Personal and Situational Variables of Leadership Development

Several aspects influence whether people learn from experiences in order to become a better leader. These variables can either be personal traits of the individual learner or situational aspects of the circumstances. Both personal and situational variables of experiential learning increase the development of leaders.

Personal Variables

Being exposed to experiences does not necessarily mean that people learn from them. There are some personal attributes necessary to foster learning from experiences in order to develop one’s leadership potential. The main variable that influences experiential learning is the capacity and practice of self-reflection. Being able to draw lessons from experiences is indeed what drives leadership development and self-reflection increases the number of lessons noticed in each experience. Furthermore, experiences that are challenging promote learning. How challenging an experience is can be seen as situational, however it is also personal as some people are more drawn to challenging experiences than others. Additionally, motivation to learn increases experiential leadership development. Whether the learning is motivated through goals, actions, or to simply seek knowledge, motivation influences leadership development.

In addition to being reflective, motivated, and challenged, experiential learners also need to think and act. Thinking is important because it allows the learning to plan and strategize. Finally, acting is one of the most critical aspects of learning, because it closes the cycle of learning and creates the next cycle of experiential learning.

Furthermore, assessments bring a deep level of self-awareness about their behavioral and thinking patterns, behaviors, and preferences. Knowing what one does well, where one can improve, and where the developmental gaps are is essential for leadership development. The experience with assessment is both a personal and situational variable, because how people are rated or rate themselves depends on the situation and on the personality of the person being rated. Finally, vicarious learning is learning through other people’s experiences. However, not everyone who witness other people’s leadership challenges, solutions, and behaviors develop their own leadership skills. Therefore, this is both a situational and personal variable as a person needs to be motivated to learn but also needs access to a vicarious learning opportunity.

Situational Variables

Some of the factors that influence learning from experiences are situational. This means that people have to be in a specific type of situation in order to not merely experience something but to increase their leadership effectiveness based on that experience. Experiences in themselves are situational; for the most part one cannot make certain experiences happen but they happen to people instead. However, there are three specific aspects of employment that people can seek that foster situational learning opportunities. The first one is getting a new job, changing job status, or job location. There is a tremendous amount of experiential learning that takes place when one of these aspects of a current job changes. The second is a change in task-related characteristics, such as a process or systems change. Thirdly, obstacles increase learning. Such obstacles can be difficult supervisors or employees, another company launching a similar program, or a crisis. All these experiences promote learning because jobs are central in leadership development, as well as, different assignments and experience with obstacles.

Support is an additional situational variable that increases learning. Support promotes learning because it makes people feel reassured and safe. Feeling safe also increases learners’ motivation, competency, and self-efficacy, which all promotes learning. Additionally narrative accounts shared by leaders and the organization promotes learning from experience, even if the narratives are fictional. Hearing stories about effective and ineffective leadership increases listeners’ own leadership skills through cognitive elaboration and transportation. Finally, allowing people to experience the consequences of decisions increases their learning and develop their leadership potential. Experiencing the consequences will increase people’s understanding of the impact of decisions and how departments and tasks are interconnected.

People learn in many different ways, but we all go through experiences, whether they happen to people directly, through vicarious learning, or through narratives. The better leaders can maximize learning from experiences, the more prepared the next generation of leaders will be to tackle challenges, dilemmas, and problems.

 

lotte-small

-Lotte Mulder earned her Master’s of Education from the Harvard Graduate School of Education in 2013, where she focused on Leadership and Group Development. She’s currently working toward a PhD in Organizational Leadership. At ASCP, Lotte designs and facilitates the ASCP Leadership Institute, an online leadership certificate program. She has also built ASCP’s first patient ambassador program, called Patient Champions, which leverages patient stories as they relate to the value of the lab.

The Not So Legendary Chimera

In the Iliad, Homer described the chimera as “a thing of immortal make, not human, lion-fronted and snake behind, a goat in the middle, and snorting out the breath of the terrible flame of bright fire (1).” This mythical creature has a lion’s head, a goat’s middle and the tail of a serpent, and the siting of a chimera was considered to be an omen for disaster! Thankfully, not so much in blood bank. Though ABO discrepancies can be a challenge, even most chimeras can easily be resolved with a few additional steps and a patient history.

Figure 1. The mythical chimera.

To review, an ABO discrepancy occurs when unexpected reactions occur in the forward or reverse grouping, or the forward typing does not match the reverse typing. Some weak subgroups of A (notably A3) are known for giving mixed field reactions. Weak activity with anti-A, anti-B or anti-D can also in result mixed field reactions in leukemia patients. In these examples, the mixed field reactions are due to the weakened expression of the corresponding antigens.

