Safety Success in the Anatomic Pathology Laboratory

The pathologist walked into the histology laboratory every morning to say hello to the staff. As he did so, he drank from his cup of coffee.

The gross room was very small, and the eyewash station was placed on the faucet in the only sink in the room. One foot above the sink were the sharp ends of all of the cutting tools that hung on the wall. That was also the hand washing sink.

The morgue was the only space in the hospital where chemical waste could be stored before being picked up. The waste containers were not dated, and a funnel was left in the opening of one of them.

It can be difficult to oversee safety for a clinical laboratory, but often the people responsible for it have a clinical lab background, so the understanding of the regulations is clear. However, if you are responsible for the anatomic pathology (AP) areas as well, you may need to broaden the scope of your safety learning. Each of the lab safety situations mentioned above are real, and detecting and resolving those and other issues is important. Knowing the regulations for histology, cytology, and the morgue settings is a good place to start. Next, spend some time in those areas, and learn the processes that occur every day. Ask questions and look at procedures.

Bio-safety regulations in the AP lab are no different than for clinical laboratory staff. Many specimens, body parts and cadavers may be handled, and Standard Precautions should be used. That includes the use of gloves, lab coats, and face protection.

Chemical hygiene is also important in the AP lab, and since these areas tend to utilize many more chemicals than others, the management of them can seem daunting. Be sure to keep an updated chemical inventory which designates carcinogens, reproductive toxins and acute toxins. Ensure all staff have access to Safety Data Sheets (SDS) and that they have been trained to properly store chemicals. That means strong acids and bases should be stored near the floor, and they should never be stored together. Other incompatible chemicals should be separated as well. Ensure that proper spill supplies are available, and that staff can clean up various types of chemical spills. Conducting spill drills is a great way to keep staff ready for the real event.

Exposure monitoring should occur depending on what chemicals are used in the area. Managing chemical safety also includes ensuring proper labeling of all chemical containers. Primary container should have current Globally Harmonized System (GHS) compliant labels, and secondary containers also need adequate labeling. Secondary containers may be labeled using a GHS format or NFPA and HMIS conventions may be used.

Chemical or Hazardous waste handling must also be monitored closely in AP areas. If chemical waste is stored in the lab in a Satellite Accumulation Area, the containers should not be dated, and they should be stored at or near the point of waste generation. Central Accumulation Areas are areas where waste is stored before it is removed from the site. In these areas, containers must be dated, and a log should be kept for weekly checks of the areas. Weekly checks include looking for container leaks, dates on containers, and making sure containers remain closed. All chemical waste containers must remain closed unless someone is actively working with them. Never leave an open hazardous waste container open or with a funnel in it while unattended.

Special safety consideration should be given to tissue cutting in the histology area. Microtome and cryostat use presents specific sharps dangers because of the large sharp blades in use. If a blade guard is included with the equipment, train staff to always engage it before placing hands near the blade. Use magnet-tipped implements to remove the blades and rubber-tipped forceps to install new ones. Follow manufacturer guidelines for cryostat decontamination, but avoid using formaldehyde fumes for that purpose.

If laboratory staff is exposed to formaldehyde concentrations greater than 0.1 parts per million in their routine work, there is a safety training program that is required by OSHA. This formaldehyde training needs to be administered at the time of initial job assignment and whenever a new exposure to formaldehyde is introduced into the work area. The training must also be repeated annually.

As a lab safety officer, I learned over time how to work with and coach pathologists for safety. There is no more coffee consumed in the lab. The cramped gross room was remodeled to improve safety. Understanding the issues and reporting them was the key to getting this done. It took a difficult inspection by the EPA to teach me how to properly handle chemical waste. Today the representative from the state is my best reference, and she is willing to come to the labs and help us with waste regulation compliance. If your background is clinical, don’t ignore the special considerations in the anatomic pathology areas. Use your resources to learn what happens there, and understand the regulations so that employees in every area of the lab can work safely.

