The Anatomy of Lab Safety Design: Handling a Flood

Most laboratories are designed with eyewash stations and at least one safety shower depending on the size of the department. The use of these safety showers is not common, but it does happen, and the staff needs to be prepared for such an event. That preparation not only involves testing and training on equipment use, but also in making sure the physical space is ready for a potential deluge of water that can pour down into the department for potentially up to fifteen minutes. Other flooding incidents may occur as well. A floor drain can back up, a water line connected to an analyzer might break, or water might even come through the ceiling from a pipe above the department. Being prepared and responding efficiently to these types of flooding events should be part of the overall lab safety program.

One reason safety specialists and some regulatory agencies require that items in the lab not be stored directly on the floor is so they will not be damaged in the event of a departmental flood. It is generally acceptable to store plastic items (waste bins, etc.) on the floor since they cannot be damaged by water. Cardboard, computer hard drives, and other like items should be stored on palettes or shelves. Securing electrical wires and raising multi-plug adaptors off the floor is also a best practice.

When designing or remodeling a laboratory, consider the possibility of floods when choosing the type of flooring to be installed. The best laboratory flooring is monolithic, like a sheet vinyl that has few seams. It should bend up to the walls to create a coved base that is integral with the floor. This design (recommended by the CDC and CLSI) keeps liquids from going under tiles or through walls which will create more problems (like mold) down the road.

Floor drains where safety showers exist are not required, and many labs have showers where there is no drain at all. Remember that in a typical situation where a shower would be used, hazardous chemicals are involved. Any hazardous waste that might go into the sanitary sewer should be routed through a neutralization station or into a hazardous waste collection tank. The ANSI requirements for a safety shower include the ability to deliver 20 gallons of water per minute for 15-20 minutes. That’s a total of 400 gallons. The requirements also state that the water pattern must be at least 20” in diameter and 60” above the floor. Therefore, a majority of the water will not even travel to the drain. It will go to the lowest point of the floor in the department. The bottom line is, if the safety shower must be used, a flood should be expected.

In order for the lab to be prepared for a flood emergency, materials should be on hand that will help contain large amounts of water. Those materials may include large volume spill kits with booms or dikes that are capable of holding water back. Staff should be trained how to use these materials as spill training is provided, and drills should be conducted so they can use the supplies comfortably. Make sure these spill materials are easily accessible and that signage clearly indicates where they are stored.

What does the physical anatomy of your lab look like? Is it designed for safety in the event of a hazardous material spill or exposure? Is the department set up to handle a sudden flood situation, and can staff identify the steps to take to respond efficiently and safely? Take a look around your lab today, and make any necessary corrections so that all will be ready should a laboratory flood occur for any reason.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Lab Safety Whiplash

The world seemed like a brighter place just a few short weeks ago. The pandemic seemed to be nearing an end, and life was returning to normal. In laboratories, the COVID-19 testing volumes decreased, wearing surgical masks all day long at work was no longer the norm, and the workday had that old feeling of familiarity again. Then, suddenly, it all came roaring back. The COVID-19 Delta Variant, loading its victims with over 1000 times more viral particles than the original could, came to visit. Now masking and social distancing are back with a vengeance, and everyone holds their collective breath as we wait to see what other cancellations and restrictions will come our way. It is almost worse this time because we know what the future will bring, and it isn’t pretty.

So how do we deal with it in the laboratory? How do we manage our lab safety program as our staff deals with this physical and mental whiplash? Many labs already saw the fatigue workers exhibited in the past 18 months. People stopped distancing from each other, they became less diligent about hand hygiene in the department, and PPE use became a bigger compliance issue than it had been when the pandemic began.

Fortunately, this is not a new challenge for lab safety professionals. Even without a pandemic, maintaining an awareness for the importance of lab safety has been a consistent need. Those who have been in the field for years and have never had a chemical exposure or a needle stick become complacent about the hazards where they work. Formaldehyde is treated like it was water, and contaminated blood tubes are handled with no gloves. This “disease” spreads also, when new employees observe these poor safety behaviors and emulate them. A poor safety culture does not have to become a pandemic, however, there is a cure, even in times such as these.

