A 54 Year Old with Vomiting and Diarrhea Followed by Pneumonia

A 54 year old male former smoker and alcohol user presented to the Emergency Department with a five day history of nausea, vomiting, diarrhea, weakness, fever with chills, breaking out in sweats, and abdominal discomfort. He denied recent sick contacts, travel or exposure to potentially contaminated foods. He had a past medical history that was significant for Chronic Obstructive Pulmonary Disease (COPD), mitral valve regurgitation and ST elevation myocardial infarction (STEMI). Some of his medications are inhaled Fluticasone, Advair Diskus, Furosemide and Spironolactone. He has also had a mitral valve replacement.

His initial laboratory tests revealed leukocytosis with neutrophilia, non-specific electrolyte derangements and negative stool tests for enteric bacterial pathogens. His symptoms progressed within the first 24 hours of admission, with a decrease in oxygen saturation (SPO2) and dyspnea so further investigations were carried out. Subsequently, a chest X-Ray was done, which showed pneumonia. The patient had a bronchoscopy and bronchoalveolar lavage (BAL) fluid was sent to the laboratory for aerobic, fungal, and acid fast bacilli culture, as well as Legionella spp. and Pneumocystis jiroveci direct fluorescent antigen testing.

Image 1. Results of Bronchoalveolar Lavage. A. Direct Fluorescence Antibody to Legionella antigens; B. Legionella pneumophilia colonies on Buffered Yeast Charcoal Extract agar plate (BCYE), showing convex, round colonies with entire edges.

Discussion

The presence of pneumonia and diarrhea in the patient raised suspicion for Legionnaires’ Disease, so the patient’s specimens including BAL fluid and bronchial washings were tested by direct fluorescent antigen (Image 1A) which confirmed Legionnaires’ Disease as the diagnosis.

Legionnaires’ Disease (LD), is a form of pneumonia caused by Legionella species, most commonly Legionella pneumophilia. Legionella spp.are motile, obligate aerobic, facultative intracellular and weakly gram negative rods. They are also nutritionally fastidious, requiring specific nutrients such as L-cysteine, and iron. They live in amoebas or in biofilms all over the world and are seen in high concentrations in warm waters plumbing systems, water heaters, warm water spas and cooling towers, and in very low concentrations in freely flowing cold water and biocide-treated waters.1 They are disseminated by devices that aerosolize water such as cooling units, hot tubs, water fountains and showers and cause disease when this contaminated aerosolized water is inhaled. The inhaled bacteria then enter the bacteria-killing macrophages in the lungs. Once in, they hijack the intracellular mechanism of the macrophages, feed off them, multiply within them, and then kill the macrophages, releasing more bacteria into the surrounding tissues.1

The incubation period of Legionella infections is 2 to 14 days, with a median of 4 days. In humans, Legionella spp. causes Legionellosis which comprises two separate diseases. These are Pontiac fever, a mild, self-limited flu-like illness, and LD, an atypical form of pneumonia which affects multiple organs. LD can range from mild to fatal in severity and about 12% of patients die from the disease.1 In most cases, LD begins with fever and symptoms of gastrointestinal infection including diarrhea and vomiting before patients develop respiratory symptoms such as cough and difficulty in breathing. However, LD also involves other organs/systems, causing renal failure and cardiogenic shock. LD occurs world-wide and all-year round but most cases occur between late fall and early spring.1

Although LD is relatively rare in the US, it is believed to be underdiagnosed due to failure to test for Legionella infection, poor sensitivity of test methods used to detect the disease, and failure to report all diagnosed cases.1 However, the rate of reported cases in the US has increased by about 5.5 times in the past 20 years to 7,500 reported cases in 20172, which may be partially attributed to increased and improved testing. 

LD is more likely to occur in people with a suppressed immune system – particularly those on high-dose corticosteroids like Fluticasone, people with chronic lung, heart or kidney diseases, people who smoke or smoked in the past, people who travel, especially overnight travel, people who have received solid organ transplants, and people who use certain medications such as anti-tumor necrosis factor drugs.1 LD is often fatal and survival depends on how severe the pneumonia when treatment starts, the presence or absence of other serious comorbidities, and how early specific treatment for the disease is commenced.1 Therefore, prompt diagnosis is very important to survive LD.

Unfortunately, LD patients often present with nonspecific symptoms as well as chest X-ray, biochemical and hematological laboratory tests results. Therefore microbiological investigations which identify Legionella spp. are crucial in the management of these cases. The most commonly used test method is the Urinary Antigen test which detects the most common cause of Legionnaires’ disease, L. pneumophila serogroup 1. But, it does not detect other potentially pathogenic Legionella species and serogroups. Legionella spp. can also be cultured and identified, but this requires the use of Buffered Charcoal Yeast Extract [BCYE] agar which provides the specific growth requirements of Legionella spp.Common specimens for culture include lower respiratory secretions such as BAL and bronchial washings, lung tissue and pleural fluid. Other methods used to diagnose LD include polymerase chain reaction (PCR), direct fluorescence antibody (DFA), and paired serology. However, the Centers for Disease Prevention and Control, CDC recommends testing with culture and urinary antigen test in combination.2

LD is treated with Azithromycin or Levofloxacin. 95 to 99% of cases can be cured if they are otherwise healthy but treatment is started early.1