Chimerism is the presence of 2 cell populations in a single individual. There are scenarios where ABO discrepancies causing mixed field reactions indicate an apparent chimera. A group A positive patient who received several units of O negative blood will have mixed field reactions due to the presence of two blood types in their peripheral blood. This would be a temporary situation. A patient who received a bone marrow or stem cell transplant from a non-group identical donor will have 2 populations of red blood cells until the new type is established. We refer to these as artificial chimera cases, as the second blood type is not naturally occurring, but present due to the introduction of a different blood type via transfusion or transplantation.

Table 1. Group A pos patient who received several units of group O neg red cells

Like the mythical beast, a chimera in biology describes an organism that has cells from two or more zygotes. When chimerism exhibits only in the blood, the phenomenon can be termed an artificial chimerism, as described above, as dispermic chimerism or as twin chimerism. Dispermic chimerism occurs in other animal species but is a rarity in humans. It occurs when 2 eggs are fertilized by 2 sperm and these products are fused into one body. In this case, the chimerism is not limited to blood, but may also result in hermaphroditism, or two different skin colors or eye colors.

Twin chimerism occurs when, in utero, one twin transfuses blood cells, including stem cells,  to the other. Sine the fetal immune system is immature, the host does not see these transfused blood cells as foreign antigens.  The stem cells can proliferate and this results in the production of cells from both the donor and the host for the rest of the individual’s life. Two non-compatible blood groups can co-exist in one individual! This phenomenon is usually discovered by coincidence during a routine type and screen. This patient could be found to have mixed field or weak reactions on ABO typing, or could have missing reactions in the back type, all with no history of transfusion, transplantation and no disorder that could explain the findings. What is a tech to do? An important step in resolving all ABO discrepancies is to review patient history.

In 1953 a human chimera was reported in the British Medical Journal. A woman was found to have blood containing two different blood types. Apparently this resulted from her twin brother’s cells living in her body (2). More recently, in 2014, a case described in Blood Transfusion describes a 70 year old female who was found to have mixed field reactions with ABO and RhD typing during routine testing before surgery. She had no history of transfusion or transplantation, and a history of seven pregnancies. Repeat testing by other methods and with different reagents gave the same results. On further questioning, the patient affirmed that she had been born a twin, but her twin brother had died as an infant. Since chimerism was suspected, molecular typing and flow cytometry were performed. The presence of male DNA was found by PCR testing and flow cytometry confirmed two distinct populations of red blood cells (3).

Twin chimeras with mixed blood types of 50%/50% or 75%/25% are easily picked up in ABO typing as mixed field reactions. A twin chimera with 95% group O blood and 5% group A may show a front type of a group O and a back type that lacks anti-A . Because there is immune tolerance to A cells from the twin, the expected naturally occurring anti-A is not present. On the other hand, a twin chimera who is primarily group A with 5% O cells would not be recognized as a chimera in routine ABO typing.

Table 2. Group O chimera with 5% minor cell population A cells
Table 3. Group A chimera with 5% O cells

How common is blood group chimerism?  A 1996 study found that such blood group chimerism is not rare. Though we do not often encounter this in blood bank, their study of 600 twin pairs and 24 triplet pairs showed that this occurs more often than was originally thought, with a higher incidence in triplets than in twins. Because it does not cause any symptoms or medical issues, many such chimeras go undetected. In addition, the study found that many of these chimeras had very minor second populations, making them undetectable in serological testing. In blood bank, we generally test for ABO/RH  and do not test for other antigens in routine testing. The study used 849 marker antigens. They also used a very sensitive fluorescent technique which they developed for detecting these very subtle minor populations. This study showed that while chimeras are not rare, they are something that, with present testing methods, we will not encounter too often (4).

Dual cell populations induced by chimeras have been the subject of many studies. Historically, most chimeras were naturally occurring. With newer medical interventions and therapies, we may see more situations that lead to mixed cell populations. Transfusion, stem cell transplants, kidney transplantation, IVF and artificial insemination can all lead to temporary and sometimes permanent chimeras. These can present challenges in the blood bank laboratory in interpreting results and for patient management. A question of chimera presentation can usually be solved by putting on our detective hats and investigating patient history. Further testing can be done with flow cytometry and molecular methods, if needed. Modern medicine may have given us more blood bank challenges but modern technology has equipped us with newer methods to solve them. A chimera is no longer a sign of impending trouble!

