and they’ve offered whatever they can in helping manage my flares during work. This includes anything from extra emails/group text notification chains, forwarding pages, translating video call jumbled audio, etc. They are the best!

Meniere’s has been a challenge to me for a couple of years now, and it’s something I deal with. We’ll call it a character-building attribute. But I genuinely did worry about how this was going to affect me during residency—I had my fair share of hard days in med school basic sciences, and plenty of attending wave-offs when I simply couldn’t hear on 4:00am rounds (yeah I’m looking at you OBGYN and Surgery…). But, it’s been good.

Image 6. Not a new Arnold Schwarzenegger movie, these are real and they’re incredible. Clear window facemasks are such a relief for me. I give ones to all the folks I work with and my life just got easier.

And more than just good, another resident actually has a more permanent hearing impairment and two desks over from mine are the embedded hearing interpreters provided by the department. They’ve been so friendly and provided my with so many resources that I couldn’t be more appreciative. Not only do I have another resident to confide hearing-related rants to, but I also have a department that cares enough to create a supportive and accessible environment. One of the best things they’ve provided: MASKS WITH WINDOWS! Because since this damn pandemic started, I can’t read lips anymore! I didn’t realize how much I depended on visual lip-reads to confirm my hearing that it’s been a learning curve to say the least. Imagine being mostly deaf, your hearing aid not helping much, and looking into a multi-headed scope while your attending lectures on what you’re looking at. An otherwise impossible situation, but my friends and colleagues find ways to make it work because when one person excels, we all do. I’ve been able to continue working, learning, and collaborating thanks to considerations for invisible illnesses like mine.

Consider your colleagues, what can you do to make sure they feel that their needs are met since #DoctorsArePatientsToo? See you next time!


-Constantine E. Kanakis MD, MSc, MLS (ASCP)CM is a new first year resident physician in the Pathology and Laboratory Medicine Department at Loyola University Medical Center in Chicago with interests in hematopathology, transfusion medicine, bioethics, public health, and graphic medicine. His posts focus on the broader issues important to the practice of clinical laboratory medicine and their applications to global/public health, outreach/education, and advancing medical science. He is actively involved in public health and education, advocating for visibility and advancement of pathology and lab medicine. Watch his TEDx talk entitled “Unrecognizable Medicine” and follow him on Twitter @CEKanakisMD.

The Utility of Flow Cytometry in Establishing the Correct Diagnosis of a Rare Aggressive Lymphoma

Case history

A 73 year old woman presented with shortness of breath and was found to have bilateral pleural effusions. She had a history of marginal zone B-Cell lymphoma involving the bone marrow, which was diagnosed 3 months before this presentation and was treated with Rituximab.

Thoracentesis revealed an atypical lymphoid population comprised of intermediate and large sized cells with eccentrically placed nuclei, multiple prominent nucleoli and scant to moderate amounts of basophilic cytoplasm (Image 1). Initial evaluation of the cytology material was concerning for large-cell transformation of the patient’s previously diagnosed marginal zone B cell lymphoma. A representative portion of the fine needle aspirate sample was sent for flow cytometric immunophenotyping.

Image 1. Cytology (Diff Quik, 400X). The atypical lymphoid population is comprised of intermediate and large sized cells with eccentrically placed nuclei, multiple prominent nucleoli and scant to moderate amounts of basophilic cytoplasm.

Flow cytometric immunophenotyping showed a distinct population of atypical cells with moderate CD45 expression and increased side scatter in keeping with cytoplasmic complexity (Figure 1, black arrows). On an initial screening B cell lymphoma panel these cells were negative for CD19 and positive for CD30 (partial), and CD44 (Figure 2).

Figure 1. The neoplastic population shows expression of CD30 and CD44.

The population of interest lacked expression of CD10, CD20, CD22 and surface immunoglobulin light chains and CD138 (Figure 2 and 3).

Figure 2. The neoplastic population lacks expression of CD10, CD19, CD20, and CD22.
Figure 3. The neoplastic population of cells are negative for surface immunoglobulin light chains and CD138.

CD30 expression prompted the investigation of additional T-cell markers to rule out a T cell lymphoma (Figure 4). This population showed dim expression of CD7 but was otherwise negative for pan T cell markers (CD2, CD3, CD5) as well as CD4 and CD8 (Figure 4).

Figure 4. The neoplastic population of cells are positive for CD7 (dim) and CD30 and negative for CD3, CD4, CD8, and CD26.

Given the unusual immunophenotype of the neoplasms, a diagnosis of diffuse large B cell lymphoma (transformation of the known marginal zone lymphoma) seemed less likely and other possibilities were considered.

The presence of CD30 expression and the plasmablastic morphologic features together with the clinical presentation with effusions raised the possibility of primary effusion lymphoma. IHC for anti-HHV8 was performed on the cell block sample (Image 2).

Image 2. Cytology (cell block 400X) A. Hematoxylin and eosin stain of the cell block reveals large, atypical lymphoid cells; Small and large atypical lymphoid cells are highlighted by CD30 (B), HHV8 (LANA-1) (C), and CD138 (focally) (D).

Final diagnosis  

Primary effusion lymphoma (HHV8 positive).

Discussion

Primary effusion lymphoma (PEL) is a large B-cell neoplasm usually presenting as serous effusions without a detectable tumor mass [1]. It is universally associated with the human herpesvirus 8 (HHV8). It usually occurs in the setting of immunodeficiency [2]. Some patients with PEL secondarily develop solid tumors in adjacent structures such as the pleura [3-5].

Immunophenotype of PEL:

POSITIVE: CD45, HLA-DR, CD30, CD38, VS38c, CD138, EMA, HHV8 (LANA1).

NEGATIVE: pan- B-cell markers (CD19, CD20, and CD79a), surface and cytoplasmic Ig, and BCL6.

