Guess Who’s coming to the Lab?

When we enter the laboratory, we know of the dangers that can be encountered. Our training tells us there could be microbes and other potential pathogens in the samples we are about to analyze. We also learned how to protect ourselves; how our behavior while in the lab has consequences. We even know how to dress properly and what engineering controls we have at our disposal to keep us safe. We put on our personal protective equipment (PPE) before we start to work and remove it before leaving the lab. For some, these behaviors are automatic, actions that are done almost without even thinking. But is this the same for all who enter the lab? Do visitors who comes into the department know what they are really walking into or how to keep themselves safe in an environment that may be foreign to them? One common question asked by lab staff regarding visitors is “do they have to adhere to the lab safety policies and if so, why?”.  

On a recent safety audit, I visited a lab that happened to be getting a new chemistry analyzer installed. I noticed the vendor team, which consisted of 5 individuals, were not wearing any PPE. There were backpacks, open water bottles, and cell phones sitting on the counters and floors. The new instrument was not hidden in a back corner of the lab far away from the daily work. It was close to the area where the lab process, spins, and runs patient samples. Members of the vendor team were lying on the floor and crawling around. How does that scene make you feel?

Vendors and service representatives are regular visitors in your lab. A laboratory can have a representative on site a dozen times before you even begin to use that piece of equipment.  Once it is installed, you can bet you will see them multiple times for preventative maintenance and service calls. How does your lab welcome these guests? Do you let them in and have them get right to work? If they are there to repair an analyzer   you are likely eager to have them get started, but do you ask them to wear a lab coat?  Did they bring one of their own that was kept in their backpack?  If so, do you think that coat is clean or was it used in a different lab, packed up, and brought to your lab? Vendor compliance is a safety issue for many labs because these visitors are not lab employees, yet they are in your department and may be putting themselves and your team at risk. Often vendors are seen with drinks in labs, using cell phones or touching instruments without gloves – behaviors lab folk are told not to follow. So why is it tolerated? It shouldn’t be, and you have the right to speak up and ask them to adhere to your lab policies.

What about other potential laboratory visitors? Do pathologists come in to look at a patient slide in Hematology? Do they just sit down at your bench and look at the slide without gloves or a lab coat? Is lab staff allowed to scan a smear without PPE? Probably not, and no one else should be allowed too either. The microscope has most likely been touched with dirty gloves, and no one else should touch the same scope without gloves. Even lab doorknobs are a consideration. Staff should wash hands before leaving the department. That means no one should use contaminated gloves to open the door.

Speaking up about these safety issues to lab visitors can feel uncomfortable. A conversation with a physician about safe practices in the lab can be daunting, but the cost of not speaking up can be high. Take the opportunity to show you care about visitors and want to keep them protected. Sometimes you know who is coming to the lab, and you feel confident they have been trained and will use the best safety practices. At other times, though, those guests may be unexpected and lacking in safety knowledge. Make sure to treat them with respect, give them the safety training and tools they need so they can leave both happy and healthy.

-Jason P. Nagy, PhD, MLS(ASCP)CM is a Lab Safety Coordinator for Sentara Healthcare, a hospital system with laboratories throughout Virginia and North Carolina. He is an experienced Technical Specialist with a background in biotechnology, molecular biology, clinical labs, and most recently, a focus in laboratory safety.

Feed the Safety Need

Ben was excited to bring the new analyzer into the laboratory until he discovered the manufacturer’s newest security feature. Anytime a user was to log into the analyzer’s computer to diagnose issues or to perform maintenance, a unique numeric passcode would have to be entered, and that code would be sent via text to the app that staff could download on their cellphones. John knew that the use of cell phones in the lab violated the personal electronic device policy.

Emily was proud of the work she had done to design the new outpatient collection draw area. It included a row of collection rooms each with their own computer for order entry. The central area outside the rooms had a phone and printer set up for an efficient workflow. However, every time she performed a site visit she noticed her staff were using cell phones in the patient collection rooms. When she asked why, they told her they often had to make calls to clarify orders, and that talking on the central phone meant discussing patient information in front of people seated in the waiting area.

When a basic need of a human being is not met, conflict is automatically set up in the mind, and humans will deal with that conflict with a workaround or possibly with aggression. Often laboratories and their procedures are designed without considering all of the potential needs of the staff who will work there. Conflict will arise, and policies will not be followed, and you may also wind up with unhappy employees.

When it comes to safety policies and procedures, it is important to educate why they must be followed. It is vital to discuss the possible outcomes of not using safe practices. That may mean exposures to chemicals and biohazards, and it may also mean injuries. It can take time to explain that the use of a smart watch with contaminated gloves can lead to infection and potentially severe illness at work and in the home.

While this understanding is important, it must be coupled with a system of practices that allows staff to easily follow the prescribed safe practices. It must be easy for staff to perform safe acts, there should be no hindrances in their way for that to happen. Otherwise, conflict will occur, and the set policies will not be followed. Staff may know the regulations, they may even understand the potential consequences of not following them, but they will not conform to the policies because of some software glitch or because some vital tool is missing in their environment.