References

  1. Homer, Iliad.  In Richmond Lattimore’s Translation.
  2. Bowley, C. C.; Ann M. Hutchison; Joan S. Thompson; Ruth Sanger (July 11, 1953). “A human blood-group chimera” (PDF). British Medical Journal: 8
  3. Sharpe, C.; Lane, D.; Cote J.; Hosseini-Maaf, B.; Goldman, M; Olsson, M.; Hull, A. (2014 Oct ). “Mixed Field reactions in ABO and Rh typing chimerism likely resulting from twin hematopoiesis”, Blood Transfusion:12(4): 608-610
  4. Van Dijk, B. A.; Boomsma, D. I.; De Man, A. J. (1996). “Blood group chimerism in human multiple births is not rare”. American Journal of Medical Genetics. 61(3): 264–8 

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Meaningful Metrics

Performance improvement (PI) metrics are a great way to assess the overall quality of your laboratory program. They allow you to track vital data related to CMS outcome measures, which can directly impact the financial well being of your organization. However, labs should be careful when choosing which metrics to monitor, and should routinely evaluate if the metrics they’re using are still meaningful to them.

Even a small laboratory will generate a ton of data throughout the year. The key questions to ask yourself are: 1) What do I want to know? 2) What will I do about it once I have the answer?

There may be different sets of metrics that laboratories will have to monitor and report, depending upon who the target audience of the final data analysis will be. Metrics and reports can be generated for your patients/customers, internal laboratory staff, management, and senior leadership. You may also be called upon to share your metrics with regulatory agencies as well to prove the effectiveness of your quality assurance program.

Ensure your reports are relevant and meaningful to the audience they are being shared with. Customer/Patient centered metrics can include items such as satisfaction survey results, average waiting time for outpatient blood drawing locations, and average cost/revenue per test. Internal laboratory staff metrics can include turnaround time reports for STAT tests, compliance with critical call notifications to providers, and percent completion for required monthly maintenance tasks. Higher level metrics that can be reported to management and administration may include performance on proficiency testing surveys, regulatory inspection results, and percent of corrected reports that were issued.

If goals have been met and sustained consistently, consider raising the bar and challenging yourself even further. Each metric should have 3 goals: 1) Minimum Threshold (must be achieved each review period), 2) Annual Goal (desired overall goal to account for monthly fluctuations in the data), 3) Stretch Goal (motivational tool, achievable but not guaranteed a high rate of success). Increase your minimum threshold limits to be closer to your stretch goals, and see what your particular organization can realistically meet and sustain. Be careful to not set unrealistic expectations, as this can lower morale and result in misleading interpretations of the data. Work with your clinicians and regulatory agencies to determine appropriate, and realistic goals, and utilize national benchmark standards when available.

Metrics that were added to address and monitor a specific known issue or problem should be evaluated for necessity once the issue is corrected. Consider reducing the monitoring of these items from monthly down to quarterly, semi-annually, or annually until you have confidence that it no longer requires monitoring.

When issues are identified, a root cause investigation should be performed with the intent of identifying the true cause of the problem – not to point blame to a particular person. The depth and intensity of your investigation will depend upon the specific metric which failed to meet its goal.

Properly identify the problem. To learn from our mistakes, we must first properly identify them. What may seem like an obvious root cause, may not be the real reason for an issue. For example, turnaround time metrics – if you did not complete STAT troponin tests in <45 minutes, simply purchase a new instrument that is faster. Well, it’s not quite that simple.

Break it down further into pre-analytic, analytic, and post-analytic times. Is the bulk of your 45 minute window taken up in the pre-analytic phase? Are samples being held in a central receiving area for 20 minutes and batched before being brought to the chemistry department? Are you testing serum (which needs to first clot before being spun) or plasma (which can be spun down immediately)? Is there a delay in verifying/releasing results into your LIS where autoverification would improve this process?

Before attributing instrument downtime as a cause, confirm that the outliers were in fact during the time period when the instrument was down. There’s a higher chance you have a pattern of poor TAT performance around change of shifts or meal breaks, than during a 6hr downtime on a single day in the month. Also look at how you are analyzing your metrics to ensure they are accurate. Are you including add-on tests based on their original received time, or based on when the troponin was added to the original order?

Develop a corrective action/preventive action plan. Based on what you identified to be the true root cause(s) that contributed to poor PI metrics, develop a plan for addressing these weaknesses. Identify who specifically will be responsible for performing each step in the action plan, and who will be held accountable for ensuring it was performed.