References

  1. Edelstein, Paul H. and Lück, Christian. “Legionella.” In Manual of Clinical Microbiology, Eleventh Edition, pp. 887-904. American Society of Microbiology, 2015.
  2. Centers for Disease Control and Prevention. Legionella (Legionnaires’ Disease and Pontiac Fever). https://www.cdc.gov/legionella/clinicians.html. April 30, 2018

Adesola Akinyemi, M.D., MPH, is a first year anatomic and clinical pathology resident at University of Chicago (NorthShore). He is interested in most areas of pathology including surgical pathology, cytopathology and neuropathology–and is enjoying it all. He is also passionate about health outcomes improvement through systems thinking and design, and other aspects of healthcare management. Find him on Twitter: @AkinyemiDesola

-Erin McElvania, PhD, D(ABMM), is the Director of Clinical Microbiology NorthShore University Health System in Evanston, Illinois. Follow Dr. McElvania on twitter @E-McElvania. 

Microbiology Case Study: An Unusual Morphologic Presentation of an Uncommon Dimorphic Fungi in Vermont

Clinical history

A 62 year old woman from the state of Vermont with a past medical history of anxiety, depression, and granulomatous dermatitis presented to her primary care physician for bilateral Achilles tendonitis, bilateral knee effusion, and bilateral conjunctivitis; all of which were self-limited. Additional laboratory work-up from the encounter revealed an incidental 7mm right medial lung nodule with associated unilateral hilar lymphadenopathy. The patient denied any history of using tobacco products but had a remote travel history to Arizona and seasonally visited California. An endobronchial ultrasound guided fine needle aspiration was performed and the on-site evaluation showed abundant necrosis with scattered refractile objects consistent with fungal organisms. Additional tissue was submitted for cytology and fungal cultures.

Laboratory identification

Initial review of the cytology revealed abundant alveolar macrophages and inflammatory cells in a background of necrotic debris. The modified gomori methenamine-silver nitrate(GMS) stain highlighted several variably sized 8-15um broad-based budding yeast with a double contour cell wall (Image 1). Secondary review of the slides showed additional rare large 50-70um thick-walled spherules with 2-4um endospores (Image 2). Following 10 days of incubation there was growth of a fluffy white colony of mold on both the potato flake and mycosel agar plates (Images 3-4). The lactophenol cotton blue adhesive tape preparation highlighted large thick-walled barrel shaped arthroconidia with alternating empty cells (Image 5). A nucleic acid probe definitively identified the organism as Coccidiodes posadasii/immitis.

Image 1. Modified gomori methenamine-silver nitrate (GMS) stain highlighting broad-based budding yeast with a double contour cell wall measuring 12um in greatest dimension (100x oil immersion).
Image 2. Modified gomori methenamine-silver nitrate (GMS) stain highlighting a large 70um spherule with 2-4um endospores. (100x oil immersion).
Image 3. Aerobic growth of a white fluffy mold on potato flake agar plate following 10 days of incubation.
Image 4. Aerobic growth of a white fluffy mold on mycosel agar plate following 10 days of incubation.
Image 5. Lactophenol cotton blue adhesive tape preparation highlighted large thick-walled barrel shaped arthroconidia with alternating empty cells

Discussion

Coccidiodes immitis is a dimorphic fungus commonly found in the Southwestern United States and Central/South America. Immunocompetent patients can develop a self-limited acute pneumonia (Valley Fever) and the diagnosis is frequently under recognized. Immunocompromised patients however, such as those with acquired immunodeficiency syndrome (AIDS) can develop systemic disease with fungal dissemination to the bones, lungs, and skin (1). The estimated risk of exposure in endemic regions is approximately 3% per year with the greatest risk occurring during the dry season (5). Infection typically begins with inhalation of the arthroconidia which then mature in the lungs from barrel shaped cells to enlarging spherules up to 80um in diameter. Mature spherules consist of internal septations with 2-4um endospores which subsequently rupture releasing endospores into infected tissues which can mimic Histoplasma. When large round yeast forms are observed in tissue it is important to maintain a broad differential diagnosis which includes Coccidioides, Blastomyces, Paracoccidioides and in some instances Candida species. Although 8-15um broad-based budding yeast lacking endospores are typically associated with Blastomyces this can also represent germinating Coccidiodes endospores. Within the literature there are case reports describing Coccidioidomycosis infections with unusual in vivo morphologic forms consisting of juxtaposed immature spherules without endospores and germinating endospores (2). These elements on microscopic examination can easily be mistaken for budding cells of Blastomyces. Furthermore Blastomyces can rarely exhibit “giant” multinucleated yeast cells, mimicking Coccidioides (3).  Therefore, as highlighted by our case for accurate differentiation of these two fungi correlation of the patients travel history, fungal cultures, and cytology is recommended. 

In the case of our patient, although she was a resident of Vermont, a growing endemic hotspot for Blastomyces infections, she had additional travel history to Arizona and California increasing her risk for infection with Coccidiodes. Furthermore her urine antigen test for Blastomyces was negative and her fungal culture only grew Coccidiodes as confirmed by the lactophenol cotton blue preparation and nucleic acid probe. In addition, Blastomyces typically take several weeks longer than Coccidiodes to grow on culture and microscopically present with septate hyphae with short or long conidiophores with pear-shaped conidia at the tips of conidiophores (lollipops). Collectively her clinical history and laboratory work up was most suggestive of a Coccidioidomycosis. Although rare and less likely, it is also possible that she may have had a remote or concurrent Blastomyces infection which was unable to grow on culture and could not be definitively excluded.

