Transparency in Injury Reporting

Susan was getting ready to work in the microbiology lab. She sat down after donning her lab coat, but before she put on gloves, she picked up some reports that were on the counter. As she picked them up, she noticed she got a small paper cut on her finger. Thinking nothing of it, she put her gloves on and went to work.

Chuck opened the door to walk into the back of the main lab. A cardboard box was in the walkway, and Chuck hit it with his toe and fell to his knee. He figured he wasn’t hurt, so he didn’t say anything since filling out paperwork was such a nuisance- and no one saw it happen.

Jean was walking into the hospital during the ice storm to get to work. Shortly after she closed the car door, she slipped and landed on her wrist. It hurt a little, but she figured it would be fine, so she didn’t say anything.

Accidents happen often in the laboratory setting, and many of them go unreported. The first thing that should occur after an injury is first aid. Then the incident needs to be reported. That may mean telling someone in charge in the department- a lead technologist or a manager. That can vary depending on the department and the time of day. Next, the incident should be reported to an institutional Occupational Health department or to a designated authority (such as the emergency Department) if the Occupational Health office is closed. This step is vitally important.

Make sure the details of the incident are recorded accurately, and that any witnesses are identified. Some facilities use an electronic reporting system, and others require a nurse to fill out the forms. Good communication is important here so that a thorough follow-up by the lab safety professional can occur later. The fewer details left out, the better.

We are human, and accidents happen, but the route to a better safety culture in the department is transparency. All injuries at work need to be reported. There is no shame in an injury, and there should be no reprisals, and reporting leads to prevention of injuries. The communication about the event is crucial- the reporting may prevent someone else from being injured in the same way. In some labs there have been serious injuries that occurred because no one reported a previous similar event. That can and should always be avoided. There are other reasons to report injuries as we – those stories at the beginning of the article did not have a happy end – because they were not reported.

After a week, Susan noticed that her little paper cut had become red and swollen. She made an appointment with her physician who prescribed an antibiotic. The antibiotic didn’t work, and after a serious bout of septicemia, Susan had to have part of her hand amputated to prevent the spread of the rare bacterial infection.

A day after Chuck tripped, Elaine walked into the lab and tripped on the same cardboard box. Elaine fell hard and broke her hip. She needed immediate surgery. She would have retired in another month.


Two weeks after her fall in the parking lot, Jean decided to go to the urgent care since her wrist was still hurting. An x-ray revealed a fracture that would need a surgical repair. Jean went to the Occupational Health office to report the event. Because there was such a delay in reporting, the compensation department decided they could honor the claim, and Jean’s medical follow-up was not covered.

There are many reasons to report an injury at work. The first one is about you- protect your own health and your future- that’s worth a few minutes of paperwork and a short visit to the Occupational Health office. The second reason to report is about everyone else. If something is unsafe in your environment and it has caused an injury, let someone know. That sort of communication and transparency is important to the entire team. Accidents happen, but even when they do, we can respond quickly and communicate so that safety improves after the event. As a lab safety professional, make sure you talk about accident transparency, and make sure it is something practiced by the entire team.


Scungio 1

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Microbiology Case Study: A Middle-Aged Man with Malaise, Shaking, and Chills

Case history

A middle-aged male presented to the hospital emergency room with the complaints of malaise, shaking and chills for the last two days. He denied any runny nose, cough, abdominal pain, nausea, vomiting, headache or known sick contacts. His past medical history was significant for alcohol use disorder. Imaging of the abdomen revealed an ill-defined region of decreased attenuation in the right lobe of the liver measuring 4.8 x 4.7 x 2.2 cm. The Gram stain of the abscess showed 4+ WBCs (PMNs) and 4+ gram negative rods with a very large capsule surrounding them (Image 1).  The organisms grew very mucoid colonies on 5% sheep blood, chocolate, and MacConkey agars (Image 2).  A string test performed on the mucoid bacterial colonies was >5 mm (Image 3).

Image 1. Gram stain of abscess showing 4+ WBCs and 4+ GNR with large capsule.
Image 2. Cultures showed mucoid colonies on the chocolate and MacConkey agars.
Image 3. A string test was performed on the mucoid colonies and was positive (mucoid capsule “string” > 5mm).


The organism was identified as Klebsiella pneumoniae by MALDI-TOF MS.  Based on the mucoid capsule and positive string test, this organism was further identified as hypermucoviscous K. pneumoniae.