When you notice a lab safety violation, or if a safety incident has occurred, the first thing to look for in the investigation is something in the system that may have caused it. Unless the incident occurred because of a blatant act by the employee, blame should never first be focused on the person. What departmental design flaw exists? What engineering control could have been in place? What PPE should have been readily available? What was the temperature and humidity in the department, etc.?

Upon further discussion with the vender, Ben learned that the manufacturer’s security code system could not be bypassed, but that the app could be downloaded onto an electronic tablet rather than a cell phone. Ben purchased a tablet that could be used in the lab and remain there so as not to create any infection control issues. The tablet was also used for lab safety and quality audits so that pictures of issues could be taken and that results of audits could be entered directly. It became a real time saver, and no cell phones were needed in the laboratory.

Upon review, Emily realized that access to phones in the new outpatient collection area needed to be better. There was no way to even call or help from a collection room should there be an adverse reaction to phlebotomy. Emily was able to acquire portable phones in the short term until she could get permanently-mounted telephones into each of the three blood collection rooms. Staff no longer needed to use cell phones in the biohazardous areas.

Humans have basic needs like food, shelter, and clothing. When those needs are not met, some may act in surprising ways to obtain them. The same holds true in the laboratory. There is a need to be safe, there is a need to follow safety regulations and policies, and unsafe behaviors will arise if it cannot be achieved. Feed the safety needs of your employees. Provide a safe working environment with good engineering controls, PPE, and polices that allow for workdays that have no safety conflict.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Into the Badlands of Safety

During a recent trip to South Dakota, I was able to visit Badlands National Park. I am not a hiker or a camper, so I was not sure I would enjoy the park very much, but it turned out to be the highlight of our vacation. The vastness of the landscape and the unusual beauty of the rock formations cannot be captured in pictures. It is truly something that should be see in person at least once in a lifetime. While walking the trails of the park, it looked and felt like walking in an alien world. It looks strange, and there are hidden dangers- rattlesnakes, potential high heat, and crumbly walkways with sudden drop-offs.

The experience reminded me of how the laboratory must seem to visitors or workers who need to come into the department to perform various duties. The laboratory must seem like a foreign world, and indeed, there are many hidden dangers within. If I had walked blindly into Badlands National Park and not read the warning signs, would I have been bitten by a snake or could I have walked off a cliff? Of course. Do the signs in your lab adequately warn visitors of the dangers? Do visitors pay attention?

The lab staff reported a plugged floor drain under the hematology analyzer, so the facilities plumber arrived to repair it. He asked the staff if the analyzer was running, and because they were not processing any samples, they said it was not. When the plumber bent down to look at the drain, the analyzer cycled waste through the drain line which quickly splashed into the eyes and mouth of the plumber.

Warning signs are required in many labs for many reasons, but they are not sufficient for protection from the hazards in the department. Those who enter the “badlands” of the lab need to be told about the dangers, and they need as much information as possible. If someone is coming in to work on equipment, offer proper personal protective equipment. If someone will be on the floor of a biohazard lab, make sure a lab coat and gloves are in use, and lay a pad on the floor if possible. Make sure people understand proper terminology. An analyzer may not be actively running samples, but it is still “on,” and there are still potential hazards present.

It should not be assumed that people who come to work in the lab department will have general knowledge of the laboratory or of lab safety practices. It is a good practice to use a safety training checklist for vendors or others who enter the department and to go over that checklist at least annually. Couriers can be harmed by pathogens, chemicals, or dry ice. Phlebotomists who are expected to process samples should be trained in centrifuge operations, spill clean up and more. Environmental service workers and biomedical engineering staff need to understand the chemical and biohazards in the department.

Instrument service representatives have training, but not typically much of that training is focused on lab safety. Some representatives keep a reusable lab coat with them, and wear it from lab to lab, washing it at home when visibly dirty. There are some OSHA violations in those behaviors. PPE that is used on a lab cannot be removed from that lab (except for professional laundering). Lab coats used in a laboratory cannot be laundered at home. These are unsafe (and illegal) practices, but until someone notifies the representatives about them, the behaviors will continue.

When someone works in the lab “badlands” every day, it is easy to become complacent about the hazards within, or they may be well-trained and no longer consciously think about the tools they use to mitigate those hazards. That is not true for someone who may enter, someone who does not have the same background, experience, and training. Laboratorians are responsible for their safety as well, and educating those visitors about the potential dangers can keep them safe so they can go into more familiar climates with their health fully intact. 

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Lab Safety: It’s Not Monkey Business

The monkeypox virus is poorly named. The actual source of the virus is unknown, although it is possible that African rodents and non-human primates (like monkeys) might harbor the virus and infect people. Either way, the virus has entered the United States again recently and has caused new safety concerns for laboratories around the country.