Typically for immunocompetent hosts, asymptomatic Coccidioidomycosis (Valley fever) infections do not need require treatment. However in the context of this patient’s history of dermatologic and rheumatologic complaints, her systemic course warranted treatment with 6 months of itraconazole (4). Of note, itraconazole is also the treatment of choice for Blastomyces ­infection but would require a shorter 3 months duration of treatment.

References

  1. Saubolle MA, Mckellar PP, Sussland D. Epidemiologic, clinical, and diagnostic aspects of coccidioidomycosis. J Clin Microbiol. 2007;45(1):26-30.
  2. Kaufman L, Valero G, Padhye AA. Misleading manifestations of Coccidioides immitis in vivo. J Clin Microbiol. 1998;36(12):3721-3.
  3. Wu SJ, Valyi-nagy T, Engelhard HH, Do MA, Janda WM. Secondary intracerebral blastomycosis with giant yeast forms. Mycopathologia. 2005;160(3):253-7.
  4. Monaco WE, Batsis JA. A case of disseminated blastomycosis in Vermont. Diagn Microbiol Infect Dis. 2013;75(4):423-5.
  5. Dodge RR, Lebowitz MD, Barbee R, Burrows B. Estimates of C. immitis infection by skin test reactivity in an endemic community. Am J Public Health. 1985;75(8):863-5.

-Noman Javed, MD is a 3rd year anatomic and clinical pathology resident at the University of Vermont Medical Center.

-Christi Wojewoda, MD, is the Director of Clinical Microbiology at the University of Vermont Medical Center and an Associate Professor at the University of Vermont.

Microbiology Case Study: A Novel Anaerobic Pathogen Causing Septic Arthritis

Clinical history

A 65 year old man with diabetes mellitus type 2 presented to the emergency department (ED) for left hip pain. He has a remote history of avascular necrosis of bilateral hips of unknown etiology for which he received a bilateral total hip arthroplasty and subsequent multiple revisions due to hardware failure several years ago. He initially presented to an urgent care clinic a few months prior for “noise with movement” of the left hip and mild lower back pain. Plain radiographs of the left hip in comparison to his prior imaging were unremarkable and he was subsequently discharged. Repeat imaging at a follow-up visit at the orthopedic clinic showed mild superior migration of the femoral head bilaterally secondary to periprosthetic osteolysis of the joint headliner. He was scheduled for surgery however presented to the ED prior to his scheduled appointment with severe crushing left hip pain and restricted joint mobilization. He denied fevers, chills, night sweats, or any other recent infections. The left hip was aspirated yielding 10cc of dark black fluid and a stat gram stain was ordered.

Laboratory identification

The stat gram stain showed many polymononuclear cells with moderate gram positive bacilli in a background of dark inorganic material (Image 1). Following 48 hours of incubation, there was anaerobic growth on the kanamycin and vancomycin (KV) and schaedler agar plates. A Gram stain of the broth showed gram positive bacilli arranged singly and in chains with some decolorization (Image 2). The KV and schaedler plates showed moderate growth of a single organism consisting of small glossy tan colored colonies (Images 3-4). No aerobic growth was observed on the blood, MacConkey, Columbia Naladixic Acid (CNA), or chocolate agar plates. Mass spectrometry (MALDI-TOF) identified the pathogenic organism as Clostridium innocuum.

Image 1. Synovial fluid Gram stain of the left hip showed moderate gram positive bacilli and many polymononuclear cells in a background dark inorganic debris (100x oil immersion).
Image 2. Gram stain from a positive broth culture showed gram positive bacilli arranged singly and in chains with some decolorization (100x oil immersion).
Image 3. Anaerobic growth on the schaedler agar showed growth of a single organism consisting of small round glossy tan colored colonies.
Image 4. Anaerobic growth on the kanamycin and vancomycin (KV) agar showed growth of a single organism consisting of small glossy tan colored colonies.

Discussion

Bacterial joint infections are more common in prosthetic joints as compared to native joints with a prevalence of 1-2% following hip arthroplasty (1). Most cases of bacterial septic arthritis are due to staphylococci (40 percent), streptococci (28 percent) or gram negative bacilli (19 percent) organisms (2). Joint infections secondary to anaerobes are less likely and account for 2-3% of all cases (3). A review of the literature shows less than 50 documented cases of septic arthritis due to Clostridium species. Amongst these cases Clostridium perfringens is the most commonly isolated pathogen (4). To date there are no documented cases of joint infections secondary to Clostridium innocuum species.

