Training and Competency: They’re the Same Thing, Right?

As a fitting end to my previous 3-part series on how to prepare for and survive your regulatory inspections, one of the hospitals we provide consulting services to was just visited by The CAP. Overall we did great and I’m proud of everyone there, but the inspectors found a weak area for us to improve upon that others may be struggling with as well: documentation of training and competency.

It is a common misnomer that training and competency are equivalent and essentially the same thing. Whether you’re subject to CLIA, CAP or your local state DOH requirements, you will be required to provide proof (documentation) of both training AND competency for each employee, for each task that they perform. This is not just limited to your technical staff, but also includes non-technical personnel (phlebotomists, lab assistants, LIS personnel,transport couriers, etc.), as well as staff outside of the immediate laboratory testing area (respiratory clinics with blood gas analyzers, Point of Care testing, etc.).

Simply put, training is coaching, mentoring, and teaching someone step-by-step how to perform a specific task. Proper documentation of this training includes:

  • Objectives for the training (i.e., “After completing training, staff will understand howto successfully perform maintenance tasks on the hematology CBC analyzer.”)
  • Identification of the methods to be used during the training (direct observation, monitoring recording & reporting of results, review of worksheets & preventive maintenance records, evaluation of problem solving skills)
  • Identification of the materials to be used during the training (cleaning agents, QC samples, previously tested & scored proficiency testing material)
  • Criteria used to assess the effectiveness of the training (minimum score of 90% on critical thinking quiz, ±10% correlation with previously tested sample)
  • Signature of both the trainee and trainer confirming that training was completed, and when

In addition to the obvious routine tasks a lab professional will need to perform (running QC, instrument maintenance, running patients), don’t forget to document their training for the low frequency tasks performed as well. Based on an employee’s job description, they may be involved in additional tasks such as specimen handling, safety precautions, packing and shipping of samples to reference labs, computer system training, telepathology training, and supervisory functions. These tasks too will require documentation of training.

Documentation of all of these tasks can be organized through the use of a departmental orientation checklist. This will help you keep track of what each staff members’ specific job junctions will include that they need to be trained on, and which tasks have been completed by each trainer. Depending on the task, training can be completed quickly after several minutes of demonstration (waived urine hCG testing), or may take several weeks for staff to fully understand and master the task (flow cytometry leukemia work-up). Keep in mind that until a staff member has documented training followed by successful assessment of competency of that task, they should not be permitted to perform or result patient testing independently of their trainer.

Once training has been completed and documented, you must then assess each staff member’s ability to successfully perform these tasks. This is their competency, where you assess if the training was successful and staff are able to perform each assigned task correctly. To fully demonstrate successful competency of non-waived tests, all 6 of the following elements must be documented for each employee, for each task:

  1. Direct observation of patient test performance, including patient identification, specimen collection, handling, processing and testing.
  2. Monitoring the recording & reporting of test results, including when appropriate the handling of critical results.
  3. Review of testing worksheets, QC records, proficiency testing results, and preventive maintenance records.
  4. Direct observation of performance of instrument maintenance and function checks.
  5. Assessment of test performance through testing previously analyzed specimens, internal blind testing samples or external proficiency testing samples.
  6. Evaluation of problem-solving skills.
  7. Observation of compliance with safety protocols (based upon your specific local state DOH regulations).

The documentation of your competency elements should include the date each item was evaluated, as well as a way to identify and recreate the test performance if asked by an inspector. This is most easily accomplished with the specimen ID number, or PT survey name so records can be located or reprinted.

Be mindful of your local state regulations regarding the specific requirements for who can perform a competency assessment. In many cases, assessors will need an additional supervisor competency for themselves to confirm they are able to successfully assess the performance of their peers. If weaknesses are identified during the competency assessment, additional training should be performed with appropriate corrective actions documented. Competency should be reassessed to ensure staff are correctly performing all duties, prior to them resuming patient testing.