PEL is usually negative for T/NK-cell antigens, although aberrant expression of T-cell markers may occur. PEL is usually positive for EBV-encoded small RNA (EBER) by in situ hybridization but negative for EBV latent membrane protein 1 (LMP1) by IHC.  This could be explained by EBV virus latency. It is ability of a pathogenic virus to lie dormant (latent) within a cell, denoted as the lysogenic part of the viral life cycle. EBV expresses its genes in one of three patterns, known as latency programs. EBV can exhibit one of three latency programs: Latency I, Latency II, or Latency III. Each latency program leads to the production of a limited, distinct set of viral proteins and viral RNAs. The Epstein-Barr virus encoded RNAs (EBERs): EBER1 and EBER2 are expressed during all latency forms [6], whereas LMP1 is expressed only in latency 2 and 3 rendering it a less sensitive marker for detection of EBV infection. EBV-negative PEL is common in elderly, HIV-negative patients from HHV8-endemic regions (Mediterranean) [7].

Differential Diagnosis

Most common cavities involved by PEL: pleural, pericardial, and peritoneal [8-10].

It was thought that PEL can involve an artificial cavity related to the capsule of a breast implant [11] although it was described only in one case report without appropriate HHV8 staining and before recognition of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL), which this case probably was presenting [12].

Primary effusion lymphoma (PEL) Prognosis

The prognosis is very unfavorable. Median survival is < 6 months. Rare cases have been reported that responded to chemotherapy and/or immune modulation [13].

Flow Cytometry Utility

The importance of utility of flow cytometry in establishing a diagnosis of PEL has been previously shown by others [14]. In the series by Galan et al. the authors described a case of PEL in an 88-year-old HIV-negative female with right-sided pleural effusion without significant lymphadenopathies or other effusions. The cytological study of the pleural fluid revealed a dense proliferation of large plasmablastic cells. A six-color multiparametric flow cytometry immunophenotyping study revealed 45% of large in size and high cellular complexity cells positive for CD45 (dim), CD38, CD138, CD30 and HLA-DR; and negative for CD19, CD20, cytoplasmatic CD79a, surface and cytoplasmic light chains Kappa and Lambda, CD3, CD4, CD5, CD7, CD8, CD28, CD56, CD81, and CD117. In situ hybridization for EBV-encoded small RNA was negative and immunohistochemistry for Kaposi sarcoma herpesvirus (HHV8) confirmed the diagnosis of PEL. These results in addition to the current case highlight the utility of flow cytometry in the diagnosis of lymphomas involving body cavities.

In Summary

PEL is associated with a proliferation of large B-cells which are positive for HHV8, CD45 (dim), CD30, CD38, and CD138 and negative for lineage defining B cell markers (CD19, CD20, and CD79a). Although PEL is a very rare lymphoma, it is important to consider it in patients with pleural, pericardial, and peritoneal effusions by sending a sample for cytological examination and flow cytometric immunophenotyping. Due to the absence of a mass lesion, cytology and flow cytometry are essential for establishing the diagnosis of PEL.

References

  1. Said, J.a.C.E., Primary effusion lymphoma, in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition), C.E. Swerdlow SH, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Editor. 2017: Lyion. p. 323–324.
  2. Song, J.Y. and E.S. Jaffe, HHV-8-positive but EBV-negative primary effusion lymphoma. Blood, 2013. 122(23): p. 3712.
  3. Dotti, G., et al., Primary effusion lymphoma after heart transplantation: a new entity associated with human herpesvirus-8. Leukemia, 1999. 13(5): p. 664-70.
  4. Jones, D., et al., Primary-effusion lymphoma and Kaposi’s sarcoma in a cardiac-transplant recipient. N Engl J Med, 1998. 339(7): p. 444-9.
  5. Luppi, M., et al., Molecular evidence of organ-related transmission of Kaposi sarcoma-associated herpesvirus or human herpesvirus-8 in transplant patients. Blood, 2000. 96(9): p. 3279-81.
  6. Khan, G., et al., Epstein Barr virus (EBV) encoded small RNAs: targets for detection by in situ hybridisation with oligonucleotide probes. J Clin Pathol, 1992. 45(7): p. 616-20.
  7. Dupin, N., et al., Distribution of human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. Proc Natl Acad Sci U S A, 1999. 96(8): p. 4546-51.
  8. Otsuki, T., et al., Detection of HHV-8/KSHV DNA sequences in AIDS-associated extranodal lymphoid malignancies. Leukemia, 1996. 10(8): p. 1358-62.
  9. DePond, W., et al., Kaposi’s sarcoma-associated herpesvirus and human herpesvirus 8 (KSHV/HHV8)-associated lymphoma of the bowel. Report of two cases in HIV-positive men with secondary effusion lymphomas. Am J Surg Pathol, 1997. 21(6): p. 719-24.
  10. Beaty, M.W., et al., A biophenotypic human herpesvirus 8–associated primary bowel lymphoma. Am J Surg Pathol, 1999. 23(8): p. 992-4.
  11. Said, J.W., et al., Primary effusion lymphoma in women: report of two cases of Kaposi’s sarcoma herpes virus-associated effusion-based lymphoma in human immunodeficiency virus-negative women. Blood, 1996. 88(8): p. 3124-8.
  12. Lyapichev, K.A., et al., Reconsideration of the first recognition of breast implant-associated anaplastic large cell lymphoma: A critical review of the literature. Ann Diagn Pathol, 2020. 45: p. 151474.
  13. Ghosh, S.K., et al., Potentiation of TRAIL-induced apoptosis in primary effusion lymphoma through azidothymidine-mediated inhibition of NF-kappa B. Blood, 2003. 101(6): p. 2321-7.
  14. Galan, J., et al., The utility of multiparametric flow cytometry in the detection of primary effusion lymphoma (PEL). Cytometry B Clin Cytom, 2019. 96(5): p. 375-378.