As with the novel Coronavirus pandemic, the monkeypox outbreak has created new safety concerns among laboratorians. How easily can this be transmitted? How should samples be handled or packaged for transport? Will this create a critical lab staffing shortage? How should waste be treated? It is vital that lab leaders and safety professionals answer these questions for staff and relay as much information as possible to allay unnecessary fears.

First, one of the most important areas of focus for laboratorians potentially working with monkeypox patient samples is to continue to utilize Standard Precautions. As always, all specimens in the lab setting need to be treated as if infectious. When handling standard clinical specimens (blood, body fluids, etc.) from suspected monkeypox patients, no extra safety precautions or PPE should be necessary in the lab. The quantity of pox virus likely to be in clinical specimens is low, although procedures that generate aerosols should always be avoided.

Laboratory staff should also be trained to package and ship Category B specimens. The current West African strain (clade) of monkeypox in the U.S. is not considered Category A under the Hazardous Materials Regulations (HMR), so monkeypox swab specimens for virus testing should be shipped similarly to other clinical specimens. Use the packaging kit and follow the instructions from the receiving testing lab.

There may be concerns about the spread of monkeypox infection among employees in the laboratory. Any infected employee should be using PPE when working in the department, and the monkeypox virus is only spread by close physical contact, direct contact with the infectious rash, scabs, or body fluids, and touching items (such as clothing or linens) that previously touched the infectious rash or body fluids. If there was contact with infected PPE or if an employee had prolonged face-to-face contact with an infected co-worker, that should be reported. The CDC states that monkeypox can spread from the time symptoms start until the rash has fully healed and a fresh layer of skin has formed. The illness typically lasts 2-4 weeks. People who do not have monkeypox symptoms cannot spread the virus to others. Direct any concerns to the employee health practitioners.

Laboratories should have an emergency management plan in place which includes how to handle staffing shortages. That plan may include sending routine testing to an alternate location, using point-of-care testing or reducing services to a limited test menu. In most laboratories, however, this monkeypox outbreak is unlikely to create a massive staffing outage. The virus does not spread quickly or in public, and a pandemic of monkeypox is not expected.

Handling monkeypox waste is another consideration for laboratories. Normally, the waste associated with monkeypox virus is considered a Category A waste (waste contaminated with a known highly infectious substance). However, waste from patients infected with the current West African strain of monkeypox is considered exempt from the category A Infectious Substance Regulations according to the Department of Transportation. It can be managed as regulated medical waste. Soiled laundry, including lab coats, should never be shaken or handled in manner that may disperse infectious particles. Laundry should be contained (bagged) at the point of use. Organizations should contact their local public health authority for more information if needed. As the past few years have shown, new threats will continue to emerge, and they will raise safety questions in the laboratory. As always, laboratorians should stay vigilant, pay attention to the work they do every day to avoid injuries and exposures when handling any specimens. Communicate with the hospital departments to ensure proper internal specimen transport of clinical and diagnostic (swab) specimens. Handling laboratory specimens has never been monkey business- the use of Standard Precautions and safe work practices will keep employees safe through this outbreak, and for whatever comes next.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Omicron: Variant of High Significance?

Omicron is now the dominant variant in the United States and gained that title faster than any variant before it. I have been tracking variants in the North Texas region since February of this year and detected the first Alpha variant (B.1.1.7). During this time, there were multiple substrains circulating. Some like Epsilon (origin California) rose in prominence then declined to extinction. Rise in Alpha (origin U.K.) and Delta variants (B.1.617.2, origin India) were tracked over the course of weeks, but Omicron has been tracked on a daily basis, since it is rising so quickly.

Many places are using S-Gene Target Failure (SGTF) as a surrogate for Omicron variant (Yale, University of Washington below).

Photo credit @NathanGrubaugh (Yale, Left) and @pavitrarc (UW virology, right)

SGTF occurs when the TaqPath COVID-19 multiplex test has 2/3 targets successfully amplify when the S-gene target does not or “drops out.”  This phenomenon was first observed in the Alpha variant, because the probe for this target overlapped a characteristic mutation: S:Del69_70 (deletion of the 69th and 70th amino acids in the spike protein from a 6 base pair deletion). This mutation is absent in Delta, but present in Omicron, so has been used as an early tracker of Omicron prevalence.

Most of this discussion is speculative and we won’t ever really know, but given the rate of transmission of this variant, it seems unlikely that it would have acquired so many mutations and not been detected before now. The most recent common ancestor is from over a year ago suggesting it was incubating for a long time.

We’ve seen a case of a person severely immunocompromised with no antibody response to vaccination + booster who still has an unmutated wild type strain in their system. With no immune pressure, the virus has not evolved.

However, in HIV+ patients with variable/ low immunity, there could be enough pressure to drive the immune evasion properties seen in Omicron. Southern Africa has over 30% of their HIV+ patients not on therapy who would be likely candidates for this type of host.

Did we see this coming?