First, determine where your lab safety culture lies on the spectrum- is it very broken, or does it just need a little boost? Make an assessment of the overall culture using surveys or by talking to lab staff and leadership directly. Review your findings with the staff so that they are clear about why you are tackling the issues. That act alone raises awareness in the department. If possible, obtain a commitment from staff to improve the overall safety culture. Find safety champions who will work with you on the on-going project. Be sure safety is being discussed daily and is placed in front of the staff. Use huddles, e-mails and safety boards to promote a positive culture.

Unsafe behaviors in the laboratory can easily have consequences that may affect others in the department. Spills and exposures are just some incidents that may occur. Messy lab areas can create trips or falls, and improper storage of chemicals or hazardous wastes can be dangerous as well. Perhaps laboratory staff don’t think enough about the dangerous consequences because there isn’t enough training about them. Perhaps they don’t think about the potential consequences to others because they haven’t been told about the possible physical, environmental, or financial consequences. Maintaining awareness of these issues is always key.

The COVID-19 pandemic and its apparent rebound has made for some very long months for employees in healthcare, and the struggles do not appear to be ending anytime soon. As safety leaders, it is important for us to do what we can to help staff build resilience against the whiplash and to reinvigorate them to continue with good safety practices. We must remind them that despite all of the changes in safety guidelines in the recent past that the basics – PPE use, using engineering controls and work practice controls- are there to help us get safely through the day so that we can still go home healthy and to be able to enjoy our lives so that we can see the end of these unusual times.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Win, Lose, or Draw?

In the 1962 Japanese release of King Kong vs. Godzilla, it was pretty easy to determine who the winner of the epic battle was (it was Kong, if you’re keeping track). Almost 60 years later, the two famous giant behemoths met again on the big screen, this time in an American version. This second battle, while fun to watch, had a less-obvious outcome. Those who sided with either monster had moments to cheer during the movie, but in the end, (spoiler alert!) a secondary issue overshadowed the much-hyped monster match. It seemed obvious to me that the script writers tried their best to satisfy audiences on both sides of the aisle. In doing this, however, the movie lost a little bit of its punch. That can happen in lab safety as well. If the message isn’t strong or clear, safety issues will ensue.

The lab manager noticed an increase in employee injuries on the job. Someone cut their finger on a microtome blade. Two different specimen processors splashed serum into their eyes. A night shift tech kneeled onto the floor to pick up a box, and her knee landed on broken glass that hadn’t been swept up. It was clear people were not paying close attention while they were performing their duties. The manager held a meeting in the lab to raise safety awareness. He delivered his message, but staff noticed he was chewing gum and that he did not put on a lab coat even though he was in the lab for over 20 minutes. The message was not clear. He said he was for a safer lab, but he didn’t look to anyone like he meant it.

Jake was new to the histology lab and he was excited to make a good impression as he began his career. During his departmental orientation, the supervisor stressed the importance of chemical safety. Formaldehyde and xylene were in use in the department, and they were potentially dangerous. Jake got the message and was ready to show the department he could work there safely. After orientation was done, Jake came to work to begin cutting tissue. When he sat down at his station, he opened the drawer for supplies and saw a packet of oatmeal a spoon, and a coffee cup. The medical director came in to the lab to welcome Jake, and he noticed she was drinking tea. The message Jake received about safety was no longer clear. The supervisor spoke about safety, but it was clear no one enforced it.

When the message we send to staff about lab safety is mixed, we really can’t blame them when the culture is bad. The problem is that many leaders are not aware they are sending this confusing communication. If you’re not sure if you are one of those leaders, take a step back and look in the mirror. What kind of message do you send? Do you support safety? Do you do it with your words AND your actions? What sort of example do you set?

If you’re not in lab leadership, you still have a responsibility to represent safety with your lab practices as well. Everyone has an impact on the overall safety culture, not just leaders. What do you do to promote safety in your department?