So to summarize:

During training, I am showing you how to do something. I will document all aspects of the training steps that I reviewed with you. When I assess your competency, you are showing me that you know how to do the task correctly. You will document your results as you were trained how to do, and I will validate the accuracy of your work.

-Kyle Nevins, MS, MLS(ASCP)CM is one of ASCP’s 2018 Top 5 in the 40 Under Forty recognition program. She has worked in the medical laboratory profession for over 18 years. In her current position, she transitions between performing laboratory audits across the entire Northwell Health System on Long Island, NY, consulting for at-risk laboratories outside of Northwell Health, bringing laboratories up to regulatory standards, and acting as supervisor and mentor in labs with management gaps.

A Year in the Life of a Hematology Laboratory

As this year comes to a close and we look forward to celebrating holidays with family and friends, we can also celebrate our accomplishments over the year. Our jobs in the clinical laboratory are vital in helping physicians make clinical decisions and we should celebrate the role we play in healthcare. In hematology, techs are busy doing daily tasks; QC,maintenance, and analyzing all the samples that come into the lab, 24 hours a day, 7 days a week. We work constantly to provide physicians with accurate and precise results in a timely fashion. But, what else goes on in hematology?

This past year has seen many changes and challenges in our hematology lab. In February, we switched our hematology analyzer to a new Sysmex system,and went to autoverification at the same time. This was a process that had begun months before with meetings with the Sysmex team, building rules for WAM,validations, training key operators, as well as site surveys and actual planning for the location of the instrument and water and electrical connections. Before we went live, new procedures had to be written and all techs had to be trained on the new system. Every tech in the department had to do competencies, everything had to be documented and the new procedures had to be signed. This doesn’t stop once the instrument is in use. There has been a continual learning process since then as techs become more familiar with the system.

During all the excitement and work involved with a new instrument, we, as have many labs, have had turnover in staff which has led to its own challenges. Techs have retired, moved out of state, been on maternity leave and have left us for other opportunities both in other areas of our lab and elsewhere. New staff needs to be hired and trained. Students need mentors during their rotations. It’s a cycle we go through every year, a never ending process. And, no sooner had we seemed to have everyone trained, then it was time for 6 month validations and competencies.

In September we moved to new Coagulation instruments, which, fortunately, was not as big a change as our Sysmex analyzers, because the coag instruments are newer versions of instruments we already used. Yet, there were validations to be done, training to be done on the new software, and procedures to write, all at a time when we were about to go live with a new LIS!

Perhaps our biggest project of the year came to fruition in September when we moved to Epic for a hospital wide software system. This was an undertaking which was well over a year in the making. Again, this transition involved many months of meetings, working with Epic and our IT department to create test codes and profiles and to build the system to our needs. We worked with Sysmex and WAM support to verify that there would be a smooth transition from the old system to the new. The month before go live, we did wet and dry testing of every possible scenario and tested every rule in WAM. And then we tested every rule in Epic. Many hours and late nights were spent entering test orders, creating spreadsheets, taking screen shots, and going back and forth to IT for changes and updates. An integral part of this Epic journey was more training for employees. Superusers were trained, training sessions were held for all, and then superusers helped to support other users at Go Live. And, of course, all of this this meant more procedures had to be written. The epic day arrived, and though things didn’t seem too smooth at first, the support teams were and continue to be available to help and make changes as necessary.

These are just a few of our particular challenges this year in the department. Even without these added projects, though, there is a lot that goes into operating a hematology laboratory. Every week, every month and every year, there are ‘extra’ or ongoing projects to be completed in every laboratory department. While we had some major changes this year, there were also many smaller ones. There are always new pieces of equipment that need to be validated, and new procedures or job aids to be written. Quality control has to be monitored, calibrations have to be performed, new lots need to be entered and tested, linearities have to be done. CAP surveys need to be assigned,reviewed and submitted. Inventory needs to be taken, vendors need to be met with or contacted and supplies need to be ordered. Equipment repairs ,troubleshooting and maintenance all need to be addressed. Training doesn’t stop at new hires and students. All techs have to complete annual competencies. Every year instruments have to be validated, new lot crossovers have to be done, and all procedures must be reviewed and updated. We need to get ready for inspections, or perform self-inspections. I’m sure I am leaving out a list of things, but this is a brief overview of all that goes into laboratory operations. It’s certainly more than just analyzing samples!