 

Scungio 1

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Leading Lab Safety

The number of medical laboratory scientists is dwindling. Baby Boomers have begun their retirement, and even before that started, there were more job openings than people to fill them. That means more opportunities in the lab world, and in some cases leadership roles are being obtained by less experienced people than in years past. Whether or not one has a long lab history, one aspect of any new leadership position that will be important to grasp is management of the lab safety program.

The first step for a new lab leader is to ensure the existence of a functional laboratory safety program. Do this by looking for specific components of the program, a laboratory safety manual, a safety committee, and lab safety indicators. If these items are in place and functioning as they should, you’re off to a good start.

The laboratory safety manual may be in paper or in an electronic format. It should be separate from the hospital or facility safety manual as there are many lab-specific safety policies and procedures that are required. Maintain document control of these safety policies, ensure they have medical director (or designee) approval, and review these policies in a timely fashion. It is important to remember that while some lab regulatory agencies (like CAP) allow bi-annual policy review, OSHA requires annual reviews. OSHA covers many safety policies in the lab such as the chemical hygiene plan, the exposure control plan and many more.

The laboratory should have a functioning safety committee, no matter the size. If the lab staff is very small, the leader may play a role in the larger hospital or facility safety committee. If the lab is larger, a committee composed of just lab staff is advised. If the hospital or lab is part of a system, the committee should include at least one member from each lab site. The safety committee should meet at least monthly. It is important not to skimp on meetings or cancel them on a regular basis. Let staff know this is a priority for the leadership in the lab. During the meetings provide education, review lab incidents, and raise safety awareness. Train committee members how to perform safety audits, how to develop “safety eyes,” and most especially how to coach each other and their peers in the department.

Another important component of a functioning lab safety program is the use of safety indicators. Much like quality indicators, this safety data can be used to help determine the overall safety culture in the department. A good example indicator includes monitoring the employee exposure and injury rate. By using the laboratory’s OSHA 300 log information, a lab can compare its reportable injury data to national benchmarks. Many safety indicators are typically reactive data (or lagging), but tracking safety meeting attendance can actually serve as a leading indicator for the lab.

Once you’ve assessed the lab’s safety program, the next step a new leader should take is to assess the overall lab safety culture. This can be performed in many ways. One part of performing the assessment is by using your “safety eyes” that was mentioned earlier. Scan the lab visually. What immediate safety issues are seen? What is on the walls of the department? What types of interactions are observed? What is the physical layout? With practice and experience, a leader may be able to do the visual portion of the culture assessment quickly.

Another safety culture indicator tool is a laboratory safety audit. The results of an audit can provide much information about safety practices in the lab such as PPE use, chemical storage, and awareness of fire safety issues. One good model safety audit that can be used is located in the appendix of CLSI’s document Safety in the Clinical Laboratory (GP17-A3). This is a very comprehensive laboratory assessment and it can tell you much about your overall safety culture. As stated before, audit results can be discussed at the lab safety committee meetings, and ideas for improvements can be considered.

Managing the overall lab safety program is a big job, and it is often only one task of many that belongs to a laboratory leader. Change occurs daily in the field of lab medicine, and new leaders are coming aboard. Whether you are new or experienced, however, utilizing these basic first steps will provide a leader with the information needed to identify the safety culture and to understand how the program is operating.

 

Scungio 1

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Your Reaction to Safety

The toddler’s father let her hand go so he could pay for their dinner at the busy airport. The little girl quickly wandered away and suddenly found herself at the top of a long escalator that was going down. No one was watching.

Mrs. Anders was walking home as she did every day from the neighborhood pool. She was very hard of hearing, but she was as friendly as she could be. As she waved to you while crossing the street, you see the car speeding toward her at too fast a pace.

You may have encountered a situation similar to one of these, or you may have seen something like it in a suspenseful movie or television program. The scenario is something that can create a reaction in you, a feeling of sudden dread, and the urge to take quick action. That’s a good response, and it could save someone from a serious incident.

But is your reaction the same in the lab where you work?