Yes. Other immune evasive variants have arisen in areas with high prevalence of previous infection (Brazil/ S. Africa). Organisms evolve just enough to overcome the challenges in their environment. Thus the level of immunity provided by various immune exposures are approximately:

 Previous infection < 2x Vaccine < 2x Vaccine+ previous infection ~ x3 Vaccine

Scientists theorized that either Delta would evolve more immune evasive mutations or a totally new variant would arise. However, I didn’t think it would spread this quickly.

What is the impact?

Therapies. Most antibody therapies are directed as the business end of the spike protein—the receptor binding domain (RBD). The rest of the protein is covered in glycosylation modifications that block much recognition. Thus with many mutations in Omicron compared to the wild type strain (white), most therapeutic antibodies no longer bind/ inactivate viral replication.

Source: https://biorxiv.org/content/10.1101/2021.12.12.472269v1.full.pdf

Only one monoclonal antibody—Sotrovimab from GSK—is effective, because it binds a pan-coronovirus epitope outside of the RBD. However, this antibody is in short supply.

  • Thus, knowing which variant someone has can direct therapy. Several hospitals in our area are out of Sotrovimab, and only people with the Delta variant can access other options. Thus, knowing the variant in a short time frame has clinical implications.
  • Whole genome sequencing takes too long, so the FDA has agreed to review PCR genotyping approaches for clinical use. I have described some previous approaches, but many of these methods are useful as a screening method and would not have sufficient specificity to determine whether an omicron variant is present. Next time, I will discuss variant genotyping, why it is important, how it can be done, and what clinical actions can be taken with the knowledge.

Severity. There are signs that it is less severe. Is this due to increase in immune tolerance? We now have been prepared by either previous infection or vaccination to be protected from hospitalization or severe disease.

@Jburnmurdoch https://twitter.com/jburnmurdoch/status/1478339769646166019/photo/1

Or is the decline in severity due to lower pathogenicity? A recent non-peer reviewed study indicates the virus replicates x70 faster than Delta in the upper airways (left), but infiltrates cells 10% as well as the original strain.

From: https://www.med.hku.hk/en/news/press/20211215-omicron-sars-cov-2-infection?utm_medium=social&utm_source=twitter&utm_campaign=press_release

We all hope this will continue to be better news about the severity of Omicron, but from the lab side, I’ve heard of positivity rates >50% at some places. So this can still have a broad impact.

-Jeff SoRelle, MD is Assistant Professor of Pathology at the University of Texas Southwestern Medical Center in Dallas, TX working in the Next Generation Sequencing lab. His research interests include the genetics of allergy, COVID-19 variant sequencing, and lab medicine of transgender healthcare. Follow him on Twitter @Jeff_SoRelle.

Where have all the Techs Gone?

Electronic media is replete with articles and editorials of employers lamenting the shortage of workers. Signs offering hiring bonuses hang outside of restaurants, stores, and other retail outlets all across the country.

The inability to find workers has forced employers to take another look at their business model and reevaluate whether the model is still viable in its current form. The power balance in the employer/ employee dynamic has shifted. Employers accustomed to having their choice of applicants now find themselves scrambling to find workers.

No schools, No students

The healthcare industry, including the medical laboratory, is not exempt from the shortage despite healthcare experts and administrators knowing that the trending laboratory employee shortage was inevitable years ago.

Laboratory school administrators and managers have been sounding the alarm about the lack of community college and university medical technology program applications. Many academic medical technology programs are shuttered due to a lack of students.  The decrease in the number of students going into the laboratory field and the normal attrition rate of older workers retiring or moving on to higher-paying occupations has led to a high vacancy rate and a loss of expertise.

Burnout

The pandemic has added more pressure on a cohort of employees experiencing the stress of a new and unknown danger. These allied health professionals were (and are) the front-line response to a disease threatening everyone, regardless of economic or social demographics. Lab worker burnout has become a documented phenomenon

We call them heroes, but in reality, these are the same people working every day (pandemic or not), serving patients and delivering quality test results. Labs across the nation are filled with these everyday people. But just like everyone, laboratory workers have families, feelings, and needs they are trying to meet while being asked to give a little more. Many have little left to give and are now leaving the field to pursue other less stressful occupations or to simply enjoy the life they have worked so hard to build.

Start recruiting early

How can healthcare organizations stem the tide of those choosing to leave the lab and simultaneously attract young fresh minds to the unglamorous and less financially rewarding but necessary field of laboratory testing?

Presentations to elementary school children are a great way to introduce the next generation to the laboratory field. What child doesn’t like looking into a microscope to see their own red and white blood cells? Roadshows put on in junior high and high schools are a great way to kindle interest in healthcare just when students are beginning to ponder the question of what they want as a career.

Educational Aid

The cost of college continues to rise. Scholarships are often garnered by high-performing “A” students. But there is a pool of “B” students that could also benefit from financial assistance and would be just as welcomed into clinical laboratories. Broadening and diversifying the qualifications to receive a scholarship and financial aid could conceivably add to the pool of potential laboratory workers. Another unique idea is to allow laboratory workers’ dependents access to unused employee educational benefits.