Maybe you are an employee and it’s your leader who is sending mixed messages. First, make sure you’re choosing the side of safety in your work no matter what others are doing. Second, it may be time to “manage up” and ask leadership why certain unsafe practices occur. If the leader is part of the problem, it is acceptable to point that out, provided you do so with purpose, tact and professionalism.

Leading by example for safety is vitally important no matter your role in the department. Choose your side, stick to it in all circumstances, and over time you will be able to be declared the decisive winner. Those mixed safety messages usually lead to a draw, or worse, a loss for the team. 

Because I have been a Godzilla fan for decades, I thoroughly enjoyed this latest film entry. In truth, I was able to discern a clear winner of his fight with Kong despite the writer’s intentions, but that may be because I had support for my favorite going in. That might be your way to victory as well. Root for “Team Safety,” and your support will be noticed and followed for the win!

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Anticipating Sublimating

Many years ago I worked in a lab that often received dry ice in boxes with our blood product deliveries. The habit in the lab was to dump the excess frozen carbon dioxide into one of our stainless steel sinks. The staff would get excited each time there was a delivery because they liked to run tap water onto the ice to make a “waterfall” of smoke flow onto the floor when they were bored. Before too long, this repeated incorrect placement of dry ice resulted in severe damage to the sink and pipes below. The stainless steel basin cracked and the sink fell down onto the broken pipes below. That particular plumbing is not designed to handle such a low temperature, and the repair was not cheap. Luckily, no one was injured. I thought this was a long-dead practice in labs, but even today I get questions about proper dry ice disposal and am asked whether or not the sink is a good spot for that.

Dry ice sublimates at room temperature. That means it transforms from a solid state directly into a gas. Too much of this gas in a small space will reduce the normal oxygen levels in the area, potentially causing dizziness and asphyxiation. Letting dry ice sublimate in the work place can be a dangerous practice. If you have dry ice to dispose of, the best practice is to set it outside (where other could not have access to it) so it can dissipate into the open air.

Dry ice is often used in the transport of specimens, blood products, and certain lab reagents. The Department of Transportation considers it a dangerous good, and it must be used and labeled specifically if it is to be shipped by land or by air. If dry ice is used in shipping, an additional Class 9 miscellaneous hazard label also must go to the right of the Class 6.2 infectious substance label. In addition to the Class 9 label, the outer box must be labeled with the net quantity of dry ice used.

Another common use of dry ice is with the transport of outreach or clinic lab samples in courier vehicles. Certain samples must be kept frozen for testing, and the use of dry ice provides a convenient method for maintaining the necessary temperatures. Dry ice is placed in a cooler in the courier vehicle, and samples are placed until delivery to the reference laboratory. With that, there are specific safety practices that should be adhered to when using dry ice for this purpose. Couriers are often overlooked when considering safety training, but they are an important piece of the lab sample and testing process. Be sure couriers have complete safety training, including training for the proper handling of dry ice.

Couriers should limit the amount of dry ice placed inside the cooler that will rest in the vehicle. No more than three pounds of dry ice should ever be placed in that cooler. The cooler should never be completely sealed (remember the ice sublimates to gas, and the volume of the gas in the cooler will expand). Also, if dry ice is kept inside of a vehicle, the windows should be left opened, even a tiny bit. There have been incidents where too much dry ice in a closed vehicle has caused a driver to become dizzy or even become unconscious. Obviously, this is a potentially dangerous or even deadly situation and should be avoided completely.

In recent years, the College of American Pathologists (CAP) added new regulations for labs that handle dry ice. These safety rules include the use of appropriate (insulated or cryogenic) gloves and a face shield when handling dry ice. Safety Data Sheets should be available and staff who use dry ice must have documented training. CAP also discusses the need for using dry ice only in well-ventilated areas.