Who does all these ‘behind the scenes’ tasks? The department supervisor or technical specialist may be designated to make sure these are all completed, but often senior techs or career ladder techs can play an important role in meeting all these requirements. Many hospitals now have career ladders that allow techs to use the designation MLS II or III or MLT II or III. Our laboratory started such a program this year. For anyone interested in moving up the career ladder in their laboratory, there are many opportunities to be involved in lab operations and management. All the tasks that are required to run a lab cannot be done by one person alone. Tier program requirements differ from hospital to hospital but may ask candidates to submit a tier application and complete a list of achievements to show their commitment to the laboratory and their community before being designated a tier II or III.

Tier techs are generally required to meet education and certification requirements. They should be pro-active performers who are seen as leaders with excellent customer service skills. A tier level tech is a proficient performer with strong critical thinking and problem solving skills. They are mentors to coworkers and can train staff and perform competencies. Hospitals often look to these techs to contribute to the growth of the profession outside of the lab, as well. Being laboratory science community ambassadors, performing community service and upholding the mission and values of your facility all constitute qualities a hospital looks for in a tier tech.

Does this sound like you? We are constantly in need of techs to aspire to working in supervisory positions and management. With an increase in age of supervisors, managers and administrators, we are seeing an increase in retirements. We need more techs doing routine bench work to take the initiative and the steps to become tier techs and lead techs. We need aspiring supervisors and managers. Why wait? I encourage you to make a New Year’s resolution to seek out your facility’s tier or career ladder program. If one doesn’t exists, make it a project to see if one can be introduced!

Laboratories are often hidden in the basement, out of sight of visitors and out of mind of the general public. When we mention we work in a hospital, people ask “Are you a nurse?” Even though we may not be a well-known profession, we are a very important group of dedicated scientists and can be very proud of our accomplishments and contributions. I thank my supervisor and mentor, Gene Galligan, for her encouragement and support of the tier program and for all the things she has taught me in this very busy year.

PS: As I wrote this, The Joint Commission team arrived to start their accreditation process. There is never a dull moment in the laboratory!

Happy New Year!

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Microbiology Case Study: A 31 Year Old Man with History of IV Drug Use

Case History

The patient is a 31 year old man with a history of intravenous drug use with last reported use nine months previous, who reports low back pain. The patient’s symptoms started as a mild pain and progressively worsened over two weeks to the point that he was unable to stand or ambulate. He also developed intermittent radiation of pain to the bilateral lower extremities and associated symptoms of chills and diaphoresis. Blood cultures were sent. MRI showed an epidural abscess at the level of L5-S1. The patient underwent lumbar spinal decompression surgery, and intra-operative cultures were sent for evaluation.

Laboratory Identification

Gram smear of blood cultures showed gram negative bacilli (Image 1). Culture of the abscess specimen and blood cultures showed growth on chocolate, blood, and MacConkey agar; growth on MacConkey plates did not show lactose fermentation (Image 2,3). MALDI-TOF identified this organism as Serratia marcescens.

Image 1. Gram stain of blood culture showing gram negative rods.
Image 2. Blood agar showing large colonies without hemolysis.
Image 3. MacConkey agar showing non lactose fermenting colonies.