Hypermucoviscous K. pneumoniae is a relatively newly recognized hypervirulent variant of K. pneumoniae. It was first described in the Asian Pacific rim and is now increasingly recognized in Western countries. Defining clinical features include serious, life-threatening community-acquired infection in younger healthy hosts, an unusual feature for enteric gram negative bacilli in the non-immunocompromised population. It can cause a variety of diseases including, but not limited to liver abscess, pneumonia, meningitis, osteomyelitis, necrotizing fasciitis and endophthalmitis.

Intestinal colonization, appears to be a critical step leading to infection. It is seen mostly in Asians, raising the issue of a genetic predisposition vs. geospecific strain acquisition.  The increased virulence might be due to the ability to more efficiently acquire iron and perhaps an increase in capsule production, which confers the hypermucoviscous phenotype to the organism. The vehicles for acquisition and subsequent colonization appear to be food and water, person-to-person transmission (e.g., close contacts such as family members or sexual partners) or animal-to-person transmission (e.g., between pets and their owners).

To date, most strains of hypermucoviscous K. pneumoniae have been very susceptible to antimicrobials except ampicillin.  However, in recent literature, propensity for hypermucoviscous Klebsiella pneumoniae to become multi-, extreme or pandrug-resistant, including the acquisition of extended-spectrum β-lactamases (ESBL) and carbapenemases has been reported. Since hypermucoviscous K. pneumoniae strains often cause abscesses, source control is a major aspect of the overall management plan and a need to drain abscesses and closed space infections is essential for optimal outcome.


  1. Alyssa S. Shon, Rajinder P.S. Bajwa and Thomas A. Russo; Hypervirulent (hypermucoviscous) Klebsiella pneumonia: A new and dangerous breed; Virulence 4:2, 107–118; February 15, 2013; 2013 Landes Bioscience
  2. Bonnie C Prokesch, Michael TeKippe, Jiwoong Kim, Prithvi Raj, Erin McElvania TeKippe, David E Greenberg; Primary osteomyelitis caused by hypervirulent Klebsiella pneumonia; The Lancet Infectious Diseases , Volume 16 , Issue 9 , e190 – e195



-Muhammad Ahmad, MD is a 2nd year anatomic and clinical pathology resident at University of Chicago (NorthShore) program based at Evanston Hospital, Evanston, IL. His academic interests include breast pathology and cytopathology.

-Erin McElvania, PhD, D(ABMM), is the Director of Clinical Microbiology NorthShore University Health System in Evanston, Illinois.

CMS’s National Coverage Determination for Next Generation Sequencing (NGS) – What Does This Mean for the Future of NGS Testing for Molecular Oncology?

I thought I’d take a break from the next generation sequencing (NGS) wet bench description this month to review news occurring in the world of reimbursement of testing of cancer specimens with next generation sequencing.  As a tech, I don’t deal with the nitty gritty of insurance reimbursement of our tests on a day to day basis, but this one caught my eye as it would have had a real impact on the NGS testing in our lab.  On November 30th, 2017, a proposal was released by the Centers for Medicare & Medicaid Services (CMS) to review the national coverage analysis tracking sheet for NGS for Medicare beneficiaries with advanced cancer.  In the original wording of the proposal, one thing it stated was that CMS should only reimburse NGS testing for advanced cancers when the testing was done with an FDA approved assay.  This caught me, as well as many others in the molecular community, by surprise.  The reason?  Currently, there are only a few FDA approved assays on the market; much of the testing occurring right now for oncology assays by NGS are lab-developed tests (LDTs), including the ones that we run in our lab.  Under the proposal’s language, these types of assays would not be reimbursed for Medicare patients (and where CMS reimburses, the major insurance companies follow), making it very difficult for us to continue the testing that we perform.

The process for a proposal such as this one includes posting the proposal, then allowing a period for public comments about the proposal.  Six weeks were given for people to post their comments online, during which, 315 comments were left.  These comments included praise to CMS for recognizing that NGS testing is increasingly useful for precision medicine, but also stressed the limitations of only allowing FDS approved assays to be used.  Some comments pointed out how clinicians and pathologists work together in the institutions performing the NGS assays in a way that would be impossible if forced to use an assay from an outside institution.  They also indicated how difficult it would be for all NGS testing to be performed by the very small number of FDA approved assays and how it is almost impossible for small academic institution labs to get FDA approval for assays due to the amount of money and time the approval process takes.