This case was previously presented by authors as eCSI Case on International Clinical Cytometry Society website.  For more information please follow: https://www.cytometry.org/public/newsletters/eICCS-10-1/article7.php

-Dr. Loghavi is an Assistant Professor of hematopathology and molecular pathology MD Anderson Cancer Center in Houston, TX. She received her MD degree from the Azad University in Tehran, Iran. Shen then completed an Anatomic and Clinical Pathology residency training at Cedars Sinai Medical Center in Los Angeles, CA, followed by Surgical pathology, Hematopathology and Molecular pathology fellowship training at the University of Texas, MD Anderson Cancer Center. Dr. Loghavi is passionate about medical education. Her clinical and research interests are focused on hematologic malignancies, with particular focus on myeloid neoplasm and the applications of flow cytometric immunophenotyping and molecular methods in detection of minimal/measurable residual disease. She has authored 100 peer-reviewed articles, 5 book chapters, and numerous abstracts in the fields of hematopathology and molecular pathology. 

-Kirill Lyapichev, MD, FASCP, is a board-certified anatomical and clinical pathologist who completed 2 years of hematopathology fellowship at MD Anderson Cancer Center. He is currently a molecular genetic pathology fellow at MD Anderson Cancer Center. Additionally, he is interested and involved in other research projects including neoplastic as well as non-neoplastic entities: MALT lymphoma, Castleman Disease, Kikuchi-Fujimoto Disease, and others. In 2020 he was selected as one of ASCP’s 2020 Top 40 Under Forty. Follow him on Twitter: @KirillLyapichev.

Dr. Who?

Welcome back everyone!

Thanks for reading my piece last month on liquid biopsies. And, as a side note, there is a growing number of awesome quality content and posts from pandemic response, to inclusion, alongside COVID and case-studies so subscribe, share, and add this page to your bookmarks—STAT! Lablogatory has been a fantastic platform to share and learn so much in this past year, I could barely keep up!

Or super-STAT if you’re one of those people…but hey, that language belongs to all of us! Lab professionals, nurses, scientists, and doctors alike. And this month, I just want to take a quick moment to celebrate a milestone.

I’m officially a resident physician/trainee, medical post-graduate! (There was confetti falling just now on my end, not sure about yours, but work with me here.) It’s just one of those life-goals that feels great when you get there. But there’s a lot more to it than it seems…if I told you being a pathology resident means sacrificing early adulthood, amassing soul-crushing debt, and explaining to your peers and colleagues what it is exactly you do and why you also bear the moniker of “physician,” you’d delete that bookmarked webpage faster than I can make you scroll through this thing.

(oh good you’re still here!)

All that said, I’ve got to say: it’s worth every single bit of it. Times a million. But I really did mention some red flags that, were we discussing any other work environment, would make you definitely think twice before committing 5-10 years of your life. Furthermore, as a PGY-1 in pathology, I could stand next to any other patient-facing PGY-1 colleague (read: intern) and they wouldn’t have the faintest about what I actually do. Listen, the “lifestyle” specialty, generally 9-5er, no weekend, no 24hr call isn’t something I’m shy to celebrate, but it’s not the whole story. I’ve matched and started learning and working at a great institution with great faculty, mentors, and other residents/fellows. Bottom line: I’m more than a little happy about where I’m at professionally.

Image 1. Most path & lab med residents get cubicle-style desks to spend time reading, prepping, writing, learning, and previewing cases between responsibilities in sign-outs, tumor boards, or OR/gross room work. Most of my non-path friends don’t like this. It makes me very happy.

So, to my non-pathology friends, what is it exactly that I do during my residency training while you might be busy rounding, managing glucose levels, triaging cases, putting orders in—you know, regular intern stuff *shudders* … (pathology trainees don’t have an intern year, we jump right into the specialty and go for 3-4 straight on through). Like most of you I have a transition period where I get acclimated to the workload and patterns of my specific residency, but sans-anno-interna, I’ve got lots of work ahead to climb the steep learning curve that med school pathology merely skims.

What does non-patient-facing mean, exactly?

Well, without an intern year you jump right into what most path residents go into which is a 4-year combined anatomic and clinical pathology (AP/CP) track. You immediately begin training in all the fields in pathology. They include surgical pathology (of various sub specialties like head-and-neck, gynecologic, gastrointestinal, thoracic, neuro, etc.—think surgery, then add pathology), autopsy training, dermatopathology, cytopathology, hematopathology, transfusion medicine, clinical chemistry, microbiology, hemostasis and coagulopathy, pediatric pathology, forensic pathology, molecular, training as a laboratory director, and much, much more. Each of these services has a workload which is usually comprised of cases from biopsies and grossed specimens for histologic analysis (anatomic pathology) or the ongoing maintenance and advancement of clinical diagnostic testing through laboratory methods and management of staff/resources (clinical pathology).

Image 2. August 2019 Issue of The Pathologist magazine. Pathologists, medical students, microscopes, you get it…Specifically, that’s one of my mentors (and now faculty) Dr. Kamran Mirza and (then) medical student Austin McHenry discussing the critical role pathology plays in every circle of medical care.

When I say “non-patient facing” this means that the majority of that work is not done in 1-on-1 settings with patients in a clinic or hospital floor. It is done ancillary to their clinical experience whereby pathology attendings manage the simultaneous training of residents and processing of case sign outs for rapid and accurate diagnostic output for our patient-facing colleagues. For example, while a patient, their family, and doctor are discussing and managing symptoms related to a possible cancer diagnosis. The pathologists are examining microscopic behavior of the cancer-in-question’s cells and adding immunohistochemical testing and molecular analyses to identify, stage, and prognosticate that cancer. Returning information about what it is and what can be done back to the patient-facing clinician, who can then best-translate a tailored approach for their patient. Old-timey medical texts would often refer to the pathologist as the “doctors’ doctor,” and I’m not here to hate on that haha. My clinical friends and readers might feel forlorn now at the prospect of 4 years of medical school training to “just look into a microscope all day?” Well, for some folks in path it means a lot more than that, every slide is a patient. So we care just as much as if they were right opposite our desk. But that’s not all we do…

(More on that in a minute.)