In the laboratory or outreach settings, employees are asked to work with many dangerous substances, bloodborne pathogens, chemicals, and sometimes dry ice. Inherently, these departments are not safe, but OSHA requires that employees be able to work safely in those places, and it can be done. Proper training and oversight of safety are the keys to ensuring your employees can collect, transport, and process lab samples in such a way in which all involved in these processes are kept safe.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

The Safety Sweet Spot

I have been through physical therapy for a few different issues in my life, and I must say (with apologies to the profession), I was never a believer. I had musculoskeletal issues that needed attending—a pinched nerve, neck pain, knee pain, etc. If you are past 40 years old and your body’s check engine light has blinked a few times, you know what I mean. Each time the series of physical therapy exercises seemed to be useless and a waste of time. They never really helped me. Recently, however, I subjected myself to a total knee replacement surgery. I knew PT would be a part of the recovery regimen, but I did not realize how important it was going to be for my overall recovery. Therapists taught me how to walk again, they taught me how to trust my body and that I could do things I did not believe possible until that next session. They caused pain (a necessary part of the journey), and they did all of these things with care and professionalism- despite my whining and sometimes less than positive attitude. For me, this is where the PT rubber hits the road. This is where the profession shines and has the successes that people talk about. I saw the real face of physical therapy, and I became a believer.

Then I began to wonder, what is that moment of shining for lab safety professionals? When do laboratorians become believers in lab safety? When does the safety rubber hit the road? What is that sweet spot that makes safety important to people?

I had a needle stick exposure early on in my career. It was before the advent of needle safety devices, and I picked up a used butterfly needle off of a bed and stuck myself in the finger. I was in a hurry, and not really paying attention. That event made me a much safer needle-handling phlebotomist- but would proper safety training have done the same? Would my risk tolerance have been different if someone had really explained the potential consequences of an exposure to me? Did the rubber hit the road for me because I had that experience? How does that get moved or changed so that safety behaviors become proactive instead?

I have hypothesized often that people will perform safely based on three motivators: knowledge about consequences, information about financial and environmental impacts, and punishment. Personal risk tolerance also plays a role, however. A technologist may be full well aware that an open specimen may splash, but they may also feel that the risk is low or that the result of a splash incident would not be severe, so they don’t use face protection. Sometimes, though, we make mistakes when deciding upon the risks, especially if we do not have sufficient education. Any open specimen is a potential exposure hazard, and all specimens should be treated as though hazardous.

In order for a lab safety program to have success, the working parts must be proactive. They must be in place to prevent injuries and exposures, and they should not be there only to figure out what to do after an event has occurred. When a program works in that proactive fashion, when staff is on board and participating, that’s when safety shines. That’s the safety sweet spot.

I’m thankful for professions that easily get it right- like physical therapy. People might not always see their value until they really need them, and that is when they shine. So maybe that’s true for lab safety – it shines when it is really needed. For lab safety professionals, then, the next step will be to get laboratorians to see that we need safety all the time.

A special thank you to Stephen, Audra, and the entire PT gang! You guys rock!

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

The Laboratory Safety Challenge

In 2014 there was an internet challenge which exploded in popularity. It was the ALS Ice Bucket Challenge in which people would dump cold water on their heads and post the video on social media. The person getting the ice water dumped on them would challenge others to post a video of their dousing and they would in turn donate to the cause of finding a cure for ALS, a progressive neurodegenerative disease. The challenge became a world-wide sensation and raised $115 million for ALS research. But, like many good things, the challenge had a dark side. Many people were injured while attempting the challenge, and at least two deaths were at least indirectly associated with it.

Another challenge has come to social media lately, and this one involves a technical skill in the laboratory. It, too, has a dark side. The blood smear challenge is the latest rage for lab techs who enjoy posting videos on Facebook, Instagram, and other social media platforms. Lab techs show off their skill by making the perfect blood smear. At first it was about who could make a smear with the most perfect beautiful, feathered edge. Then the challenge evolved into people making smears while holding the top slide with one finger or even a pencil. There are those who were quite proud to show off their skill and work.

When watching videos of people in various labs performing this challenge, I cannot help but cringe. Several of these lab techs are not wearing lab coats. Many are not wearing gloves, and I have not seen any perform the challenge while using face protection or goggles. Ignoring the safety regulations about using basic personal protective equipment is apparently the norm. These people post this online without a second thought to a public display of working in the lab without PPE. It speaks volumes about the safety culture in those laboratories, and what it says is not favorable.