Clostridium innocuum is a non-motile, anaerobic, gram positive organism that reproduces by sporulation. These organisms are normally found as a part of the usual human gut flora and are rarely human pathogens. The name “innocuum” is derived from the term “innocuous” to convey the innocence of these organisms as they do not produce clostridial exotoxins. A review of the literature shows fewer than 20 reported cases of Clostridium innocuum infections with most reported cases being described in immunocompromised patients such as those with diabetes mellitus, chronic hepatitis, acquired immune deficiency syndrome (AIDS), leukemia, and organ transplantation (5-6). Clinically patients can present with a spectrum of symptoms which include fever of unknown origin, diarrhea/constipation, and non-specific respiratory symptoms. In almost all cases bacteremia ensued. Most cases were associated with a traumatic penetrating injury with few reported cases due to hematogenous spread (5-6).

Laboratory identification of Clostridium innocuum can be challenging due to its variable gram staining morphology and atypical colony morphology on differing culture media. Most traditional phenotypic methods can only reliably identify these organisms to the genus level as a Clostridium species. However, using mass spectrometry (MALDI-TOF) these organisms can be identified to the species level. Rapid identification of Clostridium innocuum from the subset of Clostridium species is clinically important as these organisms are the only known Clostridium species with intrinsic resistance to vancomycin (7). Although they do not possess clostridial exotoxins, these organisms are thought to have a lipopolysaccharide-like virulence factor and have a mortality rate comparable to toxigenic Clostridium species (7). Due to resistance to vancomycin, metronidazole, piperacillin and ampicillin-sulbactam are the alternative recommended first-line treatment options.

For this patient, following the results of the gram smear the patient was started on IV vancomycin but due to an adverse allergic reaction was switched to intravenous pencillin G and oral ciprofloxacin. He was subsequently taken to the operating room for incision and drainage and left hip revision arthroplasty with cup exchange. Blood cultures were collected post-operatively and showed no growth, possibly due earlier antibiotic administration. Susceptibility studies from Mayo Laboratories showed pan susceptibility to penicillin, piperacillin-tazobactam, ertapenem, clindamycin, and metronidazole. The patient was subsequently switched to intravenous penicillin and continued to show clinical improvement during his remaining hospital course.

References

  1. Horowitz DL, Katzap E, Horowitz S, Barilla-labarca ML. Approach to septic arthritis. Am Fam Physician. 2011;84(6):653-60.
  2. Ryan MJ, Kavanagh R, Wall PG, Hazleman BL. Bacterial joint infections in England and Wales: analysis of bacterial isolates over a four year period. Br J Rheumatol. 1997;36(3):370-3.
  3. Shah NB, Tande AJ, Patel R, Berbari EF. Anaerobic prosthetic joint infection. Anaerobe. 2015;36:1-8.
  4. Gredlein CM, Silverman ML, Downey MS. Polymicrobial septic arthritis due to Clostridium species: case report and review. Clin Infect Dis. 2000;30(3):590-4.
  5. Leal J, Gregson DB, Ross T, Church DL, Laupland KB. Epidemiology of Clostridium species bacteremia in Calgary, Canada, 2000-2006. J Infect. 2008;57(3):198-203.
  6. Lee NY, Huang YT, Hsueh PR, Ko WC. Clostridium difficile bacteremia, Taiwan. Emerging Infect Dis. 2010;16(8):1204-10.
  7. Chia JH, Feng Y, Su LH, et al. Clostridium innocuum is a significant vancomycin-resistant pathogen for extraintestinal clostridial infection. Clin Microbiol Infect. 2017;23(8):560-566.

-Noman Javed, MD is a 3rd year anatomic and clinical pathology resident at the University of Vermont Medical Center.

-Christi Wojewoda, MD, is the Director of Clinical Microbiology at the University of Vermont Medical Center and an Associate Professor at the University of Vermont.

Microbiology Case Study: A Man with History of ALL Presents with Fever and Diarrhea

Clinical History

A man in his 40’s with a past medical history of acute lymphoblastic leukemia/lymphoma (in remission), multiple infections including bacteremia and pulmonary aspergillosis, presented to the hospital with fever and diarrhea. Over the course of his stay, he had worsening renal function and developed profound hypotension and shock, which prompted initiation of two vasopressors and high-dose steroids. Eventually he developed acute hypoxic respiratory failure, requiring intubation. Complete blood count demonstrated an absolute eosinophilia of 8.58 x109/L (reference range 0.04-0.62 x109/L). Imaging revealed bilateral pulmonary infiltrates and a pleural effusion. Respiratory culture with gram stain was ordered for his tracheal aspirate, which revealed few polymorphonuclear cells, many gram-negative rods, yeast, and larvae of Strongyloides stercoralis (Image 1A). Wet mounts of the tracheal aspirate revealed numerous larvae and a few eggs of S. stercoralis (Image 1B-C); many of the larvae were motile (Movie 1). Stool examination of ova and parasites (O & P) were positive for larvae. Given the burden of organisms and prior administration of steroids, he was diagnosed with severe strongyloidiasis, consistent with hyperinfection. Concurrent blood cultures grew Enterococcus faecalis and Stenotrophomonas maltophilia; the respiratory culture also grew S. maltophilia, and tracks from the migrating larvae were observed on respiratory culture bacterial media (Image 1D).

Image 1. Tracheal aspirate Gram stain with S. stercoralis larvae, 100x objective magnification (A). Wet mount of tracheal aspirate revealing larvae (B) and eggs (C), 40x objective magnification. Blood agar plate growing S. maltophilia in an abnormal pattern, indicating motile larvae tracking through the agar (D).