Serratia marcescens is a motile, facultatively anaerobic, gram negative bacillus of the Enterobacteriaciae family. Some strains of Serratia produce a distinctive brick red pigment, prodigiosin (Image 4), although non pigmented strains are frequently isolated from human infection sites. Serratia marcescens is one of the few Enterobacteriacea that produces DNAse, lipase, and gelatinase. It does not usually ferment lactose. This species is widely present in the environment, including in animals, insects, plants, water, and soil, but unlike other Enterobacteriaciae species it is not a typical component of normal human fecal flora.

Image 4. Colonies of Serratia marcescens producing red pigment. Photo from the CDC Public Health Image Library (

Eight species of Serratia have been found to cause infections in humans. Of these, >90% are caused by Serratia marcescens (1). This is a rare cause of infection in immunocompetent hosts but can cause opportunistic nosocomial infections, especially following invasive procedures such as such as intravenous catheterization, respiratory intubation, and urinary tract manipulations. The most common infections caused by Serratia marcescens are urinary tract infections, pneumonia,surgical wound infections, eye infections, and bacteremia. Multiple hospital outbreaks of Serratia have been reported, with sources of infection including tap water, soap, blood transfusion products, and injected medications (2). It has also been described as a cause of endocarditis in injection drug users (3).

Serratia is intrinsically resistant to ampicillin, ampicillin-sulbactam, and 1st and 2nd generation cephalosporins due to an inducible, chromosomal AmpC beta-lactamase. Resistance to later-generation cephalosporins may be induced through exposure to these antibiotics, despite not being detected on initial antibiotic susceptibility tests. Thus, susceptibility testing is misleading and thirdgeneration cephalosporins (such as ceftazidime, ceftriaxone, and cefpodoxime) should be avoided for the treatment of Serratia species regardless of in vitro susceptibility.


  1. Laupland KB, Parkins MD, Gregson DB, Church DL, Ross T, Pitout JD. Population-based laboratory surveillance for Serratia species isolates in a large Canadian health region. Eur J Clin Microbiol Infect Dis. 2008; 27: 89–95.
  2. Mahlen SD. Serratia infections: from military experiments to current practice. Clin Microbiol Rev. 2011; 24:755.
  3. Mills J., Drew D. Serratia marcescens endocarditis: a regional illness associated with intravenous drug abuse. Ann Intern Med. 1976; 84:29–35.

-Erica Worswick is a pathology student fellow at the University of Vermont Medical Center.

-Christi Wojewoda, MD, is the Director of Clinical Microbiology at the University of Vermont Medical Center and an Associate Professor at the University of Vermont.

Safety for the New Year

While it doesn’t seem possible, another year is drawing to a close. At this time of year, I often ask my clients what they have worked on or what they have accomplished with regard to laboratory safety in the past twelve months. Sometimes they can readily answer, especially if there was a major project that took a big chunk of their time. Other people, though, struggle with an answer wondering if they did indeed accomplish any of their safety goals. I contend that we all have had successes and achievements, though, but we might need to dig a little deeper to find them.

Regulations in the realm of laboratory safety did not stay the same in 2018, and if you kept up with any of them, you made some progress. For many U.S. states, the beginning of the year brought about the Environmental Protection Agency’s Generator Improvement Rule (GIR). Among other things, this new set of regulations changed how labs (and other departments) label their waste containers. All hazardous (chemical) waste containers must now be labeled with the exact words “Hazardous Waste,” and there must be a description of the waste as well as some form of a hazard warning. That warning can be in the form of a pictogram or even a NFPA/HMIS warning legend. The GIR also now allows Small Quantity Generator sites to dispose of larger amounts of waste twice per year without needing to upgrade their EPA status to a Large Quantity Generator.

The College of American Pathologists (CAP) added some standards that affect lab safety practices as well. One new requirement includes the need for a laboratory security policy. Labs need to state how they restrict access of personnel into the area, and they need to spell out how to handle visitors to the department. Other new regulatory standards include the need for the safe handling of liquid nitrogen and dry ice. Labs must provide proper training and PPE for the handling of these dangerous materials, and there is even a new requirement for the placement of oxygen sensors where liquid nitrogen is used. If your CAP inspection window opens soon, you have probably already made these changes.