On March 16, 2018, the final decision memo was released with altered wording compared to the original and can be found here and is also shown below:

“A.  Coverage

The Centers for Medicare & Medicaid Services (CMS) has determined that Next Generation Sequencing (NGS) as a diagnostic laboratory test is reasonable and necessary and covered nationally, when performed in a CLIA-certified laboratory, when ordered by a treating physician and when all of the following requirements are met:

  1. Patient has:
    1. either recurrent, relapsed, refractory, metastatic, or advanced stages III or IV cancer; and
    2. either not been previously tested using the same NGS test for the same primary diagnosis of cancer or repeat testing using the same NGS test only when a new primary cancer diagnosis is made by the treating physician; and
    3. decided to seek further cancer treatment (e.g., therapeutic chemotherapy).
  2. The diagnostic laboratory test using NGS must have:
    1. FDA approval or clearance as a companion in vitro diagnostic; and
    2. an FDA approved or cleared indication for use in that patient’s cancer; and
    3. results provided to the treating physician for management of the patient using a report template to specify treatment options.
  3. The diagnostic laboratory test using NGS must have:
    1. FDA approval or clearance as a companion in vitro diagnostic; and
    2. an FDA approved or cleared indication for use in that patient’s cancer; and
    3. results provided to the treating physician for management of the patient using a report template to specify treatment options.
    4. Other

Medicare Administrative Contractors (MACs) may determine coverage of other Next Generation Sequencing (NGS) as a diagnostic laboratory test for patients with cancer only when the test is performed in a CLIA-certified laboratory, ordered by a treating physician and the patient has:

  1. either recurrent, relapsed, refractory, metastatic, or advanced stages III or IV cancer; and
  2. either not been previously tested using the same NGS test for the same primary diagnosis of cancer or repeat testing using the same NGS test only when a new primary cancer diagnosis is made by the treating physician; and
  3. decided to seek further cancer treatment (e.g., therapeutic chemotherapy).

See Appendix D for the NCD manual language.”


In part B, it addresses those assays that are not FDA approved, but are run in a CLIA-certified laboratory.  This part was added in the final decision and makes it possible for non-FDA approved assays run in CLIA-certified laboratories to be reimbursed, dependent upon the local MACs.  While this is a huge improvement over the previous, there are still questions regarding some of the wording and we will have to see how this affects testing for our patients.  For example, in 1b, where it mentions repeat testing – some patients have multiple mutations that are followed over time for hematological malignancies – will this be considered repeat testing? It will remain to be seen.  Needless to say, I am happy to be able to continue doing my job.


-Sharleen Rapp, BS, MB (ASCP)CM is a Molecular Diagnostics Coordinator in the Molecular Diagnostics Laboratory at Nebraska Medicine. 

Microbiology Case Study: A 28 Year Old Female with Cough.

Case History

A 28 y/o female with a past medical history of chronic eosinophilic pneumonia, chronic persistent asthma, and elevated IgE status post Xolair therapy presented with a cough. She is a former smoker and a former IV drug user. She has been having a productive cough since March and has not improved despite multiple courses of antibiotic therapy. She coughs mostly in the morning and describes her sputum as thick and greenish. She does not have any associated fevers and does not feel that her rescue inhalers help much. She was given a course of doxycycline for 10 days, and sputum was sent for culture.

Laboratory Identification

Image 1: Gram stain showed many polys, moderate mixed gram positive and gram negative organisms. Sputum culture was reported out as mixed gram negatives.
Image 2: Chocolate and blood agar plates of the mixed gram positive and gram negative organisms.

One of the gram negative rods was identified by the MALDI-ToF as Pasteurella multocida.


The genus Pasteurella consists of multiple identified species with the one most commonly seen in the clinical setting as Pasteurella multocida. As a genus, they are typically gram-negative straight bacilli that are nonmotile, oxidase-positive, catalase-positive, nitrate reducing, and ferment glucose. They will grow on blood and on chocolate agars, but importantly will not grow on MacConkey. Their colony morphology on blood agar is generally convex, smooth, and nonhemolytic.

Infections with Pasteurella are classically associated with animal bites, such as from a dog or cat. However, prior cases in the literature have shown that pulmonary infection with Pasteurella can be associated with other chronic pulmonary diseases such as COPD (1). The choice for using doxycycline is supported in the literature and was specifically discussed in a prior case with improvement (2).


  1. Klein NC. et al. Pasteurella multocida pneumonia. Semin Respir Infect 1997; 12 (1): 54-56.
  2. Bhat S. et al. A case of lower respiratory tract infection with canine-associated Pasteurella canis in a patient with chronic obstructive pulmonary disease. J Clin Diagn Res 2015; 9 (8): DD03-DD04.


-Jeff Covington, MD, PhD, is a 1st year anatomic and clinical pathology resident at the University of Vermont Medical Center.


-Christi Wojewoda, MD, is the Director of Clinical Microbiology at the University of Vermont Medical Center and an Associate Professor at the University of Vermont.