The next, less obvious safety issue with the videos is that they are created using cell phones or other personal electronic devices in the laboratory. People are handling devices sometimes with gloves, sometimes without, or they are setting them on lab counters which are likely contaminated. The use of cell phones and other personal electronic devices is a dangerous infection control issue, but it is unfortunately all too common. Even before this latest challenge, lab staff all over the country pose for pictures for social media posts that are taken by cell phones. Despite the fact that known and reported infections have occurred in labs from cell phones (and other items brought home from work), techs continue to use them.  

Other issues with the blood smear challenge may be less obvious. Unless these smears are being used, valuable lab supplies are being wasted. Slides and blood-dispenser cap piercing devices cost money, and many lab supplies manufacturers have run into supply shortages this year because of the pandemic. To have a lab waste money or run into shortages for the sake of this challenge might seem foolhardy to some.

Another safety issue with the challenge is the blatant act of playing around with human, potentially infectious blood to make the smears. Staff use engineering controls, work practice controls and PPE to separate people from the hazards in the laboratory. To place oneself at risk unnecessarily, especially during the COVID-19 pandemic, borders on reckless.

When the COVID-19 pandemic began affecting labs over a year ago, many laboratorians became concerned for their own personal safety. They were unsure about how they might catch this virus and what effects it might for them and their family. These were valid concerns, and some still have fears today. In conversations with lab staff over the past months I reminded them that they work with bloodborne pathogens every day, and many are as potentially dangerous (or more) than the COVID-19 virus. If Standard Precautions are used on the job, workers will be safe from infections from COVID-19 and other pathogens. The same is true today. Laboratorians may be less worried about the coronavirus, but the risk of infection in labs from this and other pathogens is as real as ever. Using engineering controls, PPE, and safe work practices is the only way to ensure lab staff can go home without bringing something dangerous to our families.

Challenges can be fun. I participated in the ALS Ice Bucket Challenge. I came out unscathed, but I was likely just lucky, not safe. The same is true for those posting pictures and videos online from inside laboratories. You might have been working that way for years and nothing has happened. Again, that is just luck, and it will run out. Make sure you and your staff are doing what is right, and what is safe. The real challenge is how to get laboratorians in all labs to work safely and follow basic safety regulations. Can your lab meet that challenge?

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Truth or Consequences: The Wrong Question

It was with sadness that I watched the episode of Jeopardy! which featured Alex Trebek’s final appearance. While I hadn’t watched the game show consistently since 1984 when he first began to host, Alex had certainly become an icon in U.S pop culture and I had enjoyed watching him often. The quiz show has always been different than most- the answer must be given in the form of a question, and it must be the correct question in order to score points. As with most games, contestants don’t always ask the right question. That can happen with lab safety, as well.

I was performing an audit in a laboratory when the manager was bringing a new employee through during her orientation. I was introduced as the Lab Safety Officer, and I described some of my duties like auditing and safety compliance monitoring. The new employee immediately asked, “What happens if you catch someone not doing what they should?” That was the wrong question.

As an experienced lab safety professional, I often see people fail to follow certain lab safety regulations. Unfortunately, you do not have to look far to find lapses in lab safety practices. Vendors and service representatives and other visitors walk into labs across the country and lab staff ignore them. The visitors are not given information about the hazards in the department and they are not offered PPE. A look on social media will reveal multiple pictures of lab workers not wearing PPE as well. Oh- and they are taking those pictures with cell phones they shouldn’t be using (sometimes the hand holding the phone is gloved, other times it is not). While I am concerned about these unsafe behaviors, I am equally concerned about those that witness them and say nothing.

The COVID-19 pandemic has raised the public awareness of an important aspect of personal safety: the unsafe behavior of others can have a direct affect on your own safety. People who refuse to wear masks or who are sick and do not isolate themselves may create situations where the virus is spread to others. In the past year, many people have realized this and have felt empowered to say something to those who are not exhibiting safe behaviors. That realization that they may be in danger has made people feel comfortable speaking up for their safety and that of others around them. Perhaps that is what is needed in the lab setting as well.