While keeping up with regulations might be your goal, sometimes lab inspection results can spur you on to making accomplishments for the advancement of safety. In one lab, an inspector found a freezer full of patient samples that were mixed with methanol. The freezer was not designated as explosion-proof as required by NFPA-45, the Standard on Fire Protection for Laboratories Using Chemicals. Upon further investigation, the lab safety officer found a few other freezers and refrigerators which were storing flammable materials inappropriately. This led to re-arranging some materials, and it also led to the purchase of more explosion proof units where needed.

Another lab received an OSHA inspection and received a fine for not following the training requirements of the Bloodborne Pathogens standard. The regulations state that during staff training, there must be an “opportunity for interactive questions and answers with the person conducting the training session.” Most labs offer an annual computer-based training for Bloodborne Pathogens, and that does not satisfy OSHA inspectors. The lab that was cited made a change to how the mandatory training program was offered, and they created a method for which staff could ask questions of the trainer. This was another example of an inspection which helped the lab make safety improvements.

In the world of lab safety, it sometimes feels like simply surviving day-to-day is the accomplishment. We’ve put out fires, we’ve responded to questions, and we’ve submitted our required monthly injury and exposure reports. It may feel like performing the job is simply a reaction to what is going on each day, and that is difficult for the lab safety professional. We realize that being proactive is better, we know that is how we decrease employee harm and improve the safety culture. However, I invite you to take a second look at your past twelve months. Yes, it may be that changes were made because regulatory agencies altered the standards- but there is no way to predict that unless you sit on the decision-making board of those organizations. Yes, you might have had to respond to inspection citations, but isn’t it good to have another set of eyes helping you to make safety improvements? Try not to always think about why safety improvements were made. Instead, remember to view them as positives- they are another step to improving safety the way you do it every year. They are truly accomplishments, and as you approach the new year, you can use them as stepping stones toward your next safety goals.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Microbiology Case Study: A 54 Year Old Male with Shortness of Breath

Case History

A 54 year old male presented in the emergency room with worsening of shortness of breath and chest pain. He has a history of a bicuspid aortic valve that was treated with bio-prosthetic aortic valve replacement seventeen years ago and a second aortic valve replacement seven years ago. The patient’s echocardiogram showed severe aorticstenosis and moderate to severe mitral regurgitation. During hospital stay he started to show signs of low cardiac output syndrome and an intra-aortic balloon pump was placed. During sternotomy for aortic valve replacement and mitral valve repair they discovered a severely calcified and stenotic valve with additional debris that could be consistent with endocarditis. Tissue culture was sent.

Gram stain showed pink strings that could be gram negative rods, but could also be tissue debris due to tissue grinding (Image 1). After 3 days of incubation, some colonies grew on 5% sheep blood (Image 2) and chocolate agar plates with no growth on MacConkey selective medium.

Colony Gram stain made from these colonies (Image 3) was compared with the initial gram stain and showed similar type of pleomorphic gram negative rods. MALDI-TOF identified this organism as Cardiobacterium hominis.

Image 1. Tissue Gram stain showing pleomorphic gram negative rods or tissue debris (difficult to say which).
Image 2. Growth of organism after 3 days on 5% sheep blood agar.
Image 3. Colony Gram stain from shows same pleomorphic forms seen on primary tissue Gram stain, which is consistent with Cardiobacterium hominis.


Cardiobacterium hominis is a fastidious, pleomorphic, non-motile, gram negative bacillus and member of the HACEK group which comprises Haemophilus species, Aggregatibacter, Cardiobacterium hominis, Eikenella corrodens, and Kingella kingae. C. hominis is present as normal flora of the oropharynx in most individuals but it has also been attributed to cause infective endocarditis.