Wellness in the Lab

Resources should also be dedicated to retaining technicians and technologists who are considering leaving the laboratory field.  The level of compensation is meaningful, but studies have shown that employees often leave the job for more esoteric reasons. Reducing stress, supporting a culture of wellness, inclusiveness, and belonging can differentiate one workplace from another. The theme of workplace wellness was extensively discussed at this year’s ASCP 2021 annual meeting in Boston.

The Need is Real

The pandemic has highlighted the importance of the laboratory to the health of the nation. The medical laboratory should use this moment in the spotlight to advocate for more resources and emphasize the necessity for more laboratory programs and students to meet the future testing needs of the nation.

Of course, many lab managers are wondering what to do today to stem the slow leak of personnel. Providing mental health support and financial incentives do work to keep these knowledgeable workers in the lab. Managers realize that laboratory science is a demanding high acuity job with little or no margin for error. To maintain quality, the healthcare industry will need to change its perceptions about the laboratory and address the lack of technicians and technologists with the same interest and retention resources given to nurses and doctors.

-Darryl Elzie, PsyD, MHA, MT(ASCP), CQA(ASQ), has been an ASCP Medical Technologist for over 30 years and has been performing CAP inspections for 15+ years. Dr. Elzie provides laboratory quality oversight for four hospitals, one ambulatory care center, and supports laboratory quality initiatives throughout the Sentara Healthcare system.

Disruption in Cancer Care: Good or Bad … What’s Next?

The concept of disruption often has negative connotations. Everyone on the planet can understand the phrase, “COVID-19 has disrupted our lives” without explanation. Although this disruption has been global, the disruption and ensuing impact this has had on non-COVID-19 related healthcare and, specifically, oncology, have been dramatic.

Surgeries, chemotherapy and other medical treatments were canceled or delayed by months, and volumes of testing across the cancer landscape dropped to minimums. Existing infrastructure furthered the deployment of telehealth consultations and, eventually, clinics were reopened; however, there is no question that many people with cancer face being diagnosed at a more advanced stage of disease, with worse outcomes.

On 25-26 October, the World Cancer Leaders’ Summit, organized by the Union for International Cancer Control and hosted by the American Society for Clinical Pathology, brought together more than 600 leaders from some 100 countries. One of the major topics of discussion was, “What do we do for oncology after COVID-19?”

In addition to examining heart-wrenching data on disruptions to cancer services, there were also positive discussions about what we have learned from this pandemic, how we have adapted, and what novel approaches we should keep that could create optimal, more efficient, or more impactful cancer care.

The positive side of disruption

When applied to innovative technologies or ways of thinking, “disruption” can be positive, particularly when we consider the many advancements happening so quickly with treatments, including immunotherapies like check-point inhibitors, mRNA cancer vaccines, CAR-T therapy, epigenetic therapies, that the different members of the cancer community are often running to catch up.

Some of these advances are simply operational efficiency (i.e., getting more output from the system by improving the inputs and the usage) while many are transformative innovations (i.e., immunotherapy for lung cancer and melanoma). And some advances are considered “disruptive” because they are not just a new way of doing something better but allow an entirely new approach that previously wasn’t available and that radically improves prevention, diagnosis, treatment or supportive care.

A disruptive revolution in cancer detection

In oncology, a true disruptive innovation is taking place with universal cancer screening (UCS) or multi-cancer early detection (MCED). The earlier a cancer is detected and the patient can start treatment, the higher the chance of survival. The current paradigm for cancer care is suspicion of cancer leads to diagnosis, which leads to treatment. Suspicion rests in either the results of a screening test or when a person shows symptoms, and diagnosis involves a biopsy that must be analyzed.

Primary care doctors and not just oncologists will be able to use UCS and MCED testing platforms. Tests will be performed on a timescale (e.g. annually, every five years) relevant to the person’s age, medical and family history as well as the type of cancer being detected for, rather than wait for a patient to present with symptoms. Furthermore, these platforms will be able to detect 20 to 50 or more cancers from a single sample and for myriad cancer stages, including precursor or pre-invasive cancer, and there is no need for a separate diagnostics phase: the result itself would dictate a treatment because the UCS/MCED platforms not only detect the cancer but can, in theory, give an origin and medical response parameters.

Whereas the current paradigm involves primary care, oncology, surgery, radiology, pathology, nursing, etc., this new paradigm would only involve primary care and an insurance provider.

Innovating, Creating and Breaking Down Barriers

The transition from traditional oncology to such novel platforms – as with all disruptive technologies – will not be smooth as we are talking about entire businesses and careers connected to traditional oncology possibly become obsolete. People with cancer, however, are expected to have shorter, more efficient journeys, likely with better outcomes and at a lower cost.

In LMICs, where oncology care systems are not nearly as developed as in HICs and where governments, unlike the US, are generally assumed or expected to pay for cancer services, UCS/MCED will require fewer dollars and provide better results than investing in the infrastructure required to create traditional cancer care systems. If this theoretical framework (UCS/MCED for cancer) does demonstrate the value in promises, it would set the stage for similar paradigms in other non-communicable diseases for which infrastructure and resources in LMICs are often lacking.