Unsafe behaviors in the laboratory can easily have consequences that may affect many in the department. Spills and exposures are just some incidents that may occur. Messy lab areas can create trips or falls, and improper storage of chemicals or hazardous wastes can be dangerous as well. Perhaps laboratory staff don’t think enough about the dangerous consequences because there isn’t enough training about them. Perhaps they don’t think about the potential consequences to others because they haven’t been told about the possible physical, environmental, or financial consequences. When the new lab employee asked the question, “What happens if you catch someone not doing what they should,” I should have had an immediate answer. I should have said that she asked the wrong question. The real question is, “More importantly, what happens to you if you’re not doing what you should?” Teaching staff about the consequences of unsafe lab practices is something that should start on day one, and the awareness of these issues should be raised often and continuously. The truth is, it is important to correct your own unsafe behaviors, but it is also important to feel empowered to correct unsafe issues that are witnessed. The truth is, we all have a responsibility for our safety and that of everyone else who may be in the laboratory. If we own that responsibility, then no one’s safety has to be in…jeopardy.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

2020: Lessons Learned in Lab Safety

2020 will be a year for many to remember, no matter your profession. If you worked in a laboratory, though, you know many things happened along the way which were both difficult and unexpected, and much of the year was consumed with work surrounding the COVID-19 pandemic. Changes and challenges came along which would test the resiliency of any lab safety professional. With luck, though, there were good lessons learned and new ideas about how to face certain lab safety issues in the future.

The Fear of Biohazards

One of the earliest challenges many lab leaders faced this year was dealing with the fears of staff who would have to work with COVID-19 patients and specimens. With the news reporting daily death tolls and unscientific data (like mortality rates when the total number of cases could not be determined), the amount of fear that was generated for some people became obvious at work. Staff members became afraid of handling any specimens, and people began unnecessary practices like double-bagging swabs or wearing gloves when transporting specimens.

Getting employees to deal with those fears and to continue to work became a priority for many very quickly. Many lab leaders conducted meetings and educational sessions. It was important to remind staff that they usually handled specimens every day which contain bacteria and other viruses that could be as harmful to them. They had to remember that if they used Standard Precautions with all samples, they could remain safe. In some locations COVID-19 FAQ newsletters were used to address hot-button issues and answer common questions about PPE, high-touch surfaces, and aerosol generating procedures. It was a good lesson to learn, lab staff need regular information about the proper handling of the hazards they work with and knowledge about how to remain safe on the job.

PPE Changes

Another challenge that arose was trying to keep up with the changes in recommendations for PPE use in the lab and for those who collected COVID-19 swab specimens. In the beginning of the year, masks were not required in the workplace, but that changed. Then cloth masks were not allowed in some organizations. The use of face shields or goggles was mandated, in some locations they were even required in break rooms and hallways. Phlebotomists who once wore only gloves now had to wear gowns, masks and face shields, and in some instances N95 respirators were used. These changes required education, training and an explanation for staff as to why the extra PPE was necessary.

Changes also came to how laboratorians would utilize PPE. Because of international shortages of supplies, the CDC provided information about extended use and re-use of the equipment. Organizations moved from using disposable lab coats and gowns to reusable ones. Hospitals had to set up methods for reprocessing and disinfecting gowns and N95 respirators for reuse using UV lighting or a hydrogen peroxide vapor treatment. Laboratorians and other healthcare workers learned how to extend the normal wear time of N95 respirators, masks, and other disposable PPE and how to store items rather than toss them out. While PPE supply issues seem to have calmed down, labs learned many lessons about how to handle such shortages in the future.

New Testing

As the pandemic progressed, many labs were asked to bring on board new COVID-19 testing. This testing typically had to be brought on board quickly, and in some cases new laboratory space had to be found. Many considerations had to be discussed such as room ventilation, safety equipment (BSCs, eyewash stations, spill kits, etc.), and proper specimen transport.