C hominis is a fastidious bacterium that grows best in the presence of increased levels of CO2 and high levels of humidity and often takes several days to grow on solid media (1). It can be distinguished from other HACEK members by a positive oxidase reaction, the production of indole and the absence of catalase activity and nitrate production.

Some of the risk factors leading to C hominis endocarditis include dental work, structural cardiac abnormalities, previous valve replacement, dilated cardiomyopathy and past history of rheumatic heart disease and endocarditis (2). The illness usually follows a sub acute course with symptoms lasting for weeks or months (1). Patients will often report fever, myalgia, anorexia, and weight loss. C. hominis tends to form large, friable vegetations associated with cerebral embolization or mycotic aneurysm formation and this might be responsible for atypical presentation of endocarditis(1). The overall prognosis of endocarditis due to C. hominis is quite favorable, despite the frequent need fo rvalve replacement (3).

Third generation cephalosporin (ceftriaxone) is considered the drug of choice for C. hominis endocarditis. Ampicillin can be used after susceptibility testing. Ampicillin-sulbactam or ciprofloxacin are alternative therapeutic options.


  1. Currie, Codispoti, Mankad, et al. Late aortic homograft valve endocarditis caused by Cardiobacterium hominis: a case report and review of the literature. Heart 2000;83:579–581.
  2. Walkty A. Cardiobacterium hominis endocarditis: A case report and review of the literature. The Canadian Journal of Infectious Diseases & Medical Microbiology. 2005;16(5):293-297.
  3. Fazili T, Endy T, Javaid W, Amin M. Cardiobacterium Hominis Endocarditis of Bioprosthetic Pulmonic Valve: Case Report and Review of Literature. J Clin Case Rep. 2013;3:286.

-Kiran Manjee, MD, is a 1st year anatomic and clinical pathology resident at University of Chicago (NorthShore).

-Erin McElvania, PhD, D(ABMM), is the Director of Clinical Microbiology NorthShore University Health System in Evanston, Illinois. Follow Dr. McElvania on twitter @E-McElvania. 

Lab Value Changes in Transgender Females

For our next edition of transgender laboratory medicine, we will explore how transgender women use hormone therapy to physically transition to their affirmed female gender. While transgender men just take testosterone, transgender women take both estradiol and an anti-androgen. In the United States, that anti-androgen is spironolactone.

Figure 1. I was amazed in freshman biology by how structurally similar these hormones were and how they lead to such dramatically different phenotypes. Spironolactone is quite a bit different with the same cholesterol backbone. Credit Wikipedia

Estradiol is administered either as an oral pill, an injectable liquid or a transdermal patch. The estradiol pills are the cheapest option as they have been made generic for use as birth control. The transdermal can be the easiest to use, but is also the most expensive version and may not deliver as much estradiol as the other routes. Oral estradiol usually starts in adults at a low-dose (2 mg) then is titrated up to 4-6 mg and rarely up to 8mg. The end-point of estradiol titration is not to reach a certain hormone level, but to achieve desired physical traits. Endocrine guidelines do suggest keeping estradiol levels below peak physiologic levels (200 pg/mL).While little evidence currently exists for side effects of supraphysiologic estradiol, blood clots are a serious known side effect.

Part of the reason for anti-androgens in treating transgender women, is that even in women, testosterone levels are orders of magnitude higher. Spironolactone is primarily used as a glucocorticoid analog to block the mineralocorticoid receptor in the kidney to induce diuresis while retaining potassium. The structure of spironolactone is similar enough totestosterone that it also binds the androgen receptor and blocks the effect of testosterone. While enlarged breasts are considered a side effect in heart failure patients, it is an intended effect of spironolactone in transgender women. While hyperkalemia (high potassium) is a well known adverse effect of spironolactone, it seems to manifest more in patients with co-morbid conditions such as heart or kidney failure rather than in healthy patients.2

Table 1. This table describes the time frame of physical traits that manifest in transgender women while taking feminizing hormone therapy. Based on Hembree et al. 2017 (1).