Discussion

Strongyloidiasis is a spectrum of clinical disease caused by the nematode Strongyloides stercoralis.1,2 Descriptions of acute infection have been described in other Lablogatory entries here,3,4 and the full lifecycle is described in detail on the CDC DPDx website.5

Severe strongyloidiasis includes the syndromes of hyperinfection and disseminated disease. Hyperinfection is when there is an elevated burden of the typical autoinfection cycle involving the lungs and GI-tract. Usually there is an antecedent immunosuppressive event, such as administration of corticosteroids. Within the GI-tract lumen, increased numbers of rhabditiform larvae transform into the infective filariform larvae, which traverse the GI mucosa, migrate to the lungs via bloodstream/lymphatics where they enter alveolar air spaces, then ascend the respiratory tract, and are coughed up by the host and swallowed to re-enter the GI tract. In the GI tract adult females lay eggs through parthenogenesis, which give rise to further rhabditiform larvae. In extreme cases of hyperinfection, adults can be found in the lungs, where they may also lay eggs. Finding eggs in respiratory specimens is unusual, and may be related to the burden of disease.6

Disseminated disease is when larvae can be found in any additional organs/organ systems, such as the central nervous system, kidneys, liver, adrenals, etc. Invasive sampling is not typically performed, and larvae can be observed at autopsy.

Laboratory diagnosis of S. stercoralis involves identification of rhabditiform larvae in stool O &P exam; the presence of adults or eggs in stool is rare. Rhabditiform larvae have short buccal cavities and an ovoid genital primordium structure midway through the body (Movie 2). O&P exams can be performed on other body fluids, such as sputum and CSF. Serology can be useful to identify past exposure, especially prior to initiating immunosuppressive therapeutics such as corticosteroids. A nonspecific finding can be observed, as in this case, in the complete blood cell count and differential. Relative and absolute eosinophilia can be found in patients with parasitic infections; therefore, it is reasonable to rule out parasitic infection in this subset of patients. In the case presented here, the absolute eosinophilia was likely due to a persistent S. stercoralis infection, since these nematodes can live in the human host for decades.

The treatment of choice for severe strongyloidiasis is oral ivermectin, though albendazole is an alternative therapy. In some instances, subcutaneous ivermectin administration may be used.7

Follow-up

Oral ivermectin was administered to treat the strongyloidiasis and antibiotics were administered to treat the bacterial infections. Over the coming days, serial tracheal aspirates continued to reveal many larvae and eggs, so therapy was escalated to subcutaneous ivermectin. Over the course of therapy, the patient developed a fungemia with Candida guilliermondii. Despite aggressive antimicrobial therapy and intensive care, the patient remained hypoxemic and hypotensive. The family decided to transition to comfort measures and the patient passed away.

References

  1. Maguire JH. Intestinal Nematodes (Roundworms), in Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, B. Mandell, Dolin, Editor. 2010, Elsevier: Philadelphia, PA. p. 3577-3586.
  2. Parasitology, in Koneman’s Color Atlas and Textbook of Diagnostic Microbiology, Procop et al., Editors. 2017, Lippincott Williams & Wilkins: China. p. 1452-1454.
  3. Kaur J, Stempak L. An 81 Year Old Female with Persistent Fevers. Lablogatory 2019 [cited 2019 11/5/2019]; Available from: https://labmedicineblog.com/2019/04/23/microbiology-case-study-an-81-year-old-female-with-persistent-fevers/.
  4. Mohammed M, Wojewoda C. A 47 Year Old Male with Abdominal Pain and Diarrhea. Lablogatory 2016 [cited 2019 11/5/2019]; Available from: https://labmedicineblog.com/2016/05/16/microbiology-case-study-a-47-year-old-male-with-abdominal-pain-and-diarrhea/.
  5. Centers for Disease Control. Strongyloidiasis. DPDx 2019 [cited 2019 11/5/2019]; Available from: https://www.cdc.gov/dpdx/strongyloidiasis/index.html.
  6. Keiser PB and Nutman TB. Strongyloides stercoralis in the Immunocompromised Population. Clin Microbiol Rev, 2004. 17(1): p. 208-17.
  7. Hurlimann E and Keiser J, A single dose of ivermectin is sufficient for strongyloidiasis. Lancet Infect Dis, 2019. 19(11): p. 1150-1151.

-IJ Frame, MD, PhD, Microbiology Fellow, University of Texas Southwestern Dallas, Texas

-Clare McCormick-Baw, MD, PhD is an Assistant Professor of Clinical Microbiology at UT Southwestern in Dallas, Texas. he has a passion for teaching about laboratory medicine in general and the best uses of the microbiology lab in particular.

Microbiology Case Study: 77 Year Old Man With History of Travel to India

Case Report

A 77 year old male presented to the hospital with chest pain, lightheadedness, burning urination for the past few weeks. He has blood in his urine due to a previously diagnosed neoplasm. The patient moved from India to the United States in February, with a diagnosis of bladder cancer and a history of hypertension, congestive heart failure, coronary artery disease, and atrial fibrillation. In the hospital, abscesses on both right and left kidneys were found, and patient had nephrostomy tubes placed. Purulent discharge confirmed he had a severe urinary tract infection.