So What Do You Do?

Okay, there are lot of words in path that might act as a barrier to understanding the common ground between me and …let’s say a colleague and friend in Family Medicine. So for the purposes of transparency here’s my friend from medical school Dr. Danash Raja and how a small part of his schedule and my schedule aren’t so different…

Image 3. Dr. Raja is from Alaska, and now works as a resident physician in Family Medicine in Eu Claire, Wisconsin! Alaska! Look at this graduation photo!

On both sides of this table are clinicians managing their patients and ensuring the best possible outcomes. Both sides are deeply vested in intensive hours of training, procedural experience, evidence-based best-practices from the literature, and ongoing continuing education.

Image 4. They see me grossin’, they hatin’…A lot of surgical pathology and microscopy in general revolves around understanding the gross layout of a specimen and its orientation before it becomes a thin microscope slide. As a junior pathology resident, we spend a lot of time up near the OR. Critical skill for a crucial foundation of knowledge.

Literally the biggest differences:

  • In pathology, I get my own desk space and I need it! I’ve got to start amassing a physical and digital library to supplement the next 4-6 years of subspecialty training for the eventual day when a colleague will see me in an elevator and expect concise, thorough, and actionable material to inform their clinical management from the pathologic diagnosis.
  • Pathology residents and clinical residents both take “call” except Dr. Raja has to pull grueling 24-hour+ shifts and stay in the hospital for the duration, and I answered a page about a transfusion reaction from a grocery store once.
  • When a patient thinks about the person who helped them find out what kind of cancer they had and what treatment to begin, they’ll probably think of Dr. Raja or someone patient-facing in Heme/Onc—but I’m working on this, every day!

Bottom line: I’m as important as he is, and he is as important as I am. Our work is what really matters, and what really connects us as clinical colleagues. It’s all about patients, remember? But I’m more than happy to be the pathologist to his patient-facing, diabetes-managing, vaccine-giving, life-improving super hero doctor!

You Never See Patients?

We’re back on this. Remember how I said looking into microscopes isn’t all we do? Okay, well it’s not. And if you’re lucky enough to have matched to as awesome of a place as I did, then you know what I’m talking about. If you’ve read some of my pieces, you know full well my passion in pathology lies in Hematopathology and Transfusion Medicine. I like to sit right on the fence between AP and CP, and mostly look at the green grass on the CP yard. This month, I’ve been on service for Transfusion Medicine and let me tell you about the few weeks…

Image 5. Dr. Kimberly Sanford, ASCP leadership and Director of Transfusion Medicine at VCU was highlighted in The Pathologist magazine for her work outside the laboratory seeing patients every day, and encouraging residents to do the same and do what pathologists do best: enrich and improve the channels of communication so patients better understand their conditions and the medical process.

I, a pathologist trainee, resident physician, under the supervision of two attending physician pathologists have been seeing and following up on patients nearly every day. Gasp! No, I’m not part of some backwards resident exchange program (because OMG how dangerous haha), no I’m not lost, no I’m not being overly gunnery, that’s it, that’s the Tweet. Seriously, it’s just part of the service. Larger academic hospitals with robust clinical blood bank services often have apheresis clinics and I find myself working exactly there. Blood bank/Transfusion Medicine is one of those subspecialties where patient contact is part of the routine. At some institutions, I’ve been a part of some pathology-led teams that procure the bone marrow aspirates from their patients in Hemepath service, or conducted their own fine needle aspirations for cytology service, or dermpath services that operate in clinics alongside their dermatology colleagues—I’ve even been working on frozen sections and surgical path grossing when called into an operating room to discuss methods and approach for biopsy! There were patients at every turn, all with pathologists on the front line! Dr. Syed T. Hoda (@01sth02 on Twitter) from NYU Langone often says, “Person FIRST, doctor SECOND, specialist THIRD.” And trust him, he’s a bone and soft tissue pathologist that left the lab and went to the floors to help clinical staff when overwhelmed during the peak of the COVID crisis in NYC. So for my dual-interests, I would say I’d expect to see quite a bit of patients in my future practice.

Image 6. My awesome co-residents! (Left-to-right): me, Dr. Elnaz Panah, Dr. Aayushma Regmi, and Dr. Sandra Haddad—you’re going to hear more about them, don’t worry.

So, would I pick pathology again? Uh, yeah! Without a single hesitation. Every day at work I am reminded that I am at the right place, with the right co-residents, the right faculty and mentorship, and the right environment to train and hone my future skills for a career that lines up exactly with what I want to do.If you’re interested about the intersections between clinical medicine and pathology, and want to learn more about “patient-facing pathology” keep an eye out during the 2020 ASCP Annual Meeting for a talk by yours truly as part of a panel discussion on communicating directly with patients! Register now! Free for members.

See you next time!

BONUS: did you notice that I referenced The Pathologist magazine a bit in this post, well it’s because they named me to their Pathology Power List for 2020! An exclusive, international list of 80 professionals in the field of pathology and laboratory medicine who contribute and advance the profession every day! I was highlighted for my active social media work and my response to the early COVID pandemic in Manhattan, NY.