Implement the plan(s). Document the date the corrections were fully implemented, along with any delays or obstacles encountered.

Collect and analyze more data. Depending on the severity of the failed metric, you may want to begin analyzing the effectiveness of your improvement plan immediately. If there was a spike in the number of employee safety incidents reported last month due to ongoing construction in a department, the work conditions should be monitored daily/weekly for improvements.

Conversely, looking at data too soon may not paint an accurate picture of the true effectiveness of your corrective actions. Some corrective action plans may require several steps or phases for full implementation. For example, a process change will require an update to your procedure manual, retraining of all staff, and then rolling out the new process. This may take several days-weeks before 100% implemented and improvements can be detected.

Monitor the results. Check for sustainability of your corrections – staff may be on their best behavior the first week after being spoken to, but can return to old habits after that. They may not fully understand that although one process is easier for them, it is adversely affecting the overall performance of the entire lab team.

If you are consistently struggling to meet your metrics, consider looking for ways to implement lean process changes. Upgrading to a STAT spin centrifuge may save you 5 minutes on the pre-analytical side; but you may still have room for improvement. Do you consistently receive 20 samples at a time, meanwhile your centrifuge will only hold 8 tubes? Do you receive tubes of different sizes (adult vs pediatric), and is your centrifuge capable of quickly and easily interchanging inserts to accommodate both types?

Ultimately, be sure to engage your frontline staff and listen to their opinions on what is working, and what could be improved upon. They are the ones doing the tasks day in/day out, and are your subject experts on where some of the shortfalls may lie. Even if the answer is simply not having enough staff available, having detailed analytical metrics can help management justify the cost of adding additional team members, and also pinpoint the exact days and times where the help is needed most.

Bio

Kyle Nevins, MS, MLS(ASCP)CM is one of ASCP’s 2018 Top 5 in the 40 Under Forty recognition program. She has worked in the medical laboratory profession for over 18 years, and is currently employed at Northwell Health Laboratories on Long Island, NY. In her current position as a Laboratory Supervisor for the Northwell Consulting Team, she transitions between performing laboratory audits across the entire Northwell Health System, consulting for at-risk laboratories outside of Northwell Health, bringing laboratories up to regulatory standards and acting as supervisor and mentor in labs with management gaps.

-Kyle Nevins, MS, MLS(ASCP)CM is one of ASCP’s 2018 Top 5 in the 40 Under Forty recognition program. She has worked in the medical laboratory profession for over 18 years. In her current position, she transitions between performing laboratory audits across the entire Northwell Health System on Long Island, NY, consulting for at-risk laboratories outside of Northwell Health, bringing laboratories up to regulatory standards, and acting as supervisor and mentor in labs with management gaps.

Albumin Values in Transgender Men and Women

This month our study results were published in a special edition of Clinical Chemistry describing how laboratory values in transgender men and women when taking hormone therapy. While retrospective, we hope that this information will help improve transgender medicine.

There were many interesting results found in the study and I hope to describe bits of them in greater detail each month.

We wondered what we might find if we took a broad, unbiased approach comparing all laboratory parameters commonly measured by physicians. Just because there are no sex-specific differences in analytes, changes could still occur secondary to exogenous hormone use.

Albumin, which is the principle protein in our blood, was found to be decreased in transgender women after taking at least 6 months of estradiol therapy (p<0.0001)1. This was unexpected, because one reference range for albumin is used for cisgender males and females.

Frequently, changes in lab values move in opposite directions for transgender patients taking estradiol vs. testosterone (ex. hemoglobin goes up with testosterone and down with estradiol). We wondered if a similar opposite change might occur in albumin for transgender men taking testosterone. However, there was no change in albumin levels from baseline for transgender men.

The cause of decreased albumin was not readily available, but several factors could be influential. Albumin levels reflect the long term nutritional status of a patient as it has a long half life for turnover (t½= 3-4 weeks). Thus, the change in albumin could reflect a dietary change in transgender women. However, in the chart review there was nothing to suggest a substantial change in diet. While several of the patients would go on diets and lose weight, the weight loss was (unfortunately) often short lived (< 1 year). Looking towards a more objective reflection of dietary changes, the body mass index was nearly the same for transgender women pre-hormone therapy vs. while on hormone therapy (BMI: 27 vs 29, p>0.05).

Some studies have shown an increased prevalence of disordered eating behaviors among transgender individuals2, which could affect overall nutritional status as reflected in albumin. However, this should be controlled for by the control group, which is just transgender patients who haven’t taken hormones previously. 