Laboratory Identification

The patient’s urine culture grew >100,000 colony forming units/milliliter (CFU/ml) of an oxidase-positive, non-lactose fermenting Gram-negative rod. On the blood agar plate, large gray, smooth, flat, mucoid, β-hemolytic colonies were found. Although bacteria growing on solid media should not be actively smelled, the organism emitted a grape or tortilla smell from the plate. The organism was identified as Pseudomonas aeruginosa by MALDI-TOF mass spectrometry. The isolate was plated onto Mueller Hinton agar for Kirby-Bauer disc diffusion antibiotic susceptibility testing (Image 1). A fluorescent green lawn of bacteria grew up to the edge of all discs, indicating high-level resistance to all antibiotics tested (Table 1). Modified carbapenem inactivation method (mCIM) testing was positive and Cepheid GeneXpert CarbaR PCR testing revealed that this P. aeruginosa isolate carried the New Delhi metallo-β-lactamase-1 carbapenemase (NDM-1).

Image 1. Kirby-Bauer disc diffusion was used for antimicrobial susceptibility testing. Note no zones around any of the antibiotic discs, indicating resistance to all antimicrobials tested.
Table 1. Antimicrobial susceptibility testing interpretations. All drugs tested were resistant to this P. aeruginosa isolate.

Discussion

The issue of super bugs is on the rise, with the fear of antibiotic resistance disseminating through more bacterial populations and species. Carbapenems are drugs that are very powerful broad-spectrum antibiotics, usually reserved as a last resort treatment for serious and resistant infections.1 β-lactamases are divided into four Ambler classes: A, B, C, and D. Class B differs from the others because it utilizes zinc as a metal cofactor for its catalytic activity. The others use a serine residue for their catalytic activity.2

NDM-1 is a class B β-lactamase. It was named after New Delhi, India when a Swedish resident presented with an extremely resistant infection after a trip to India in 2008. NDM-1 bacteria can now be found with high prevalence in India and China, and increasingly in other countries such as the UK and US.3,4 While the origination of the gene may not have been India, many of these infections are from people who have traveled to India or other Asian continents.5 Concerns about overprescribing and misuse of antibiotics in India are rising, where India is one of the biggest consumers of antibiotics in the world. One study even found striking evidence of this misuse, demonstrating that 2 out of 3 adults under 20 presented antibiotic resistance isolates to fluoroquinolones and/or cephalosporins.6,7,8

Image depicting the NDM-1 protein anchored in the outer membrane of the bacterium. (Taken from Bahr, Guillermo, et al. “Clinical Evolution of New Delhi Metallo-β-Lactamase (NDM) Optimizes Resistance under Zn(II) Deprivation.” Antimicrobial Agents and Chemotherapy, vol. 62, no. 1, 2017, doi:10.1128/aac.01849-17.)

The gene for NDM-1 is blaNDM-1 and has been found on both plasmid and chromosomal components of different bacteria. Due to its presence on plasmids, the gene can easily spread through bacterial populations and other bacterial species – as has already been documented in Enterobacteriaceae and A. baumannii.3 The β-lactamase that it codes for is a lipoprotein that is anchored in the outer membrane of the gram negative bacteria. Other metalo-β-lactamases (MBLs) are periplasmic proteins, which are more affected by changes in essential metal cofactors in their enzymatic function. Thus far, it has been found that there are 16 discovered variants of NDM. Some variants being more fit than NDM-1. It is hypothesized that these variants are being selected for in the clinical setting, with the protein being more stable and demonstrating higher affinities for zinc during time of metal-chelating (a process the immune system adapts to combat infections).9 Unfortunately, NDM-1 and its variants are resistant to almost all antibiotics. Usually the only option is colistin and tigecycline.3

The disturbing issue, and the big picture, is the capability of MDR organisms and their genes of disseminating. As previously mentioned, NDM-1 is capable of spreading to other species and within its population. Yet, a terrifying report has demonstrated blaNDM-1 detection in artic soil samples from 2013, 4 years after the first detection of the gene.10 This demonstrates the ability for antibiotic resistance to spread on a global scale, and how serious this battle truly is.