-Constantine E. Kanakis MD, MSc, MLS (ASCP)CM is a new first year resident physician in the Pathology and Laboratory Medicine Department at Loyola University Medical Center in Chicago with interests in hematopathology, transfusion medicine, bioethics, public health, and graphic medicine. His posts focus on the broader issues important to the practice of clinical laboratory medicine and their applications to global/public health, outreach/education, and advancing medical science. He is actively involved in public health and education, advocating for visibility and advancement of pathology and lab medicine. Watch his TEDx talk entitled “Unrecognizable Medicine” and follow him on Twitter @CEKanakisMD.

Microbiology Case Study: 40 Year Old Male with A Diabetic Foot Ulcer

Clinical Presentation and History

The patient is a 40 year old male with a past medical history of type 2 diabetes mellitus with significant neuropathy and hypertension with a past surgical history of right metatarsal osteomyelitis. He presents to hospital with fever, right ear pain, headache, two episodes of diarrhea and redness and blistering to the right 3rd metatarsal. Upon examination he was noted to have a 1 cm ulceration on the right 3rd toe on the dorsal aspect associated with redness and edema. He was therefore assessed as having diabetic foot ulcer with possible osteomyelitis for which blood cultures were performed.

Laboratory Identification

Gram stains performed on the positive blood culture broth showed gram negative rods (Image 1). In our institution initial positive blood cultures are tested by the Verigene System (Luminex Corp., Austin, TX), which allows for rapid identification of common bacterial pathogens causing blood stream infections (Escherichia coli, Klebsiella oxytoca, Klebsiella pneumonia, Pseudomonas aeruginosa, Acinetobacter spp., Citrobacter spp., Enterobacter spp., and Proteus spp.) along with detection of several resistance genes (CTX-M, IMP, KPC, NDM, OXA, VIM) within ~ 3 hours. In this case, no targets on the Verigene panel were detected. Simultaneously, the specimen was plated onto blood, chocolate and MacConkey agars where the organism grew robustly on all three plates (Image 2). The MacConkey agar showed the organism to be a non-lactose fermenter. Once the organism adequately grew on these agar plates, final species identification was performed on the automated MALDI-TOF instrument which showed Salmonella species. To appropriately type the organism, Salmonella latex agglutination testing was performed which identified Salmonella species Group B (Non-typhoidal). Of note, multiple blood cultures from this patient were positive for Salmonella species, Group B.

Image 1. Gram stain of blood culture broth containing gram negative rods.
Image 2. Growth of the organism on chocolate, 5% sheep blood, and MacConkey agars.

Discussion

Salmonella is a gram negative, flagellated facultative anaerobic, non-lactose fermenting bacilli. The taxonomy and nomenclature of salmonella organisms are quite complex however the most widely used classification scheme is the Kauffman-White which is updated yearly by the WHO. Currently, members of the 7 Salmonella subspecies can be serotyped into one of more than 2500 serotypes (serovars) according to antigenically diverse surface structures: somatic O antigens (the carbohydrate component of lipopolysaccharide [LPS]) and flagellar (H) antigens.

Nontyphoidal salmonellae are a major cause of diarrhea worldwide. In the United States, non-typhoidal salmonellosis is one of the leading causes of foodborne disease. Salmonella enteritidis and Salmonella typhimurium are among the most frequently isolated organisms. Salmonella is most commonly associated with ingestion of contaminated poultry, eggs, and milk products. Salmonella gastroenteritis typically occur within 8 to 72 hours following exposure, however lower bacterial doses can prolong the incubation period. Although Salmonella typically causes diarrheal diseases including gastroenteritis and enteric fever, however there are rare instances where hematogenous involvement leads to bacteremia, osteomyelitis or endovascular infections.

In this case the source of Salmonella-related bacteremia is still a mystery. The presumed source was osteomyelitis, but the patient’s subsequent toe amputation revealed minimal osteomyelitis and rare fungal organisms.

References

  1. Procop, Gary W. et al (2017). Koneman’s Color Atlas and Textbook of Diagnostic Microbiology. 7th edition. Philadelphia, PA.
  2. Hohmann, Elizabeth L. (2018). Nontyphoidal salmonella: Gastrointestinal infection and carriage. Uptodate.com. Retrieved on November 14, 2019. https://www-uptodate.com/contents/nontyphoidal-salmonella-gastrointestinal-infection-and-carriage

-Anna-Lee Clarke-Brodber, MD is a 3rd year AP/CP resident at University of Chicago (NorthShore). Academically, Anna-Lee has a particular interest in Cytopathology. In her spare time she enjoys hanging out with her family.

-Erin McElvania, PhD, D(ABMM), is the Director of Clinical Microbiology NorthShore University Health System in Evanston, Illinois. Follow Dr. McElvania on twitter @E-McElvania. 

Patient Advocacy in Transfusion Medicine

Since 2008 I have served as the Associate Medical Director and the Medical Director of Transfusion Medicine in a large academic medical center. In addition to overseeing the operations of our transfusion service, I also spend several days per week in our apheresis unit. We currently see between 10-20 patients daily for a wide range of therapeutic apheresis procedures performed by our 5 apheresis nurses including stem cell collection and lymphapheresis procedures for stem cell transplant and CarTcell therapy, respectively. These procedures can last from 90 minutes to 6 hours and includes both outpatients as well as acutely ill patients in our critical care units. Typically we perform procedures from 8 AM to 6 PM but there are frequent requests for procedures that last beyond these hours and occasionally in the middle of the night for life threatening conditions. Despite the long hours and unpredictable days, this provides an opportunity to bond with patients over the hours and days they spend in our apheresis unit.