Why is it Important to Learn About Generations?

Understanding and appreciating different generations is critical for effective and productive teams, departments, and companies. Currently, there are five different generations in the workplace: Traditionalists, Baby Boomers, Generation X, Generation Y/Millennials, and Generation Z. A wide variety of experiences exist between these generations. For example, most traditionalists grew up without television, while almost all Generation Z’ers have a cell phone. If we look deeper, however, we can see commonalities between Traditionalists and Gen Z; both grew up during economic strife (The Great Depression and the Great Recession, respectively). Understanding each other’s views and values will allow different generations to increase their appreciation of one another. This, in turn, will lead to better communication and collaboration because people are now talking from a sense of appreciation and acknowledgement. When people feel heard, understood, and valued, they are more likely to invest time and energy into their projects and jobs and they are more likely to stay at an organization. Truth is, we need people of all generations to make organizations effective. You want the “getting the job done” attitude of the Traditionalists, the teamwork skills of Baby Boomers, the self-reliance of X’ers, the multitasking abilities of Millennials, and the entrepreneurship of Generation Z. Combined, these qualities create a powerful workforce that is able to handle any challenge that comes its way.

It is important to remember that learning can, and should, go both ways: newer generations can pay attention to the older generation’s lessons and knowledge, while older generations can learn a lot from the younger ones (and not just about how to use technology). Each generation has its own unique perspective, challenges, and contributions, and we can all grow by listening to and learning from people who are different than us. Generational diversity is one way to strengthen your team.


-Lotte Mulder earned her Master’s of Education from the Harvard Graduate School of Education in 2013, where she focused on Leadership and Group Development. She’s currently working toward a PhD in Organizational Leadership. At ASCP, Lotte designs and facilitates the ASCP Leadership Institute, an online leadership certificate program. She has also built ASCP’s first patient ambassador program, called Patient Champions, which leverages patient stories as they relate to the value of the lab.


The differences are many and yet so few.  This is stated so clearly by Gretchen Gavett when she wrote in the Wall Street Journal:

“Baby Boomers, Gen Xers, Millennials, the Gen Z up-and-comers – we all want the same things, (income, sure, but also purpose, and to feel valued) just in slightly different ways. The challenge is to look past the stereotypes and listen to one another so that good work gets done efficiently and humanely.”        

Let’s begin with the GI Generation. The youngest of this generation are in their early 90’s so they are almost non-existent in the workplace.  They are our oldest living generation and were born at the beginning of the 19th century. Most of the soldiers during WWII came from this generation.

Traditionalists make up 2% of the current workforce which is the smallest percentage. However, they represent the institutional memory of a workplace. They know and remember the organization’s past and founding goals. Typically born between 1927 and 1945, they went through their formative years during the Great Depression and its aftermath.

Baby Boomers are currently the largest generation at approximately 77 million people in the United States. (Generation Y runs a close second.) Born between the years of 1946 and 1964, they are the post-World War II generation. The Baby Boomers represent about 29% of the workforce; that number is declining by the day.

Generation X is bookended by the two largest generations, Baby Boomers and Generation Y. They are born between 1965 and 1980. They make up approximately 23% of the workforce.

Generation Y, also known as the Millenials, are born between 1981 and 2000. The Millenials are currently about 42% of the workforce, which makes them the largest working generation.  They have their own values and characteristics (as do the other generations) their numbers make them a force to be reckoned with. 

Generation Z is our newest generation.  They’re currently around 4% of the workforce and growing.  They grew up during the great recession after the early 2000’s.  We are learning about what the Generation Z’s value and their characteristics as each day passes.

The challenge we all face: how can we connect, communicate, and collaborate most effectively in the workplace and outside of the workplace?



-Catherine Stakenas, MA, is the Senior Director of Organizational Leadership and Development and Performance Management at ASCP. She is certified in the use and interpretation of 28 self-assessment instruments and has designed and taught masters and doctoral level students.  


A Candida Comeback?

Hello again everyone! And special thanks to the readers who read, commented, shared, and reached out to me from my last post “A Serious Aside,” talking about physician burnout and health worker suicide. Numerous people had so much to say in support of this topic—and it’s well deserved—sharing their personal stories and relating their own connects, so I truly appreciate it.