Another consideration is that body composition changes in transgender patients such that transgender women lose lean mass and have an increase in body fat percent3. Although this could affect the metabolic profile (which it didn’t in our study), changes in fat percent don’t explain altered albumin levels.

Albumin levels are also low in patients with chronic liver disease, but this would be inconsistent with the patients’ medical history or other lab results. Frank nephrotic syndrome is unlikely as there were no reports of this disease within our population, but we did not have data on urinalysis, so we can’t say for certain.

One study did show that males (TW baseline equivalent) have higher albumin than females at younger ages (<60 y.o.) that equilibrates in later decades4. This sex-specific difference shows how estradiol decreases albumin to cisgender female levels. However, the reverse effect (increased albumin) does not occur with testosterone in transgender males. This demonstrates how sex-specific reference intervals cannot be simply reversed for transgender patients.

In a normal set of outpatients in the UK, oral contraception use (which includes estradiol) in women decreased their albumin levels by 0.2 g/dL, which is a smaller magnitude than found in our study, but supports a hormonal basis for sex-specific differences in albumin4.

Although the decrease in albumin for our cohort was not clinically significant (did not pass lower limit of normal albumin reference interval), it would be important to monitor albumin levels in older or elderly transgender females on hormone therapy. Elderly patients are at increased risk of hypoalbuminemia, especially when hospitalized5.

Summary:

  1. Albumin is decreased in transgender women taking estradiol therapy.
  2. Albumin levels do not fall below normal ranges.
  3. This could be more important in older or elderly transgender patients who are already at risk of hypoalbuminemia.

References

  1. SoRelle JA, Jiao R, Gao E et al. Impact of Hormone Therapy on Laboratory Values in Transgender Patients. Clin Chem. 2019; 65(1): 170-179.
  2. Diemer EW, Grant JD, Munn-Chernoff MA et al. Gender Identity, Sexual Orientation, and Eating-Related Pathology in a National Sample of College Students. J Adolesc Health. 2015; 57(2):144-9.
  3. Auer MK, Cecil A, Roepke Y et al. 12-months metabolic changes among gender dysphoric individuals under cross-sex hormone treatment: a targeted metabolomics study. Sci Rep. 2016; 6: 37005.
  4. Weaving G, Batstone GF, Jones RG. Age and sex variation in serum albumin concentration: an observational study. Annals of Clinical Biochemistry 2016, Vol. 53(1) 106–111.
  5. Cabrerizo S, Cuadras D, Gomez-Busto F et al. Serum albumin and health in older people: Review and meta analysis. Maturitas. 2015; 81(1):17-27.

-Jeff SoRelle, MD is a Molecular Genetic Pathology fellow at the University of Texas Southwestern Medical Center in Dallas, TX. His clinical research interests include understanding how the lab intersects with transgender healthcare and advancing quality in molecular diagnostics.

Microbiology Case Study: A 60 Year Old Woman with Endometrial Cancer and Uterine Bleeding

Case History

A female in her 60s with no significant past medical history presented to the emergency department with continued abnormal uterine bleeding for the past two months. She reported never entering menopause. Patient complained of recent unintentional weight loss, shortness of breath, urinary frequency, and new-onset night-time fever and severe fatigue. Physical exam was notable for large uterus and left lower quadrant abdominal tenderness on palpation. Sterile speculum exam revealed a friable tissue extruding from the uterus and malodorous mixture of thin white purulent discharge and blood. Endometrial biopsy, tissue and blood cultures were collected. Labs were notable for normocytic anemia and leukocytosis. Urine analysis was suggestive of urinary tract infection. Pelvic ultrasound showed an enlarged uterus, thickened endometrium with mixed echogenicity. The patient was admitted to the hospital for work up of potential gynecological malignancy and was started on empiric antibiotic therapy for possible urinary tract infection.

The patient’s tissue Gram stain was notable for 2+ WBCs (PMNs) and 4+ gram negative rods. The predominant organism grew on 5% sheep blood and chocolate agars but there was no growth on the MacConkey agar (Image 1).

Image 1. Pasteurella multocida grows on blood (A) and chocolate (B) agar plate.
Image 2. Gross cross section of the friable fungating endometrial lesion. (A) Microscopic pathological findings consistent with undifferentiated carcinoma. (B)

Discussion

The predominant organism was identified by MALDI-TOF MS as Pasteurella multocida. Given the microbiological findings, patient was further questioned but she denied having pet at home or contact with animals. The patient underwent a surgery to remove her uterus, both ovaries and Fallopian tubes. The gross pathological examination of her uterus revealed an exophytic endometrial lesion with extensive area of necrosis surrounding the lesion (Image 2A). Final microscopic pathological diagnosis was significant for a highly malignant and invasive tumor of the uterus (Image 2B) and active infection of her left Fallopian tube.