For feminizing hormone therapy, red blood cell indices are the one of the most responsive laboratory parameters. The hemoglobin, hematocrit, and RBC number are all seen to decrease during hormone therapy in transgender women. A previous study of 55 transgender women3 showed that hemoglobin levels decreased significantly from cis-gender male levels to be not significantly different from cis-gender female hemoglobin. With a larger patient group, we were able to confirm this previous finding of decreased hemoglobin, but transgender women’s hemoglobin levels are still significantly different from individuals with sex-assigned female at birth (Figure 2).

Figure 2. A. Figure from Roberts et al 2014. B. TW= Transgender women, Baseline TW= TW with no history of hormone therapy, Baseline TM= transgender men with no history of hormone therapy. ***p<0.0001 Data expressed as interquartile range with median (box) and 2.5th to 97.5th percentile (whiskers).

Roberts et al also found that creatinine levels remain closer to cisgender male levels compared to cisgender female creatinine values3. This brought up the concept that not all lab values change predictably to the reference interval of the opposite gender. We further confirmed this finding in our larger cohort, but we further found a significant difference in transgender women from their baseline levels (Figure 3).

Figure 3. A. Figure from Roberts et al 2014. B. TW= Transgender women, Baseline TW= TW with no history of hormone therapy, Baseline TM= transgender men with no history of hormone therapy. ***p<0.0001 Data expressed as interquartile range with median (box) and 2.5th to 97.5th percentile (whiskers).

Overall, red blood cell and creatinine levels change the most in transgender women taking hormone therapy, but they don’t go as far as being comparable to lab values of individuals of the opposite sex assigned at birth. Our summary of this data will be published soon and interested labs can note what we found to be the central 95th percentile of common lab values including those presented here. I will go into greater detail about some unexpected effects of hormone therapy in following blog posts. I hope you’re looking forward to it as much as I am!


  1. Hembree WC,Cohen-Kettenis PT, Gooren L, Hannema SE, Meyer WJ, Murad MH, et al. Endocrine Treatment of Gender-Dysphoric/Gender-Incongruent Persons: An Endocrine Society*Clinical Practice Guideline. J Clin Endocrinol Metab. 2017
  2. Roberts TK, Kraft CS,French D, Ji W, Wu AHBB, Tangpricha V, et al. Interpreting Laboratory Results in Transgender Patients on Hormone Therapy. Am J Med. 2014;127:159–62.
  3. Plovanich M, Weng QY,Mostaghimi A (2015). “Low Usefulness of Potassium Monitoring Among Healthy Young Women Taking Spironolactone for Acne”. JAMA Dermatol. 151 (9):941–4. 

-Jeff SoRelle, MD is a Molecular Genetic Pathology fellow at the University of Texas Southwestern Medical Center in Dallas, TX. His clinical research interests include understanding how the lab intersects with transgender healthcare and advancing quality in molecular diagnostics.

Hematopathology Case Study: A 23 Year Old Man with Epistaxis, Fever and Pancytopenia

Case History

A 23 year old man presented to the hospital with recurrent fever up to 103F with associated nausea and vomiting, epistaxis, watery diarrhea, dyspnea, and decreased appetite for several days. Blood cultures from admission were positive for MSSA and a stool PCR was positive for Vibrio species. He was admitted and treated for sepsis. His CBC demonstrated a marked pancytopenia ( WBC count 0.6 K/μL) and the hematopathology team was consulted to review the peripheral blood film.

Peripheral blood smear.

Review of the peripheral blood confirmed a markedly pancytopenic picture with virtually no leukocytes in the region of best RBC “spread” (Image 1A). In the periphery of the smear (1B and C) clusters of leukocytes were noted where left-shifted granulocytes were seen. Many demonstrated nuclear irregularity and abnormal granulation (B) and some showed the presence of numerous Auer rods (Image 1C, arrows).