I remember the first time I met Reed. He was sitting on the side of his hospital bed and was bald and pale in stark contrast to his dark blue pajamas. Although he was thin, I could tell that he was a much bigger man before chemotherapy and the transplant ravaged his body. I introduced myself and he was pleasant and engaging despite how ill he was. He had recently undergone 2 autologous stem cell transplants and now with recurrence of the multiple myeloma he had received his brother’s stem cells and was suffering severe acute graft vs. host disease (GVHD). His entire gastrointestinal (GI) tract was under assault as he was diagnosed with Grade IV GI GVHD and was losing liters of bloody stool daily. Despite the abdominal pain and cramps, I never saw him without a smile on his face. He had been treated with high doses of immunosuppression but his GVHD was unresponsive and now we were called in to perform photopheresis, which has great results for skin and pulmonary GVHD but has not been as effective for GI GVHD. In fact, all our previous patients with Grade IV GI GVHD lost their battle.

The bone marrow transplant physician advised Reed that his prognosis was poor and that he should get his affairs in order. His response to the BMT physician was, I am not leaving my wife to raise our three children by herself and I am going to walk out of this hospital. We performed photopheresis twice a week every week and gradually his symptoms improved. His hair started growing back, his color returned, and he kept his word and walked out of the hospital. He continued photopheresis twice a week every two weeks for 2 years. During that time, he met my son who was only 8 at the time and I met his wife and children. He always asked how my son was every time he came for his treatment and what activities he was involved in. When he finished his 2 years of photopheresis, he brought every pathologist and nurse a long stem red rose and thanked us for saving his life.  

Several years later, Reed started to experience renal failure as another complication of GVHD and again he was referred to our clinic for plasmapheresis. We picked up where we left off during his weekly treatments. Again, his positive attitude and compliance with treatment were successful in saving his kidneys. This past summer I went to an outdoor concert. At the end of the night, when everyone was leaving, I saw Reed and his wife! I was so happy to see him looking healthy and strong. I introduced him to everyone who was with me, telling them that Reed was our miracle patient, the only patient that survived Grade IV GI GVHD. This fall, a card was delivered to my office. It was a birthday card from Reed to celebrate my 50th birthday! That is so typical of Reed, still thinking about others and wanting to do what he can to show how important others are to him!!

-Kimberly Sanford, MD is the Medical Director of Transfusion Medicine at Virginia Commonwealth University Health.

It’s Personal: A Case Study Close to Home

I’ve always been fascinated with medicine and the human body, knowing that I wanted to make a career of it since childhood. I was taking an elective summer course in Histology when a close relative was diagnosed with breast cancer over a decade ago, and that’s when I recognized pathology/laboratory medicine was my specialty. My questions began when her sentinel lymph node had both a different morphological picture and immunohistochemical signature than the primary tumor, and I wanted to know why. Why did her initial core biopsy only show ductal carcinoma, yet post-lumpectomy, her sentinel node was diagnosed as metastatic lobular carcinoma? Where was the second primary tumor? I needed answers, my family needed answers, and that quest propelled me to apply to Jefferson’s Master of Science in Cytotechnology program, fueling my career in Cytotechnology.

A year after I started my career at Fox Chase Cancer Center, my relative received a call – her mammogram showed two abnormal areas. Eight years after her first lumpectomy and completion of a chemotherapy and radiation regimen… eight years in remission, we both knew what this meant. I drove her to the physician’s office, and her surgeon called me into the room after he procured the core biopsies of both lesions. I saw the white “worms” of tissue in the formalin containers and felt confident of a successful procedure. I looked up to see the image of the localization wires within the tumors and heard him say, “if this does come back as cancer, which I’m fairly certain it will, we can either proceed with another lumpectomy or mastectomy.” My relative was silent the entire ride home; she needed time to process. After the not-so-surprising path report came back as ductal carcinoma in both lesions, I called her from work and said, “you’re coming to Fox Chase for a second opinion. You’re having a double mastectomy. We are NOT messing around. Not everyone gets a second chance, and I’ve seen what this care team is capable of – they know your cancer better than anyone.” She calls me her “tough cookie” both out of affection and annoyance. Little did she know my tough cookie exterior was shielding a crumbling interior. After much hesitation due to her fear of the unknown, she scheduled her second opinion.

Images 1-6: My relative’s ductal carcinoma: H&E, ER+, PR+, HER2 1+ (negative FISH), E-cadherin+, sentinel node micromatastasis.

In the meantime, she had an MRI which demonstrated the two known lesions in the right breast, but also a large “enhancement” in the right breast. The MRI identified an area of enhancement in the left breast as well. And with those results, my relative felt comfortable withdrawing the lumpectomy plan from the table and played the card of double mastectomy with possible right-sided axillary lymph node dissection. A diagnosis of grade II invasive ductal carcinoma was made in the 1.5 cm right breast lesions, and the 6 cm right breast mass was diagnosed as invasive lobular carcinoma. The right axillary sentinel node demonstrated micrometastasis. On the left side, the pathology revealed a 3.5 cm grade II residual in-situ and invasive lobular carcinoma. She had a TRAM flap reconstruction at the time of her double mastectomy with radiation to the right breast after she recovered. She is tolerating and responding well to the daily dose of her aromatase inhibitor and now knows far too much about breast cancer and hormone receptor status thanks to my harping on the subject.

We both went through clinical genetics screenings, and despite our strong family history of breast cancer, no known germline mutations or variants of undetermined significance were detected in either of our peripheral blood samples. I’m already on board with the “increased lifetime risk of breast cancer” screening guidelines, and if so much as atypical ductal hyperplasia is diagnosed, I am more than willing to have a semi-prophylactic double mastectomy, just to reduce my overall risk of both carcinoma AND recurrence. My relative’s breast cancer experience set the precedence for my approach in the field of cytotechnology. From the beginning, I craved definitive answers for her, and I will do whatever I can as a cytotechnologist to provide definitive answers for all of my patients.