References

  1. “Carbapenem-Resistant Enterobacteriaceae (CRE) Infection.” Centers for Disease Control and Prevention, Centers for Disease Control and Prevention, 23 Feb. 2015, http://www.cdc.gov/hai/organisms/cre/cre-patientfaq.html.
  2. Walther-Rasmussen, Jan, and Niels Høiby. “Class A Carbapenemases.” Journal of Antimicrobial Chemotherapy, vol. 60, no. 3, 2007, pp. 470–482., doi:10.1093/jac/dkm226.
  3. Khan, Asad U., et al. “Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-Lactamase (NDM): a Threat to Public Health.” BMC Microbiology, vol. 17, no. 1, 2017, doi:10.1186/s12866-017-1012-8.
  4. Mohapatra P. R. (2013). Metallo-β-lactamase 1–why blame New Delhi & India?. The Indian journal of medical research137(1), 213–215.
  5. Roos, Robert. “Canada Finds More Infections with NDM-1 Resistance Factor.” University of Minnesota, Center for Infectious Disease Research and Policy, 11 Nov. 2010, http://www.cidrap.umn.edu/news-perspective/2010/11/canada-finds-more-infections-ndm-1-resistance-factor.
  6. Gupta, M., Didwal, G., Bansal, S., Kaushal, K., Batra, N., Gautam, V., & Ray, P. (2019). Antibiotic-resistant Enterobacteriaceae in healthy gut flora: A report from north Indian semiurban community. The Indian journal of medical research, 149(2), 276–280. doi:10.4103/ijmr.IJMR_207_18
  7. Kotwani, Anita, and Kathleen Holloway. “Access to Antibiotics in New Delhi, India: Implications for Antibiotic Policy.” Journal of Pharmaceutical Policy and Practice, vol. 6, no. 1, 2013, doi:10.1186/2052-3211-6-6.
  8. Kotwani, Anita, et al. “Antibiotic-Prescribing Practices of Primary Care Prescribers for Acute Diarrhea in New Delhi, India.” Value in Health, vol. 15, no. 1, 2012, doi:10.1016/j.jval.2011.11.008.
  9. Bahr, Guillermo, et al. “Clinical Evolution of New Delhi Metallo-β-Lactamase (NDM) Optimizes Resistance under Zn(II) Deprivation.” Antimicrobial Agents and Chemotherapy, vol. 62, no. 1, 2017, doi:10.1128/aac.01849-17.
  10. Mccann, Clare M., et al. “Understanding Drivers of Antibiotic Resistance Genes in High Arctic Soil Ecosystems.” Environment International, vol. 125, 2019, pp. 497–504., doi:10.1016/j.envint.2019.01.034.

-Ben Dahlstrom is a recent graduate of the NorthShore University HealthSystem MLS program. He currently works as a molecular technologist for Northwestern University in their transplant lab, performing HLA typing on bone marrow and solid organ transplants. He graduated with a bachelors in Biology at the University of Illinois at Chicago (UIC) and concurrently from the UIC Honors College. He discovered his passion for the lab through his experience in healthcare. His interests include microbiology, molecular, immunology, and blood bank.

-Erin McElvania, PhD, D(ABMM), is the Director of Clinical Microbiology NorthShore University Health System in Evanston, Illinois. Follow Dr. McElvania on twitter @E-McElvania. 

Microbiology Case Study: A 50 Year Old Male with Fevers

Case History

The patient is a 50 year old male who presented to urgent care with 5 days of fevers, chills, and myalgias. He reports no known tick bites, or prior treatment for tickborne illness, he travels frequently for work and has been in Pittsburgh, Omaha, Philadelphia, Charlotte, and Long Island over the past 3 months and is frequently outside golfing in Vermont and while traveling. At urgent care he had a CBC, CMP and urinalysis. His CBC was remarkable for leukopenia with absolute neutropenia (WBC count 2,790; Absolute neutrophil count 390) and thrombocytopenia (platelet count 26,000/cmm). His CMP was remarkable for a mildly elevated AST (66U/L) and total bilirubin (2.4mg/dL). A peripheral blood smear was made which revealed ring forms in his red blood cells. BINAX testing for malaria was negative. The next day he presented to the emergency department with left upper quadrant abdominal pain, night sweats, fatigue, fever, and blood in his urine where is was informed of his CBC results and was immediately started on azithromycin and atovaquone. Given the severity of his presentation a co-infection with Anaplasma phagocytophilum (Anaplasmosis) was suspected though the PCR testing was negative.

Laboratory Identification

Image 1. Giemsa stain of thin blood smears showing intracellular (left) and extracellular (right) ring-form organisms.

Thick and thin blood smears (recommended) were prepared which showed both intra and extracellular organisms with in normal sized red blood cells. BINAX testing for malaria was negative. Given the appearance and presence both within and outside the cell a diagnosis of Babesiosis was made.

Discussion

Babesiosis in the United States is caused by the microscopic parasite Babesia microti. Occasional cases caused by other species of Babesia have been detected (1). Babesia microti is spread by Ixodes scapularis ticks (also called blacklegged ticks or deer ticks) (1,2). Transmission mainly occurs in parts of the Northeast and upper Midwest; and it usually peaks during the warm months (1). Because Babesia shares a vector and geographic distribution with Borrelia burgdorferi (Lyme disease) coinfection of ticks with these two organisms can be seen in up to 40% of ticks and though the incidence of Babesiosis is much lower; up to 10% of Connecticut patients with seropositivity for Lyme disease are also seropositive for Babesia (2).

Most infections are probably asymptomatic. Manifestations of disease include fever, chills, sweating, myalgias, fatigue, hepatosplenomegaly, and hemolytic anemia. Symptoms typically occur after an incubation period of 1 to 4 weeks, and can last several weeks. The disease is more severe in patients who are immunosuppressed, splenectomized, and/or elderly (1,3).

During a blood meal, a Babesia-infected tick introduces sporozoites into the human host (1,3). Sporozoites enter erythrocytes and undergo asexual replication (budding). Multiplication of the blood stage parasites is responsible for the clinical manifestations of the disease (1). Humans are dead-end hosts and there is probably little, if any, subsequent transmission that occurs from ticks feeding on infected persons (1). However, human to human transmission is well recognized to occur through blood transfusions (1). Diagnosis is often rendered by direct visualization on thick and thin blood smears. Because the percent parasitemia is often low, the organisms can be easily missed, especially by automated hematology analyzers (3). Molecular methods such as PCR can be performed (3), but are not recommended as the first line test as the blood parasite exam with thick and thin blood smears are clinically sensitive in patients with symptomatic disease.