Lisa processed some CSF samples at the front desk that were delivered from another lab. She later received a call from the sending lab alerting her that the patient was positive for CJD, a prion disease, and the specimens were sent in error. When she went to clean up the processing area and tell the other staff, Lisa saw her co-worker leaning on the counter and using the computer with no PPE.

In the morning, Ken dropped a glass bottle of hydrochloric acid on the lab floor, and it shattered and spilled. He went to get the spill clean-up kit, but before he returned, the pathologist walked into the department wearing open-toed shoes.

Now let’s try something a bit subtler:

Robert is working in the chemistry department and he uncaps the next batch of tubes to be analyzed behind the safety shield on the counter. He places the tubes in the rack and carries the rack over to the analyzer. He’s not wearing any face protection.

Sheila was the supervisor in hematology, and she was walking through the department as Dwayne was on the phone with a service representative about the broken analyzer. The rep asked to speak to Sheila. Dwayne hands her the phone with his gloved hands, Sheila is wearing no PPE.

As a lab safety professional, one of my goals is to help lab staff have that same urgent gut reaction- that feeling that something is wrong and needs immediate correction- in all of those lab scenarios above, particularly the subtle ones. In each of those moments, the risk of danger or infection is very high and needs to be mitigated. All too often, however, these events occur in labs and no one reacts. That’s a safety culture problem.

There are many possible reasons for that typical lack of response. People are busy, the unsafe practices are common, or safety is simply not a priority. Lab injuries and exposures continue to occur across the nation, so the issues need to be addressed, and there are ways to do that successfully.

One method I use in safety training (that I’ve written about before) is the development of “Safety Eyes.” I call that the latent super-power that everyone possesses, but it needs to be taught and honed. When you work in a particular environment every day, it can become difficult to see the safety problems without training and practice. Take pictures of unsafe lab practices or problems and show them to staff. Have them identify the issue. As they practice, they will begin to see issues more often. Take practice safety walks with staff and look for issues. These actions will help everyone’s “Safety Eyes” to develop and become powerful tools in the department.

Of course, just seeing the issue is not enough. The second important piece here is teaching staff to respond when they do spot a problem. That can take some training and empowerment that may be new ideas for many. Teach staff to coach their peers for safety. This behavior will show others that safety is a priority, and over time more and more staff will begin to follow suit.

To produce the reaction you want in your laboratory—the issue is noticed, there is a sudden sense of dread or a gut reaction, and then there is a correction made—takes consistency. The lab safety leader will need to provide education about the regulations. Next, develop the “Safety Eyes” of the staff through pictures and safety walks. Finally, teach them to respond to the problems. As people, we are aware of the immediate danger when we see a toddler at the top of the stairs. The possibility of harm is clear to us. If you can produce that clarity for your staff with lab safety issues, you can get those reactions that can only improve your safety culture, and you can drastically reduce those injuries and exposures.

 

Scungio 1

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Phlebotomists and PPE: How Do You Decide?

When it comes to making a decision about Personal Protective Equipment (PPE) in the laboratory, OSHA is pretty clear about how to go about making the selection. The use of risk assessments and task assessments is required by OSHA’s Bloodborne Pathogens standard, and these can be essential tools in making decisions regarding safety throughout the laboratory. The decision-making tools and processes can be applied to the patient collection area as well. You might think selecting PPE for phlebotomists would be straightforward, but in some cases, it is not.

Deciding on gloves for phlebotomists is easy. The Bloodborne Pathogens standard states, “Gloves shall be worn when it can be reasonably anticipated that the employee may have hand contact with blood … (and) when performing vascular access procedures.” (The one exception here is when collecting blood at a volunteer donor center, although gloves may be worn there as well.) So, if you have phlebotomists on your team, whether they collect blood on the patient units, at client sites, or in the lab, they all need to be wearing gloves, and it is required that they change those gloves after each patient contact. The gloves should be constructed of latex, nitryl, or another material that prevents the passage blood or body fluids (vinyl gloves should not be used).