The presence of abnormally granulated immature neutrophilic precursors, and cells with numerous Auer rods was morphologically compatible with acute promyelocytic leukemia (APL) and a rush preliminary diagnosis was rendered. The patient was started on ATRA therapy and FISH for PML-RARA was expedited.


Acute promyelocyticleukemia (APL) is characterized as an acute myeloid leukemia in which promyelocytes with the PML-RARA fusion predominate. The PML-RARA fusion is the result of a balanced translocation between chromosomes 15 and 17, designated ast (15;17)(q24.1;q21.2).  The promyelocyte progenitor cell is the cell of origin of APL. APL occurs most frequently in middle aged individuals, but can occur at any age.

The first account of APL was originally discussed in the late 1950s in which L. K.Hillestad, a hematologist from Norway, described a disorder as “a white blood cell picture dominated by promyelocytes and severe bleeding caused mainly by fibrinolysis.” The gene fusion was elucidated in the late 1970s at the University of Chicago demonstrating the balanced translocation between chromosomes 15 and 17. Cure rates at that time were still very low, until in the mid 1980s when researchers in China demonstrated the use of all-trans retinoic acid causing complete remission in APL patients.

Two distinct subtypes of APL exist: hypergranular (typical) or microgranular. The hypergranular variant is filled with large Auer rods and with dense cytoplasmic granules that can obstruct the nucleus. In contrast, the microgranular variant has a scantiness of cytoplasmic granules or small azurophilic granules.

The immunophenotype for APL is quite distinct and characterized by low or absent expression of CD34 and HLA-DR (in keeping with the cellular differentiation from blast to promyelocyte). APL cells are positive CD33 and CD13 with most cases showing expression of CD117 (sometimes weak). APL cells are usually negative for CD15, CD65, CD11a, CD11b, and CD18. The microgranular variant may display positive staining for CD34 and CD2. For both variants, IHC with antibodies to the PML gene demonstrates a nuclear multi granular pattern with nucleolar exclusion, a finding that is unique to APL and not seen in AML or normal promyelocyte morphology.

The main clinical symptom of APL is hemorrhagic, including gingival bleeding and ecchymosis but can progress to disseminated intravascular coagulopathy (DIC). Other symptoms of APL include those related to pancytopenia, including weakness, fatigue, and infections.

The prognosis for APL is considered to be excellent. Tretinoin (ATRA) interacts with the PML-RARA fusion product allowing for maturation and differentiation to occur along the granulocytic lineage, eliminating the promyelocyte population. Combination therapy with tretinoin and arsenic trioxide has become the gold standard of care leading to excellent remission rates.


  1. Kakizuka,A., et al. “Chromosomal translocation t (15; 17) in human acutepromyelocytic leukemia fuses RARα with a novel putative transcription factor,PML.” Cell 66.4 (1991): 663-674.
  2. Lo-Coco,Francesco, and Laura Cicconi. “History of acute promyelocytic leukemia: atale of endless revolution.” Mediterranean journal of hematologyand infectious diseases3.1 (2011).
  3. Rowley,JanetD, HarveyM Golomb, and Charlotte Dougherty. “15/17 translocation, aconsistent chromosomal change in acute promyelocytic leukaemia.” TheLancet 309.8010 (1977): 549-550.
  4. Swerdlow,Steven H. WHO Classification of Tumours of Haematopoietic and LymphoidTissues. International Agency for Research on Cancer, 2017.

-Christopher Felicelli is an M3 at Loyola University Chicago Stritch School of Medicine. Follow Chris on Twitter at @ChrisFelicelli

-Kamran M. Mirza, MD PhD is an Assistant Professor of Pathology and Medical Director of Molecular Pathology at Loyola University Medical Center. He was a top 5 honoree in ASCP’s Forty Under 40 2017. Follow Dr. Mirza on twitter @kmirza.