Here we present a rare case of a P. multocida intrauterine infection lacking history of animal exposure in the context of gynecologic malignancy. P. multocida is a small, non-motile, non-spore forming, aerobic and facultative anaerobic gram negative coccobacillus that is associated with animal exposure. [1] This organism is found in the digestive and respiratory tract of domesticated animals (cats, dogs, cattle, sheep etc.) as well as wild animals (lions, buffaloes, panthers etc.). The suggested hypothesis for transmission of Pasteurella to human involves close contact with the infected animal’s oral cavity. Thus, the most likely route of infection in humans is through direct animal bites or scratch, depositing the bacteria on compromised skin or if an infected animal lick on an exposed human mucosal surface [1, 2]. In the general population, P. multocida causes local infection that may progress to abscess formation, but bacteremia is uncommon. However, elderly patients and those with associated immunosuppressed states from chronic disease or cancer are at higher risk of more complicated severe infections [2].

The presented case highlights the importance of clinical microbiology in the setting of obtaining detailed history and conducting physical examination.  Uncommon cases of P. multocida infection secondary to pet scratches or bite inducing genital infection and causing tubo-ovarian abscess have been reported. Similarly, rare cases of immune-compromised P. multocida bacteremia without history of animal contact have been described. The most likely explanation is the re-activation of previously asymptomatic colonization of the respiratory and gastrointestinal tract in the context of immunosuppression. As such, patients presenting with systemic Pasteurella infection without a documented animal exposure should undergo extensive evaluation in order to exclude the presence of an underlying immunodeficiency [1, 3-4].

References

  1. Weber DJ., Wolfson JS., Swartz MN., Hooper DC. Pasteurella multocida infections – report of 34 cases and review of literature. Medicine. 1984;63(3):133-54.
  2. Raffi F, Barrier J, Baron D, Drugeon HB, Nicolas F, Courtieu AL. Pasteurella multocida bacteremia- report of 13 cases over 12 years and review of the literature. Scand J Infecti Dis. 1987; 19:385-93.
  3. Kimura K., Hagiya H., Yamamoto N., Yoshida H., Akeda Y., Nishi I., Tomono K. Pasteurella multocida multiple intrapelvic abscesses in a young woman with uterine cervical cancer. J Infect Chemother (2018).
  4. Lukban JC., Baker MS. Pasteurella multocida isolation from a tuboovarian abscess. A case report. J Reprod Med 1995;40:603-5.

– Pouya Jamshidi, MD is a 1st year anatomic pathology resident at University of Chicago (NorthShore). Academically, Pouya has a particular interest in neuropathology and cellular basis of neuroplasticity. In his spare time, Pouya enjoys listening to classical music and opera.

-Erin McElvania, PhD, D(ABMM), is the Director of Clinical Microbiology NorthShore University Health System in Evanston, Illinois. Follow Dr. McElvania on twitter @E-McElvania. 

Over the River and Through the Woods…

Specimen handling and transport is a vital training topic in the realm of Laboratory Safety. There is much to consider here that affects specimen quality and integrity, and ultimately affects patient results. There are also considerations involving employee safety at every step of these processes. One group of employees that can easily be overlooked when it comes to proper safety training is lab couriers. They perform the important role of properly and safely transporting specimens for testing, but without the proper education and tools, these team members can quickly fall into situations of harm.

The courier was running late, and she had one last stop on her route at a medical office building with multiple physician offices and drop boxes. It was cold, and she decided to leave the vehicle running while she went inside to pick up more specimens and deliver lab reports. The car was also left unlocked. When she came back outside, the car was gone. It was found hours later in am empty field, but it had been set on fire. There were lab specimens and reports strewn all over the field and into the nearby woods.

Couriers need to be trained about the importance of their role, and that training should include information about security and protected health information (PHI). Be sure to include HIPAA training for all courier staff. When discussing security, enforce specific processes such as always turning off vehicles before exiting and properly securing all patient specimens and any paperwork being transported. Whether couriers use company vehicles or their own personal transportation for the job, making sure harm does not come to the vehicle nor any contents being transported is key.