I still remember attending my first ultrasound-guided FNA (Fine Needle Aspiration) after my relative’s mastectomy. The patient was 42, a mother to a 3 year old and 6 year old, and presented with triple negative, grade III, poorly differentiated breast cancer and cervical, occipital, hilar, and mediastinal lymphadenopathy.

Image 7,8: US-guided FNA of right cervical lymph node, Diff-Quik and Papanicolau stains. Metastatic PD Breast Carcinoma.

I assisted the radiologist in obtaining cellular material from the patient’s targeted right cervical lymph node, and when the radiologist prepared the core biopsy needle, the patient started to tear up, knowing well what the lymphadenopathy indicated. She told us she knows how aggressive her cancer is, how her young children are going to lose their mom, and I remember doing everything I could to hold it together and provide my adequacy statement to the radiologist. Like a child on the playground trying not to cry in front of her friends after skinning her knee, I gathered all my paperwork and the specimen containers, cleaned up my cytology cart, and walked back upstairs to our cytoprep lab. I assigned the specimen an accession number, handed the prep tech my cell block tube so she could spin down the residual material in formalin and ensure the cold ischemic time was less than one hour, and I bee-lined for a private space. I found our cytology file room, closed the door behind me, sank against the wall, and cried. I, too, knew the likelihood of her children losing their mom without medical intervention, and that the intent to cure would be the most difficult journey of this young woman’s life. This is why I’m here. This is why I fight for more material, why I fight for answers, and why I will always put the patient first.

Taryn Waraksa, MS, SCT(ASCP)CM, CT(IAC), has worked as a cytotechnologist at Fox Chase Cancer Center, in Philadelphia, Pennsylvania, since earning her master’s degree from Thomas Jefferson University in 2014. She is an ASCP board-certified Specialist in Cytotechnology with an additional certification by the International Academy of Cytology (IAC). She is also a 2020 ASCP 40 Under Forty Honoree.

The Story of the Mott Cell, COVID-19 and the Cute Little Mouse

I have worked in hematology for many years, and there are certain things that never fail to excite technologists. Working in New Hampshire, it was always exciting to sickle cells or malaria, something common to some, but not common in our patient population. I now work in Baltimore, and see sickle cells nearly every day, and we come across malaria not too infrequently, but we still share good examples and save them for training. When we see something different or unusual, we always share the finding. Cells may need to be sent to the pathologists for a pathology review, and we always check back to see the pathologist’s identification and comments. Medical Technologists by nature are a curious bunch, and we always want to see ‘cool’ things. I wrote a blog two years ago about the only patient I have ever seen with Trypanosoma (Hematology Case Study: The Race to Save a 48 Year Old Man from a Rare Disease). Last month I wrote about Blue-green cytoplasmic inclusions (COVID-19 Patients with “Green Crystals of …” STOP! Please Don’t Call Them That). So, when I saw something else ‘cool’ and different on a peripheral smear, and then saw it AGAIN, on another patient, and saw other techs here in the US and in other countries were also mentioning these, because it’s my nature, I got curious.

When I write these blogs, I often feel a little bit like the mouse in the children’s story “If You Give a Mouse a Cookie”, by Laura Joffe Numeroff. It’s about an adorable little mouse who asks for a cookie, and then decides he needs a glass of milk to go with it, and then he needs a straw, and it goes on and on, in a circle, back to the beginning. Maybe it’s that the mouse is a little ADD, but I like to believe that he’s just creative and curious. I start with an idea, and often go off on many tangents before a blog is finished and comes back to where I started.. When I started writing this, it was because I saw an interesting cell, and I started exploring, and found that others had seen them, too. Then I started looking through my textbooks for references and information, and searched for recent research or studies, and then I wanted to find out more… just like that mouse.

There are some things that we learn about in school and we may see on CAP surveys, but no matter where you work, they are still rarely seen, so are a novelty. Mott cells are one of these things. I have a collection of Hematology texts from grad school and years of teaching Hematology. Several of these don’t even mention Mott cells, but, when they do, it’s barely a sentence in a discussion of plasma cells. I happen to have a very old copy of Abbott Laboratories “The Morphology of Human Blood Cells” . The one with the red cover, from 1975. The term Mott cell does not appear in this manual, but they do show pictures and describe “Plasma cells with globular bodies (Grape, Berry or Morula cells)”, and describe these globules as “Russell bodies”.1 So some of us who have been working in the field for many years may remember Russell bodies and Morula cells, or Grape cells, even if the term Mott cell is not familiar. Regardless of what we or textbooks call them, they tend to trigger a memory because the images are so unique.

So, again, I’m a bit like that mouse and getting distracted with the background. Why am I writing this blog? In recent months I have seen cells identified as plasmacytoid lymphocytes and Mott cells in several hospitalized patients. I have heard reports of these cells in other facilities as well. So, like a good medical technologist, I got curious about Mott cells. What are they, and what is their significance? And why are we seeing more of these now?

Mott Cells are named after surgeon F.W. Mott. In the 1890’s, William Russell first observed these cells with grape like globular inclusions, but did not recognize what the inclusions were or their significance. Russell examined the cytoplasmic globular inclusions and assumed that these cells were fungi. Ten years later, Mott described cells he called morular cells. He recognized that these cells were plasma cells and the inclusions were indicative of chronic inflammation. Thus, today we refer to these cells as Mott cells, morular cells or grape cells, and the inclusions as Russell bodies.2

Hematology texts describe Mott cells as morphologic variations of plasma cells packed with globules called Russell bodies. We know that plasma cells produce immunoglobulin. When the plasma cells produce excessive amounts of immunoglobulin, and there is defective immunoglobulin secretion, it accumulates in the endoplasmic reticulum and golgi complex of the cells, forming Russell bodies. Russell bodies are eosinophilic, but in the staining process the globulin may dissolve and they therefore appear to be clear vacuoles in the cell under the microscope. Thus, a plasma cell with cytoplasm packed with these Ig inclusions is called a Mott cell.