This time, how about something different? In the past few months, I’ve been working through my clinical rotations at a major community hospital in New York City, in the Bronx. A CDC-sponsored screensaver image keeps appearing at terminals throughout floors, services, and clinics; and it directly addresses healthcare professionals to monitor hygiene practices to eliminate Candida infections. I’ll have to admit—innocuous stuff—I’ve been seeing health-message PSA-like screensavers at work for years, about a myriad of topics. Who hasn’t seen those? “Keep beds out of the hallways,” “Protect you and your patients from MRSA,” “Make sure lab requisitions are filled out properly…” the list is endless. But having seen my aforementioned screensaver about Candida one too many times, I had to find out what this was about. You might have thought that, since I spent time working in an HIV clinic, this was a simple PSA for those patients otherwise immunocompromised. Right? Nope.

This particular PSA from the CDC warns about Candida auris, a true blue (or pinkish gold, rather) member of everyone’s favorite budding, germ-tube positive, yeast family. C. auris has been in literature for roughly the past decade. Having etiologic origins in southeast Asia and spreading west through the Middle-East, all throughout Africa, and even the UK, this bug has caught the eyes of epidemiologists around the world. Two years ago, the CDC1 and Public health England2 issued warnings about this pathogen, its multi-drug resistance, and its virulence in healthcare-associated infections. Last fall, the NY State Department of Health published their official update for guiding clinicians and laboratory staff.3 In this report, they discussed infection control, prevention, and detection limitations.

Image 1. CDC screensaver on hospital computers. Due to increased incidence of reported cases, epidemiologic data suggest prevention measures would benefit patients. C. auris is associated with healthcare-related infections and can live in the environment for an extended period of time.
Image 2. NY State Department of Health, Report on C. auris. Informing clinicans and laboratory staff about epidemiology, prevention, detection in the laboratory, and associated implications of limitations and multidrug resistance.

So what’s so scary about C. auris? The two most challenging features of this emerging pathogen are its multi-drug resistance and its relatively difficult identification.

This yeast has been shown to show resistance to many antifungal/antimicrobial agents including fluconazole, voriconazole, amphotericin-B, echinocandins, and even flucytosine. Even more concerning is that nearly half of the C. auris strains collected in research done in Asia, Africa, and South America demonstrated multi-drug resistance patterns to two or more combination therapies. These are most of our first-line standard of care therapies for invasive candidiasis in patients!

Image 3. UpToDate recommendations summary for candidemia and invasive candida infections.

There are various other recommendations regarding therapies to C. auris specifically, as its potential for resistance are known, but infection control along with empiric therapy seem to be the current standard.

The major risk factors for C. auris infections include the relative status of individual patients: intensive care, acute renal failure, immunocompromised status, localized or systemic infections, and colonization. Simply being hospitalized is an associated risk. On my current service of patients I’m part of a nephrology/medicine team. There are several chronic infection, ESRD, immunocompromised, or otherwise applicable patients to these risk stratifications. No wonder we’ve got those screensavers!

Concerns for identifying C. auris take us back to the lab. Detecting this bug is not as simple as a couple microscopic morphologies and a yeast API strip—sorry to my old mycology professors. C. auris based on chemical tests like these can produce confounding results. Even VITEK identification (unless you’re running Vitek 2 with Biomerieux software) or culture growth can yield non-specifics like C. haemulonii or Saccharomyces cerevisiae. C. auris has a very high salt and temperature tolerance, and with no particular morphologic identifiable features, it remains a challenging identification. It can be grown on dulcitol agar or CHROMagar, but you do not get clear results. What’s the way to get the ID then? Ultimately MALDI-TOF, PCR, and molecular testing is the answer. There are already available C. auris sequences you can obtain for in-house validation if you’re using MALDI already. And when it comes to susceptibility, fear not: as far as I’ve been able to read E-Tests still work.

Image 4. Definitely not a definitive CHROMagar result.

I was very impressed with MALDI when I was working in Chicago, and a community hospital I was with just finished validating when I left for medical school. I am glad to see it again with this emergent pathogen, and it definitely demonstrates the next wave of instrumentation. Extremely rapid and very accurate.

The variable drug susceptibility, virulence, and ability to thrive in the environment actively threaten those with long inpatient stays. This microorganism is treated with standard precautions and infection control measures. Currently NY leads the nation by far in purported cases of C. auris. So … please wash your hands. A lot. I know I am.

Thanks! See you next time!


  1. Centers for Disease Control and Prevention. Clinical Alert to U.S. Healthcare Facilities – Global Emergence of Invasive Infections Caused by the Multidrug-Resistant Yeast Candida auris.
  2. Public Health England. Candida auris identified in England.
  3. NY State Department of Health



Constantine E. Kanakis MSc, MLS (ASCP)CM graduated from Loyola University Chicago with a BS in Molecular Biology and Bioethics and then Rush University with an MS in Medical Laboratory Science. He is currently a medical student at the American University of the Caribbean and actively involved with local public health.