Some of the decisions about the use of lab coats and phlebotomists are, unfortunately, more complicated. This first part of this conversation is easy. The BBP standard requires lab coats “in occupational exposure situations.” That means that if phlebotomists perform any work in the lab- if they process blood, spin it down, pour it off, etc. – they are in such an exposure situation and need a lab coat (and face protection if they handle open specimens or chemicals).

The second part is a bit more troublesome. Do phlebotomists need to wear lab coats when collecting blood from patients? According to OSHA, the answer is a clear “no.” A 2007 OSHA letter of interpretation states, “ Laboratory coats… are not typically needed as personal protective equipment (PPE) during routine venipuncture.” The letter does also go on to say that employers should perform risk assessments for any potential exposure situation in order to make decisions about lab coat use.

I do not favor the use of lab coats for phlebotomists, and I have my reasons. In my years of collecting specimens, I never obtained a splash of blood above my wrist, and I believe the risk of such a splash is minimal. As a Lab Safety Officer, I also know the use of a lab coat for phlebotomists creates several issues. If a lab coat is worn as PPE, should the same coat be worn from patient to patient? That would never happen with gloves, so if the lab coat is for protection against blood spatter, should that used and potentially contaminated protection be re-used? If a phlebotomist uses a lab coat while processing specimens in the lab, should that same lab coat be used with patients? No, OSHA says PPE used in the lab should never be worn outside the lab. Will phlebotomists change their lab coats? That is not convenient for them, and it opens the door to regulation violations and potential patient harm.

When having conversations about this topic, I have heard the argument that clothes or scrubs are worn from patient to patient if lab coats are not used. What’s the difference between that and wearing the same lab coat? The difference is that clothes and scrubs are not PPE. They are not designed to offer protection against splashes. Once you use an item as PPE, the OSHA regulations that cover the employee and how it should be viewed change.

On the other side of the coin, however, is a survey that was conducted in 2008 by DenLine Uniforms, Inc.[1] 180 phlebotomists across the country responded to questions about exposure and lab coat use. 64% of those surveyed regularly used semi-impermeable lab coats as PPE while collecting blood. 74% of respondents said they had encountered blood splashing beyond the hand area multiple times during the years they had been drawing blood. Given just this data, it seems clear that there is a high risk of blood exposure while performing venipuncture procedures, and that should mean that a lab coat should be used.

So how do you decide what to do with phlebotomists and lab coats in your lab or hospital? First, start with a risk assessment. Determine the risk of exposure above the wrist based on the collection equipment and procedures used at your location. If the risk is low, you should feel comfortable choosing not to provide lab coats for this process. If you find the risk of splash is high, implement the use of lab coats. Use caution, however, and consider the impact to patients of wearing what you consider to be contaminated PPE from patient to patient. As with all decisions about lab safety, think about the regulations, but if they don’t give you the answer you need, fall back to the choice that offers the best safe practice for your staff.

[1] https://www.denlineuniforms.com/assets/images/pdf/Blood_Draw_Exposure_Survey-October_2008.pdf

 

Scungio 1

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Toilet Paper Safety

As the years have passed, I have noticed many changes in the toilet paper dispensers in the healthcare setting. First there was the standard rolling style. This was great- you could get as much paper as you wanted, and the only issue was whether or not the roll was installed properly (I prefer “over”). The next style to come along was the bumpy roller. As it rolled out, the lop-sided holder would cause tissue to rip off before the user was ready. Then came covered paper holders that forced the user to reach under a sharp edge for paper access. The latest version I have seen completely covers the roll leaving a tiny access port that allows one piece of paper to be ripped off at a time.

As each dispenser style was replaced by a newer, more insidious model, I began to wonder why hospitals were being so cheap with the paper. Was it being stolen often? Was there a black market for toilet paper? Did the hospitals understand that each newer model forced staff to remain in the rest rooms for longer periods of time in order to get an adequate tissue supply? Surely this was affecting productivity in the work place. Clearly I had given this too much thought, and I let it bother me. I learned this year, however, that I was wrong about the topic for many years.  I found out that in hospital rooms with patients under contact precautions (such as patients who have contracted C. difficile) all of the open paper products must be discarded. In fact, it is a common practice to dispose of any open tissue when any patient room is cleaned. This latest dispenser designs prevents the wasting of paper and actually saves money. Once I received education about the issue, I had a better mindset about the tissue issue.