The courier knew he had a long drive ahead of him because of the toll bridge, and he had several specimens that needed to be delivered as frozen. He went to the lab’s cooler and scooped a large pile of the dry ice into a big box using his hands. It was cold, but it helped to wake him up a bit. He placed the specimens in the box and placed it in the back seta of his vehicle. It wasn’t very warm out, so as he began his drive, the courier made sure the heat was on high and that all windows were closed. After a few miles, the courier began to fell very tired. He struggled to stay awake, and he couldn’t figure out why. After sitting in traffic on the bridge for a time, he pulled off the road and called the dispatcher to let them know he could not continue. When he got out of his vehicle, he began to feel better.

CAP regulations require that laboratory staff have dry ice safety training, but that requirement extends to anyone who may acquire the dangerous substance in the lab. Make sure staff are aware of the need for proper PPE use when handling dry ice. Insulated gloves, the use of a scoop or tongs, and face protection are necessary when scooping ice into a container. Couriers should carry no more than three pounds of dry ice in a vehicle, and there should always be adequate ventilation, including open windows in the vehicle when transporting dry ice. Dry ice converts rapidly from a solid state to a gas, and that gas rapidly displaces oxygen in the air making it difficult to breathe or stay conscious. High volumes of dry ice in a car can create a very deadly road situation in a short amount of time.

The courier was transporting pathology specimens in a cooler, but was unaware that the lid had popped off of one of the specimens and formaldehyde was splashing all over the inside of the cooler. As time went by, the courier began to feel queasy. After realizing that something did not smell right in the vehicle, she eventually stopped the van and pulled to the side of the road to investigate. She opened the cooler and quickly pulled out dripping specimens and set them on the carpet before feeling too sick to continue cleaning up the mess. She had to be taken to the Emergency Room for formaldehyde exposure symptoms while the Lab safety Officer had to bring spill clean-up supplies to the van to neutralize the formaldehyde. The carpet had to be removed and disposed of properly.

Courier vehicles need to be equipped with spill clean up supplies that can handle whatever types of spills could occur during transport. If formaldehyde is transported, couriers need training in the proper transport and clean up of that chemical. Biological spill kits should be available as well, and spill training should be a regular part of overall courier safety training.

I wish I could say that these were imaginary stories, but sadly, that is not the case. The stories, though, illustrate clearly what can happen when proper safety management and training are lacking. Every part of the laboratory pre-analytical process is important, and every lab team member involved in the process needs to be considered. Employ complete safety training, and assess safety competency on a regular basis. By providing the proper tools and safety training to couriers, you can ensure the quality of lab results, and you can prevent incidents like these with your employees.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Hematopathology Case Study: A 65 Year Old Male with a Skin Lesion on the Right Shoulder

Case History

A 65 year old Caucasian male presents with a skin lesion on his right shoulder. Physical examination reveals a 3 .0 cm  ×  1.5  cm hyperpigmented plaque with mild hyperkeratosis on his right shoulder and multiple scattered erythematous macules and plaques on the trunk and back Skin biopsy reveals involvement by Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN). PET scan reveals no extracutaneous involvement.

The patient undergoes CHOP chemotherapy followed by autologous hematopoietic stem cell transplantation. He is subsequently treated systemically with lanolidomide, venetoclax, and idelalisib due to relapses of disease.

The patient returns to clinic three years later for follow-up. While his original cutaneous lesions are completely resolved, new lesions are noted on his back (representative lesion, Image 1). Hematologic evaluation is remarkable for pancytopenia with hemoglobin 8.7gm/dL, white blood cells 1.4 K/uL, and platelets 39 K/uL. A biopsy of the bone marrow is performed.

Image 1. Skin lesion on back.

Biopsy Findings

Core biopsy
CD56
Aspirate

H&E stained sections demonstrate a normocellular bone marrow with diminished trilineage hematopoiesis and sheets of amphophilic, blastoid cells with irregular borders occupying most of the marrow cells. Immunohistochemistry demonstrates a cellular population with CD56. The aspirate smears show similar findings with numerous clustered blastoid cells (92%) with a monocytoid appearance, often with basophilic vacuolated cytoplasm. There is also a decrease in myeloid and erythroid precursors.

Flow cytometric analysis performed on the bone marrow aspirate reveals a dim CD45 population with expression of CD4, CD56, partial CD7, dim and partial CD5, and CD38. The same population lacks expression of immaturity markers such as CD34, MPO, and TdT. The morphologic and phenotypic findings found in the marrow specimen are diagnostic of extensive involvement of the marrow by BPDCN.