The best approach for this (as with any new process in the lab) is to conduct a complete risk assessment. One method is to identify the risks associated with the new testing, rate the likelihood and consequences of potential hazards in the process, and then implement steps to mitigate those hazards. Performing these assessments routinely and reviewing them will help to keep your staff safe as work continues in the department all year.

The COVID-19 pandemic affected other areas of work in the laboratory. Accreditation agencies delayed inspections, and now they are trying virtual auditing. Staffing levels are affected by virus exposures in the community or within the department, and while organizations do their best to follow national safety guidance, many have different approaches. The pandemic is not over, and soon healthcare workers will be offered a vaccine. What new lessons will we continue to learn as the situation continues to develop? Time will tell. The important thing for lab leadership is to stand for what keeps those in their department safe. Continue to follow standard precautions, and escalate issues when the unusual occurs. Remember, we will get through this, but as we do, take the opportunity to learn from the experience this year and when moving ahead!

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

The Lab Safety Professional: How to Grow Your Role

In any professional career path, there are people who want to learn, to grow, and to advance professionally. That’s no different in the world of laboratory safety, and there are good opportunities to make that happen. If you’ve been in your position for a while, you might be asking what the purpose is for growing in your role. There are good reasons, and there are easy ways to go about it as well.

One reason to advance yourself professionally in the role of lab safety is that it can help you to stay on top of the latest regulations. That, in turn, will help you do a better job with keeping your lab safe and up to date, a goal we should all have. Advancement in the role can also keep you excited and motivated about your career which may make you a stronger safety leader. That motivation can lead to involvement with other laboratorians and professional organizations which creates advocacy for lab medicine (and safety) as a whole. Those interactions have the potential to bring positive changes to the overall field of lab safety. Embarking on the road to professional growth in lab safety also has personal benefits. It keeps you from becoming stagnant in your job. Armed with the latest information and making positive changes to keep your safety program running strong, the professional growth may lead to new and exciting career opportunities that did not previously exist.

Staying on top of changes and news in the world of lab safety is important to keeping your safety program up to date and in compliance with the latest regulations. It can be difficult sometimes to find the time to read professional articles or newsletters, but if you learn to skim headlines and read the relevant material, you can remain aware of new or updated safety regulations. There is an abundance of free literature available, and there are even safety and occupational health resources that are not specific for labs, but which contain valuable safety information on topics like PPE, the physical environment, ergonomics, or waste management. Request free newsletters from important safety resources such as OSHA, the CDC and NIOSH. These organizations have a major impact on lab safety guidelines and regulations.

Knowing your written and published laboratory safety resources is important as well. The Laboratory Biosafety Manual is a free book available from the World Health Organization (WHO) website. The latest version is the 3rd edition, and it was published in 2004, but an updated version will be released soon. The CDC’s Biosafety in Microbiological and Biomedical Laboratories (BMBL) 5th Edition is an excellent resource for biosafety information, and its next edition is also due to be published soon. OSHA offers a Laboratory Safety Guidance book on line as well, and the information withing aids in obtaining compliance with safety regulations that are required in all labs.

Another way to become more actively involved in lab safety is to volunteer to write or edit CLSI lab safety guidelines. The Clinical & Laboratory Standards Institute (CLSI) accepts volunteers from government, industry, and clinical labs to assist with guideline development, editing, and approval. Through their process, you can work on teams to create best safety practices that are viewed around the world. The experience of working with other lab safety professionals will broaden your knowledge and expand the resources you now access. Being a part of the CLSI document development process is a worthwhile and professionally rewarding experience.

Lastly, a lab safety professional can grow their role through certification. There are some general safety certifications that can be achieved, but there is only one in the United States that is specific to clinical lab safety: The Qualification in Laboratory Safety (QLS) offered by ASCP. The process of applying, studying, and testing for this certification can take you to that next level of lab-specific safety knowledge and expertise. The certification also bestows upon you increased credibility as an expert. If you have some experience in your role and are looking for the next step, getting that ASCP QLS is for you.