UCS/MCED was a hot topic at the WCLS. The leaders that were involved in the meeting sit on either side of a fence with regards to this innovation. There are those that support this technology’s development as quickly as possible, anticipating better patient outcomes, more efficient systems, less healthcare spending and more revenue. There are also opponents to this innovation, who throw up barriers resulting from fear of losses (revenue, employment, testing volume, referral networks, etc.).

The barriers they present, however, are important only if they are true barriers and not just perceived barriers. Why? True barriers are likely to require the engagement of the traditional oncology system to overcome; yet the act of overcoming those barriers may herald the disruptive innovation they fear. When an existing system must participate in its own creative destruction, can such a disruptive innovation take place?

No doubt the participants of the WCLS will continue to ask this question and let’s hope they find some answers for the sake of our patients.

milner-small


-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.

The Anatomy of Lab Safety Design: Handling a Flood

Most laboratories are designed with eyewash stations and at least one safety shower depending on the size of the department. The use of these safety showers is not common, but it does happen, and the staff needs to be prepared for such an event. That preparation not only involves testing and training on equipment use, but also in making sure the physical space is ready for a potential deluge of water that can pour down into the department for potentially up to fifteen minutes. Other flooding incidents may occur as well. A floor drain can back up, a water line connected to an analyzer might break, or water might even come through the ceiling from a pipe above the department. Being prepared and responding efficiently to these types of flooding events should be part of the overall lab safety program.

One reason safety specialists and some regulatory agencies require that items in the lab not be stored directly on the floor is so they will not be damaged in the event of a departmental flood. It is generally acceptable to store plastic items (waste bins, etc.) on the floor since they cannot be damaged by water. Cardboard, computer hard drives, and other like items should be stored on palettes or shelves. Securing electrical wires and raising multi-plug adaptors off the floor is also a best practice.

When designing or remodeling a laboratory, consider the possibility of floods when choosing the type of flooring to be installed. The best laboratory flooring is monolithic, like a sheet vinyl that has few seams. It should bend up to the walls to create a coved base that is integral with the floor. This design (recommended by the CDC and CLSI) keeps liquids from going under tiles or through walls which will create more problems (like mold) down the road.

Floor drains where safety showers exist are not required, and many labs have showers where there is no drain at all. Remember that in a typical situation where a shower would be used, hazardous chemicals are involved. Any hazardous waste that might go into the sanitary sewer should be routed through a neutralization station or into a hazardous waste collection tank. The ANSI requirements for a safety shower include the ability to deliver 20 gallons of water per minute for 15-20 minutes. That’s a total of 400 gallons. The requirements also state that the water pattern must be at least 20” in diameter and 60” above the floor. Therefore, a majority of the water will not even travel to the drain. It will go to the lowest point of the floor in the department. The bottom line is, if the safety shower must be used, a flood should be expected.

In order for the lab to be prepared for a flood emergency, materials should be on hand that will help contain large amounts of water. Those materials may include large volume spill kits with booms or dikes that are capable of holding water back. Staff should be trained how to use these materials as spill training is provided, and drills should be conducted so they can use the supplies comfortably. Make sure these spill materials are easily accessible and that signage clearly indicates where they are stored.

What does the physical anatomy of your lab look like? Is it designed for safety in the event of a hazardous material spill or exposure? Is the department set up to handle a sudden flood situation, and can staff identify the steps to take to respond efficiently and safely? Take a look around your lab today, and make any necessary corrections so that all will be ready should a laboratory flood occur for any reason.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Looking into the Pathology Mirror

Conversing with people early in their career has always been an exciting experience for me and, I hope, for those with whom I have spoken. I tend to get enthusiastic in discussing all the possibilities that lie ahead and try to keep the conversation focused on the individual in question. I try to avoid talking about my own career path unless someone specifically asks—but I keep it brief. One-on-one conversations tend to be very productive for the individual because we can delve deep into their questions, fears, concerns, hopes, and goals. Group discussions often end up being more informative for me, and I have learned a ton from listening to dynamic young people. I was recently gifted with the opportunity to lead 9 focus groups as part of a grant-funded project which included several groups with medical students and pathology residents. Although our focus was on forensic pathology, the groups were quite diverse. I would call the experience overall very positive and enlightening for all of us, but I was struck by a few observations that I felt the need to explore further on my own—so, you get to read a blog about it.