Discussion

BPDCN is a rare and highly aggressive malignancy derived from precursors of plasmacytoid dendritic cells. Its nomenclature has constantly changed over years as the understanding of this entity has been improved. It has been variously known as blastic natural killer cell lymphoma/leukemia, agranular CD4+ natural killer cell leukemia, and CD4+CD56+haematodermic neoplasm. It is currently classified under acute myeloid leukemia and related precursor neoplasms in the most recent WHO classification of tumours of haematopoietic and lymphoid organs.

Limited data exist regarding the incidence of BPDCN; however, it is estimated to account for 0.7% of primary cutaneous skin lymphomas and 0.44% of all hematological malignancies. This hematodermic malignancy predominantly affects elderly male patients with mean age ranging from 60 to 70; however, a few cases have also been reported in childhood and infancy. As demonstrated in our case, the patients typically present with multiple violaceous skin lesions, which may be associate with erythema, hyperpigmentation, purpura, or ulceration. Extracutaneous involvement is reported to occur in the bone marrow, peripheral blood, and lymph nodes.

Diagnosis of BPDCN relies on histological and immunophenotypic findings. Histologically, BPDCN may show a monomorphic infiltrate of medium-sized immature blastoid cells with round nuclei, finely dispersed chromatin, and cytoplasmic vacuoles. They typically display immunophenotypic expression of markers CD4, CD56, CD123, and T-cell leukemia/lymphoma 1 (TCL1) without any lineage-specific markers of T cells or B cells. Chromosomal abnormalities involving 5q, 12p,13q, 6q, 15q, and 9p have been reported. The differential diagnosis entails, but is not limited to, mature T-cell lymphoma, nasal-type NK/T-cell lymphoma, myeloid sarcoma/acute myeloid leukemia and T-cell lymphoblastic lymphoma/leukemia

The clinical course of BPDCN is aggressive, with a median survival of 9 to 16 months. The patients with disease limited to the skin may have a better prognosis, while advanced age and advanced clinical stage are indicators of poor prognosis.  There is currently no consensus on optimal management and treatment because of low incidence of BPDCN; however, most patients are treated with regimens used for other hematopoietic malignancies (i.e. CHOP and hyperCVAD) followed by allogeneic stem cell transplantation for eligible patients. They often respond well to chemotherapy with complete resolution of skin lesions; however, relapse of disease can occur due to resistance to chemotherapeutic agents, which may have happened in our case.

References

  1. Lim MS, Lemmert K, Enjeti A. Blastic plasmacytoid dendritic cell neoplasm (BPDCN): a rare entity. BMJ Case Rep. 2016;2016:bcr2015214093.
  2. Grushchak S, Joy C, Gray A, Opel D, Speiser J, Reserva, Tung R, Smith SE. Novel treatment of blastic plasmactoid dendritic cell neoplasm: a case report. Medicine (Baltimore). 2017 Dec;96(51):e9452.
  3. Dhariwal S, Gupta M. A case of blastic plasmacytoid dendritic cell neoplasm with unusual presentation. Turk J Haematol. 2018 Jul 24. doi: 10.4274/th.2018.0181.
  4. Shi Y, Wang E. Blastic plasmacytoid dendritic cell neoplasm: a clinicopathologic review. Arch Pathol Lab Med. 2014 Apr;138(4):564-9.
  5. Bulbul H, Ozsan N, Hekimgil M, Saydam G, Tobu M. Report on three patients with blastic plasmactoid dendritic cell neoplasm. Turk J Haematol. 2018 Sep;35(3):211-212.
  6. Kerr D 2nd, Sokol L. The advances in therapy of blastic plasmacytoid dendritic cell neoplasm. Expert Opin Investig Drugs. 2018 Sep;27(9):733-739.
  7. Pagano L, Valentini CG, Pulsoi A, Fisogni S, Carluccio P, Mannelli F, et al. Blastic plasmactoid dendritic cell neoplasm with leukemic presentation: an Italian multicenter study. Haematologic. 2013 Feb;98(2):239-246.

-Jasmine Saleh, MD MPH is a pathology resident at Loyola University Medical Center with an interest in dermatopathology and hematopathology. Follow Dr. Saleh on Twitter @JasmineSaleh.

-Kamran M. Mirza, MD PhD is an Assistant Professor of Pathology and Medical Director of Molecular Pathology at Loyola University Medical Center. He was a top 5 honoree in ASCP’s Forty Under 40 2017. Follow Dr. Mirza on twitter @kmirza.