There are those who might think a career in safety sounds boring, and a narrower focus on clinical lab safety may even appear to be limiting as a career choice. That is not the case – there are a wide variety of methods to grow in such a career and truly become an experienced professional who is well-respected. That respect can take your career down an amazing path you never thought possible, and such a path can only be a benefit lab professional everywhere.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Blood Splatter Does Matter

As a patient, when I go in to get my blood drawn, I have the anxieties and fears that most normally feel. Even as someone who understands the collection process and subsequent testing, it’s human nature to be nervous when having any type of medical procedure performed. Something most do not consider, however, is the fear and anxiety that the phlebotomist, nurse or laboratory technician who is drawing the blood may be feeling. Healthcare workers are at risk of biohazardous exposure daily and, in the wake of infectious diseases that can result in global pandemics, protection from this exposure is even more important. In the worst case, unanticipated patient movement or a combative patient may cause a needlestick injury to the person collecting. But what about the much less obvious risk of blood splatter? It’s important to understand all risks in order to put the appropriate protection in place. So, what exactly are the risks of blood splatter and how is the healthcare system working to minimize it?

Over the years, legislation such as the Needlestick Safety & Prevention Act and the Bloodborne Pathogen Standard has been put into place to decrease exposure risk, resulting in safety-engineered collection devices becoming mainstream. Prior to these changes, it was not uncommon for needles to carry no additional safety measures to protect healthcare workers and ensure the used needle was shielded when collection was completed. The rates of infection reflected this and, thankfully, have been significantly reduced with the introduction of safety devices.

While there have been several studies focused on needlestick injuries and the efficacy of safety engineered devices, there have been few on the potential for exposure through splatter when using these devices, though equally important. Splatter presents a real danger since it is known that infection can occur if mucous membranes are exposed to even minute amounts of blood. Most users may not even be aware that splatter or aerosolization has occurred and would not seek prophylaxis to prevent potential infection as a result. This would mean that they may not even be aware of a deadly infection taking hold in their body.

Though methods for assessing splatter may differ slightly, there have been studies that demonstrate visible and/or measurable splatter from use and activation of safety devices. One such study looked at retractable phlebotomy and intravascular devices and showed both measurable and visible splatter with a winged collection device.1 Studies since have taken this type of evaluation further looking at specific devices and the mechanism of activation.2

So, what does this tell us about the risks that phlebotomists and lab techs face every day from this potential for exposure that is often unrecognized? Because healthcare personnel must be aware of all avenues of exposure in order to take the necessary precautions, it is extremely important that use of safety devices meant to protect them does not create an additional risk of infection. Picking the safest device for use should not only include consideration of reduction in needlestick injuries but also assessment of splatter and review of studies such as those cited here to properly evaluate performance. Additionally, especially with devices associated with greater incidence of splatter, the appropriate protective equipment, e.g. face shields or googles, gowns, etc., should be utilized to prevent exposure and potential infection from bloodborne pathogens.

In summary, it is crucial that healthcare employees are equipped with the appropriate safety equipment when dealing with the potential for biohazardous exposure, that they understand the impact of the products being used and how these products can either help or hinder protection from bloodborne pathogens.

References

  1. Haiduven DJ, Applegarth SP, Shroff MP. (2009). An experimental method for detecting blood splatter from retractable phlebotomy and intravascular devices. Am J Infect Control 37(2); 127-130.
  2. Haiduven DJ, McGuire-Wolfe C, Applegarth SP. (2012). Contribution of a winged phlebotomy device design to blood splatter. Infect Control Hosp Epidemiol 33(11); 1069-1076.

-Michelle McLean, MS, MT(ASCP), BS is currently the Scientific Affairs Manager for Greiner Bio-One Preanalytics in North America. In this role, she is responsible for new product development and associated clinical studies, defining appropriate device application and developing technical and educational materials to support the preanalytic product portfolio. She is a Medical Technologist with an additional Bachelor of Science Degree in Biology and a Master of Science Degree in Pharmacology & Physiology. 

-Mackenzie Farone is a Senior Manager of Corporate Communications, Greiner Bio-One North America