This is often true with laboratory safety, and providing the necessary education can truly improve safety compliance. There are many who have worked in the lab setting for years, and some have ignored safety regulations while others have followed them grudgingly. Often, the staff approach to lab safety can be improved with basic knowledge; information about the regulations, leadership expectations, and potential consequences of non-compliance.

I approached a lab manager about the need for his staff to utilize face protection when pouring chemicals. He said he was not aware of the need, and it would be an enormous change for the staff. We had a discussion about OSHA’s Chemical Hygiene standard and the Bloodborne Pathogen standard, both of which require face protection when handling open specimens and chemicals. Once he knew this and could also locate it in the safety policies, he immediately covered the information with his staff and compliance was improved. In this case, simple knowledge of the regulations was enough reason for the lab safety to be improved. Knowing the reason why is an important motivator for lab staff.

Lab leaders can make a strong impact on PPE compliance both by voicing expectations with staff and by being a good role model. If you lead lab safety, talk to new employees about what is expected, and regularly remind current staff about the safety policies that are to be followed. Every successful leader also has to be a positive role model. If you expect certain safety practices to be followed, you need to make sure you follow them when you are in the lab as well. A safety professional that walks through the lab in mesh sneakers is going to have a (pardon the pun) paper-thin positive impact on the overall culture.

Some long-term lab employees who regularly comply with safety regulations do so because they have learned an unfortunate lesson. Lab staff that has been the victim of an exposure or injury knows the consequences, and sometimes the cost has been very high. Exposures from an unknown source, for example, can result in treatments that cause illness and that will interfere with personal lives. An exposure that results in contracting an illness or a career-altering injury can be devastating. Our goal as lab safety professionals should be to get staff to comply with regulations proactively, rather than as a response to an incident. Teaching about potential consequences often can have an impact on safety behaviors. You may be surprised at how little laboratorians (and lab leaders) may think of the effects of poor safety conduct. Use real life incidents to tell stories and discuss other possible bad outcomes of non-compliance.

As the average age of laboratory professionals in the country continues to rise, we may be working with some folks who have had the same weak safety mindset for quite some time. They remember the days of eating, drinking and smoking in the lab, and they don’t understand why all of these rules are now in place. They’re healthy today, aren’t they? It’s time to change that way of thinking. It’s time to explain that while they may have practiced unsafe behaviors without incident, it just means they were lucky, not smart. Getting staff to think about the regulations, the expectations, and the consequences will help them to have a new and positive mindset about the lab safety issue.

 

Scungio 1

-Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

The ABCs of BSCs

Many labs have received notices this year that their Biological Safety Cabinet (BSC) certification company will no longer certify a certain type of BSC that those labs have had for years. NSF International (formerly the National Sanitation Foundation) is an organization that supplies product testing, inspection and certification. NSF is accredited by the American National Standards Institute (ANSI) to develop American National Standards, and in 2010 an updated version of the NSF/ANSI 49 was published. This is better known as the Biosafety Cabinetry: Design, Construction, Performance, and Field Certification standard.

The names can be confusing, but the important message is the revisions to the standard eliminated the option of direct-connected Type A cabinets (which had been previously allowed). Also, an alarm requirement was added for canopy connected Type A cabinets. There was time allowed for sites with these types of BSCs to make necessary adjustments, and in 2016 field certification agencies have been told they can no longer certify BSCs which do not meet the updated standards.

That means that some labs that have not updated their BSCs or purchased new ones, they are left with uncertified (and therefore unusable) cabinets.

There are three main classes of BSCs. Class I offers the least amount of protection, and it pulls air in and over the work area. The air is then exhausted via a HEPA filter. Class II BSCs are the most commonly-used cabinets in clinical laboratories. They offer a maintained inward airflow, a HEPA-filtered unidirectional airflow within the work area, and a HEPA-filtered exhaust into the room or to the facility exhaust system. Class III BSCs (or glove boxes) are for use with high risk biological agents, and they are typically sealed and gas-tight enclosures.