Mott recognized that these atypical plasma cells were present in inflammation. Plasma cells are not typically seen on peripheral blood smears and constitute less than 4% of the cells in a normal bone marrow. Yet, on occasion, we can see plasma cells, including Mott cells, on peripheral blood smears in both malignant and non-malignant conditions. Mott cells are associated with stress conditions occurring in a number of conditions including chronic inflammation, autoimmune diseases, lymphomas, multiple myeloma, and Wiskott–Aldrich syndrome.3

So, why are we seeing an increased mention of Mott cells now? We seem to be seeing these on patients testing positive for SARS-CoV-2. I have seen cells on patients at my facility that resemble Mott cells. I belong to a Hematology Interest group and over the past few months I have seen several people post pictures of Mott cells, cells with Russell bodies, and plasmacytoid lymphocytes identified on peripheral blood smears of COVID-19 patients. Other techs chimed in with comments that they have also seen these cells recently. I have even seen a comment propose that these cells are indicative of COVID-19 infection.

SARS-CoV-2 definitely causes inflammatory processes and stress conditions in the body, so it makes sense that we may see these cells in COVID-19 positive patients.

Figure 1 shows a Mott cell on an image from Parkland Medical Center Laboratory, Derry, NH. A Mott cell was identified by pathologist in a male patient who tested negative for COVID-19 at the time the sample was drawn, and subsequently tested positive. Mariana Garza, a Medical Technologist working at Las Palmas Medical Center in El Paso, TX shared a case of a 59 year old diabetic male, diagnosed with COVID-19. The patient’s WBC was 31 x 103/μL. Two Mott cells were identified by pathologist on his differential. So, the curious little mouse in me researched some more.

Image 1. Mott cell. Photo courtesy Parkland Medical Center, Laboratory, Derry, NH.

Several published research papers have studied morphologic changes in peripheral blood cells in COVID-19 patients. As we now know, SARS-CoV-2 affects many organs including the hematopoietic and immune systems. A study in Germany showed that COVID-19 patients exhibited abnormalities in all cell lines; white blood cells, red blood cells and platelets. Increased WBC counts were seen in 41% of samples in their study. Differentials performed on study patients showed lymphocytopenia in 83%, and monocytopenia in 88%. Red blood cell morphology changes were noted. Platelet counts ranged from thrombocytopenia to thrombocytosis, but giant platelets were noted across the board.4

Mott cells are indicative of chronic inflammation and may have significance in association with COVID-1. In the above mentioned study, aberrant lymphocytes were noted in 81% of patients who were SARS-CoV-2 positive, and observable in 86% of the same patients after they tested negative. The paper shows plasmacytoid lymphocytes and Mott cells amongst these aberrant lymphocytes. Moreover, morphologic changes in neutrophils, such as a left shift and pseudo‐Pelger‐Huët anomaly, decreased after virus elimination but changes in lymphocytes, indicators of chronic infection, remained.4

Another study also reported reactive or plasmacytoid lymphocytes and Mott cells observed in peripheral blood.4,5 Researchers at Northwick Park Hospital, UK, presented a case study of a 59 year old male with COVID-19 with a normal WBC and thrombocytosis. His differential revealed lymphocytopenia. His differential also showed lymphoplasmacytoid lymphocytes and Mott cells. In their conclusions it is stated that “In our experience, the lymphocyte features illustrated above are common in blood films of patients presenting to hospital with clinically significant Covid‐19. The observation of plasmacytoid lymphocytes supports a provisional clinical diagnosis of this condition.”5

Can these variant plasma cells, along with other commonly seen morphological changes, be used as part of a diagnostic algorithm for SARS-Cov-2 infection? As we see more COVID-19 patients there will be more, larger studies done and more Mott cells identified. Some disorders, such as Epstein Barr Virus and Dengue Fever are characterized by distinct viral changes in cells. However, since Mott cells can be seen in many conditions, these alone could not be considered diagnostic, but the indications are that these cells, along with the entire differential and morphological patterns, could prove to be a straightforward and easy to perform supplementary diagnostic tool. More, larger studies need to be done. It was concluded in the German study, that this pattern of morphologic changes in cells could be further investigated and validated with a larger blinded study, and that this information could lead to the development of a morphologic COVID‐19 scoring system.4 In the meantime, keep an eye out for Mott cells. These should not be ignored and should be in some way noted because they may be of future diagnostic use. That’s all or now, folks! Something to dig deeper into in another blog! The mouse strikes again!

Many thanks to Nikki O’Donnell, MLT, Parkland Medical Center, Derry, NH and Mariana Garza, MT, Las Palmas Medical Center in El Paso, TX for sharing their case studies and photos.

Becky Socha MS, MLS(ASCP)CMBB

References

  1. Diggs, LAW, Sturm, D, Bell,A. The Morphology of Human Blood Cells, Third edition. Abbott Laboratories. 1975.
  2. ManasaRavath CJ, Noopur Kulkarni, et al. Mott cells- at a glance. International Journal of Contemporary Mudeical Research 2017;4(1):43-44.
  3. Bavle RM. Bizzare plasma cell – mott cell. J Oral Maxillofac Pathol. 2013;17(1):2-3.doi: 10.4103/0973-029X.110682.
  4. Luke, F, Orso, E, et al. Coronavirus disease 2019 induces multi‐lineage, morphologic changes in peripheral blood cells:eJHaem. 2020;1–8.
  5. Foldes D, Hinton R, Arami S, Bain BJ. Plasmacytoid lymphocytes in SARS-CoV-2 infection (Covid-19). Am J Hematol. 2020;1–2. https://doi.org/10.1002/ajh.
  6. Numeroff, Laura. If You Give a Mouse a Cookie, 1985.

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.