Most mild cases of Babesiosis will resolve spontaneously without treatment, especially in patient with a spleen (1,3). Treatment for more severe disease includes either azithromycin and atovaquone or clindamycin and quinine (1,3). If patients are severely immunocompromised and/or splenectomized can be treated with exchange transfusion in addition to antimicrobials (3).

References

  1. Centers of Disease Control and Prevention: Babesiosis. https://www.cdc.gov/parasites/babesiosis/
  2. Procop, Gary W., et al. Konemans Color Atlas and Textbook of Diagnostic Microbiology. 7th ed., Wolters Kluwer Health, 2017.
  3. Tille, Patricia M. Bailey & Scotts Diagnostic Microbiology. 13th ed., Elsevier, 2014.

-Casey Rankins, DO, is a 3rd year Anatomic and Clinical Pathology resident at the University of Vermont Medical Center.

-Christi Wojewoda, MD, is the Director of Clinical Microbiology at the University of Vermont Medical Center and an Associate Professor at the University of Vermont.

Microbiology Case Study: A 61 Year Old Male with Fevers and Weight Loss

Case History

The patient is a 61 year old male in good health until about 4 weeks prior to presentation when he sustained a tick bite on his left arm. He subsequently developed chills, fatigue, loss of appetite, and weight loss. Concerned that his symptoms were not improving, the patient presented to urgent care and a CBC was ordered. His CBC was remarkable for mild anemia (RBC count 3.96, HB 12.9) and thrombocytopenia (platelet count 78,000/cmm). Review of the peripheral blood smear revealed organisms present within his neutrophils. Given his history of a tick bite, Doxycycline was initiated for 14 days with immediate improvement of his symptoms, including a notable increase in appetite over the next few days.

Laboratory Identification

Image 1. Giemsa Stain showing a morulae within a neutrophil.

Within the neutrophils are purple organisms distinct from the nuclei identified as morulae. PCR testing for Anaplasma confirmed the result.

Discussion

 Anaplasmosis is a disease caused by the bacterium Anaplasma phagocytophilum, previously known as Ehrlichia phagocytophilum causing human granulocytic ehrlichiosis (HGE). A taxonomic change in 2001 identified that this organism belonged to the genus Anaplasma, and resulted in a change in the name of the disease to Anaplasmosis (1). These bacteria are obligate intracellular organisms in the Rickettsia family (1,2). Anaplasma cannot survive outside the cell and once it has been released, it rapidly induces uptake signals in other host cells (3). The number of Anaplasmosis cases reported to CDC has increased steadily since the disease became reportable, from 348 cases in 2000, to 5,762 in 2017(1).

Anaplasmosis is spread to people by tick bites primarily from the blacklegged tick (Ixodes scapularis) and the western black legged tick (Ixodes pacificus)(1,2). Anaplasmosis can be transmitted through blood transfusion and has been found in refrigerated blood more than a week after collection. Transfusion related infections have occurred from asymptomatic donors (1).

Signs and symptoms of Anaplasmosis typically begin within 1–2 weeks after the bite of an infected tick, which can be painless and often goes unnoticed. Early signs and symptoms (days 1-5) are usually mild or moderate and may include fever, chills, headache, muscle ache, nausea, vomiting, and lack of appetite (1,3). Rarely, if treatment is delayed or if there are other medical conditions present, Anaplasmosis can cause severe illness. Signs and symptoms of severe (late stage) illness can include respiratory failure, bleeding problems, organ failure, and death. Laboratory findings can include mild anemia, thrombocytopenia, leukopenia (characterized by relative and absolute lymphopenia and a left shift) and mild to moderate elevations in hepatic transaminases (1). Abnormal laboratory findings can appear in the first week of illness; however, normal laboratory findings do not rule out possible infection.

Co-infection with other tick borne illnesses such as Borrelia burgdorferi (Lyme disease), Babesia microti (Babesiosis), Ehrlichia muris eauclairensis (Erlichiosis), and Powassan virus can be seen so additional testing may be necessary in some patients. Methods for diagnosing Anaplasmosis include serology, molecular methods, and morphological identification. Though morphologic identification is extremely specific is lacks sensitivity making molecular methods such as PCR the diagnostic methods of choice (2). Treatment for most Rickettsial illnesses including Anaplasmosis are tetracyclines, especially doxycycline which is the drug of choice (1,3).

References

  1. Centers for Disease Control and Prevention: Anaplasmosis. https://www.cdc.gov/anaplasmosis/index.html
  2. Procop, Gary W., et al. Konemans Color Atlas and Textbook of Diagnostic Microbiology. 7th ed., Wolters Kluwer Health, 2017.
  3. Tille, Patricia M. Bailey & Scotts Diagnostic Microbiology. 13th ed., Elsevier, 2014.

-Casey Rankins, DO, is a 3rd year Anatomic and Clinical Pathology resident at the University of Vermont Medical Center.

-Christi Wojewoda, MD, is the Director of Clinical Microbiology at the University of Vermont Medical Center and an Associate Professor at the University of Vermont.