Pathology is a fascinating specialty after medical school that covers a large range of diseases and patient types, an even larger range of scopes of practice, and includes some of the lowest and highest paid jobs in the field. At the same time, the practices of pathology and medicine are evolving at an extremely rapid rate while medical knowledge is expanding exponentially. There is an entire industry based around paraphrasing the current literature for a given specialty because, even within a specialty, you can’t read every new study or follow every new development. It is this expansion that has created the demand by pathologists in the last 2 decades to be sub-specialists so that a focus on one particular area of practice will keep their expertise sharp, their diagnoses hyper-accurate, and their risk profile minimal. This expansive phenomenon in medicine in general but specifically in pathology is an excellent indicator that the field of knowledge is ripe for a disruptive innovation. It is common knowledge that the practice of anatomic pathology, for example, is based on a technique that is more than 100 years old—histology; however, what is not common knowledge is that the amount of data generated by reviewing a histology slide from, for example, a tumor, is 1/1000th or less than the data generated by performing genetic sequencing of that same tumor. Add to the mix the ability to perform transcriptional analysis, mass spectroscopy, metabolomics, lipidomics, phospholipidomics, glycobiological analysis, etc. and it becomes clear that what is contributed by an H&E pales in comparison to what we can know about a piece of tissue. There are barriers, you say? Cost, integration of information, usable outputs, or process:volume ratios? All true. But the technological ability to characterize a tumor across all these different attributes and mathematically reduce that to a multiplex assay which can perfectly classify and predict therapeutic responsiveness exists. Still don’t believe me? A collection of companies is focused on testing that has been variably called, “Universal Cancer Screening”, “Multi-cancer Screening”, and “Multi-cancer Early Detection”. These systems currently use sequencing across multiple loci to detect from 20 to 50 different cancer types. One such company can do so with stool to look for gastrointestinal cancer and is on the market today. Why am I going down this path of which many of you are already aware? Because when I was talking to a trainee recently, they told me that they originally wanted to go into forensic pathology but were talked out of it and were now considering doing GI pathology. Let’s break this down so you can understand my frustration.

GI pathology as a career is largely generating revenue through colonoscopy from screening. Yes, the field is diverse and the most complicated parts like liver, pancreas, IBD, etc. are part and parcel to the practice. But, from a C-suite perspective, the fiscal bulk of the value of the service is in biopsy reads from screening. Because of the interest in the field in the last two decades (increase in pathologists in GI) juxtaposed to the much-needed control and reduction of 88305 reimbursement (due to rampant misuse and overuse), there are a lot of GI pathologists in the United States. So many, in fact, that jobs for GI pathology are sort of hard to find. Add to the mix a product, already on the market, that can detect colon cancer in stool without screening colonoscopy and its risks, which is only the harbinger of a group of products that will arrive on the market which can do the same for many other cancers from stool, blood, etc., and one gets nervous about where GI pathology’s current revenue volume is headed. But then there is the recent recommendation that the screening age for colonoscopy be reduced to 45 (from 50). The increase in volume of biopsies from screening (if everyone was 100% compliant) would overwhelm some practices. Where is GI pathology as a specialty going? Do we have too many and should we be concerned about disruptive innovations to screening decimating revenue generating volumes? Or are we facing an overwhelming number of biopsies with the new screening guidelines? I wouldn’t dare try to predict where this is headed but there is clearly some “uncertainty” in the practice of GI pathology. And a practicing pathologist talked a resident out of forensics and into GI??

Let’s contrast this with forensic pathology so my point is clear. There are currently only about 500 FPs in the United States and there is a need—to meet minimum requirements for coverage—of 1200 FPS. That’s a difference of 700 FPs, all of which must be board certified pathologists. There are more than 50 current open full-time positions for FPs that are funded (i.e., actively recruiting to hire today) that were identified on the most common sites for these listings. Seven of these programs offer tuition repayment for FPs from $100,000 to $250,000. Outside of those seven programs, there are three federal programs that specifically offer loan repayment for FPs and a fourth for which they are also eligible. Doing the math, basically, anyone wanting to practice forensic pathology likely qualifies for a loan repayment program (hint: that’s not true for the majority of pathology jobs). Although the average salary for an FP is often reported as ~$110,000 (about half of the average salary for a pathologist according to publicly available data), the current open positions I mentioned have an average of $240,612 (with a range of $175,000 to $350,000). The work of forensic pathologists includes death scene investigation, varying levels of postmortem examination (e.g., chart review, external examination, complete autopsy, etc.), medicolegal reporting including court appearances, participation in public health investigations, participation with local government, etc. This role is vital to the functioning of society and is required by law to be performed. Stated another way, we will always need FP (and we desperately need them now!). It is very difficult to imagine a disruptive innovation or even a transformative innovation that will replace this role in the next several decades. That same can’t be said for other parts of pathology (see my GI example above). And yet, we struggle to find FPs. Why?

Certainly not the only reason but a valid and real reason that we struggle is the presence of microaggressions in the medical community. These are common for pathology in general but can be extremely harsh and rampant for forensics (even coming from other pathologists!). The real example I have given you of the resident selecting GI after being talked out of forensics is a true story. And, more importantly, it was reiterated by nearly every medical student and resident (and fellow) with whom we talked about their experiences. Considers these statements (which are direct quotes):

“You’re too smart to do pathology.”

“Why would you waste your brain on forensics?”

“You’re too good with people and patients to be a pathologist.”

“Forensics is a dead specialty (pardon the pun)”.

Excuse me?? Are you kidding? It’s not that these microaggressions are inappropriate because they are damaging to a young person’s passions and interests. It is that these microaggressions, which are heard repeatedly, are simply wrong. Pathology, if nothing else, is a data and knowledge heavy specialty where we spend most of our time thinking, solving problems, and receiving, processing, interpreting, and synthesizing data into a useful answer on which a clinician can act. And we don’t do it one patient at a time. We produce literally thousands if not tens of thousands of tests results per day in an average laboratory. Forensics requires highly intelligent, detail-oriented individuals who can not only synthesize an entire patient’s life and death into a succinct story—but they have to defend their opinion in court. Every day! I’d like you to ask your primary care doctor if every decision he/she made for each of their patients in one day they would be comfortable defending in court. Every decision! It requires a special person who is not only amazing with data and knowledge but extremely talented at interacting with people—many of which are trying to prove you wrong. Moreover, few medical specialties call upon the physician to routinely deal with families at the lowest point in their lives in every single encounter. A person that is good with people and patients is exactly the person that can become a successful forensic pathologist—one that provides meaningful care when care is most needed. And lastly, forensics is thriving as a job market (as I described). And yet, our “mentors” who train our medical students and pathology residents continue to provide microaggressions (or outright rebuke) for those brave, brilliant individuals who would choose forensics as a career. Considering the state of the field and the perks of the practice at the moment, forensics seems like a pretty smart choice today. But stepping back from this rhetoric to a 10,000 foot view—because, remember, this is me thinking through a problem and forcing you to read about it—the overall observation I have is that the field of pathology (internally) needs to understand where it is going, what its scope of practice will look like tomorrow, 5 years, and 10 years from now, and, more importantly, what the needs of our patient community are (alive or dead). Without a global view of the total need in pathology, how can we possibly have meaningful conversations with individuals early in their career that both enhance their passion and meet the needs of the community of practice?

milner-small


-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.

Lab Safety Whiplash

The world seemed like a brighter place just a few short weeks ago. The pandemic seemed to be nearing an end, and life was returning to normal. In laboratories, the COVID-19 testing volumes decreased, wearing surgical masks all day long at work was no longer the norm, and the workday had that old feeling of familiarity again. Then, suddenly, it all came roaring back. The COVID-19 Delta Variant, loading its victims with over 1000 times more viral particles than the original could, came to visit. Now masking and social distancing are back with a vengeance, and everyone holds their collective breath as we wait to see what other cancellations and restrictions will come our way. It is almost worse this time because we know what the future will bring, and it isn’t pretty.

So how do we deal with it in the laboratory? How do we manage our lab safety program as our staff deals with this physical and mental whiplash? Many labs already saw the fatigue workers exhibited in the past 18 months. People stopped distancing from each other, they became less diligent about hand hygiene in the department, and PPE use became a bigger compliance issue than it had been when the pandemic began.

Fortunately, this is not a new challenge for lab safety professionals. Even without a pandemic, maintaining an awareness for the importance of lab safety has been a consistent need. Those who have been in the field for years and have never had a chemical exposure or a needle stick become complacent about the hazards where they work. Formaldehyde is treated like it was water, and contaminated blood tubes are handled with no gloves. This “disease” spreads also, when new employees observe these poor safety behaviors and emulate them. A poor safety culture does not have to become a pandemic, however, there is a cure, even in times such as these.

First, determine where your lab safety culture lies on the spectrum- is it very broken, or does it just need a little boost? Make an assessment of the overall culture using surveys or by talking to lab staff and leadership directly. Review your findings with the staff so that they are clear about why you are tackling the issues. That act alone raises awareness in the department. If possible, obtain a commitment from staff to improve the overall safety culture. Find safety champions who will work with you on the on-going project. Be sure safety is being discussed daily and is placed in front of the staff. Use huddles, e-mails and safety boards to promote a positive culture.

Unsafe behaviors in the laboratory can easily have consequences that may affect others in the department. Spills and exposures are just some incidents that may occur. Messy lab areas can create trips or falls, and improper storage of chemicals or hazardous wastes can be dangerous as well. Perhaps laboratory staff don’t think enough about the dangerous consequences because there isn’t enough training about them. Perhaps they don’t think about the potential consequences to others because they haven’t been told about the possible physical, environmental, or financial consequences. Maintaining awareness of these issues is always key.

The COVID-19 pandemic and its apparent rebound has made for some very long months for employees in healthcare, and the struggles do not appear to be ending anytime soon. As safety leaders, it is important for us to do what we can to help staff build resilience against the whiplash and to reinvigorate them to continue with good safety practices. We must remind them that despite all of the changes in safety guidelines in the recent past that the basics – PPE use, using engineering controls and work practice controls- are there to help us get safely through the day so that we can still go home healthy and to be able to enjoy our lives so that we can see the end of these unusual times.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.