The commonly-used class II cabinets come in a variety of designs or types:

  • A1 – 70% of the air recirculates through the supply HEPA filter, the other 30% of air goes through the exhaust HEPA filter.
  • A2 – 70% of the air is recirculated through the supply HEPA filter, the other 30% of air goes through the exhaust HEPA filter. The air intake is faster than in a type A1 cabinet.
  • B1 – 40% of the air is recirculated, 60% of air is exhausted.
  • B2 –   No air is recirculated within, it is all exhausted into the facility system.

Some older Class II Type A cabinets had the exhaust directly connected to the facility exhaust system. This is no longer permitted since hard connections need to meet specific regulated criteria and is not considered the safest type of connection. If connected to an exhaust system, the cabinets must use a canopy (thimble or air-gap) connection which has an opening to the room. Because there is always the potential for equipment failure (and a possibility of air contamination to the room via the opening), an alarm system must also now be in place to alert the user of this possible danger. In 2016, all BSC field service workers were notified not to certify Type A cabinets with a hard connection or with a non-alarmed canopy connection. If you received a memo and had an issue with certification this year, that’s why!

No matter what Class II type of BSC you are using, there are some basic safety guidelines every user should know in order to keep protected while working. If the blower is not kept on all the time, turn it on about ten minutes before use. This will stabilize the protective air flow in the cabinet.  Adjust the seat height so that the user’s face is above the front opening. Set all specimens and materials that are needed inside the work space, and separate the clean from the dirty. Do not set anything on the front grille.  Objects too close to the front, side, and rear air grilles can disturb airflow and compromise the specimen and the worker’s safety.

When working in a BSC, avoid frequent and fast motions. When moving arms in and out of BSC, move them slowly and perpendicular to the sash. This will allow less interference with the air flow. Be sure to limit traffic in the area when working- people walking behind a BSC in use will disturb the air flow such that air will pass out of the cabinet into the breathing zone of the user. In general, fume hoods and BSCs should never be located in high traffic areas.

Once work is completed inside the BSC, properly dispose of all waste material. Disinfect the cabinet surfaces using an extension apparatus to reach the back wall. Never put your head inside the BSC. Use a bleach solution for disinfection. If damage to the surface is a concern, wipe down the surface with water after using the bleach. Let the BSC run for at least 10 minutes before turning off.

It is important to remember that a Biological Safety Cabinet is an engineering control designed to protect the worker, but it only does so if used properly. Make sure all users are properly trained to use a BSC safely. Have them certified annually, and let certified professionals perform the required maintenance. If you received a memo this year, it may be time to purchase a newer BSC in order to maintain safe work practices in your lab. Ask your field service representatives for the best option for your laboratory.

 

Scungio 1

-Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Facing CJD and Prion Diseases in the Lab

According to the National Institute of Health (NIH), Creutzfeldt-Jakob disease (CJD) is a rare, degenerative, fatal brain disorder that affects about one person in every one million people per year worldwide. In the United States there are about 300 cases per year. Some of us know the ailment better as “Mad Cow disease,” but that is only one form of this illness which is not caused by a virus or bacteria. CJD is a prion disease. A prion is a protein that exists in both a normal form, which is a harmless, and in an infectious form. The infectious form of the protein takes on a different folded shape, and once these abnormal proteins appear, they aggregate or clump together. Investigators think these prion aggregates may lead to the neuron loss and other brain damage seen in CJD. However, they do not know exactly how this damage occurs.

Since laboratory professionals may deal with specimens from possible CJD patients, we need to know how to properly handle them should such a situation arise. If the Operating Room calls your labs to process a brain biopsy specimen from a patient who was suspected of having a prion disease, would you know what to do? Can your lab do that? Should your lab do that?

Prions are dangerous, but CJD cannot be transmitted through the air or through touching or most other forms of casual contact. Prion transmission can occur, however, from contact with highly-infectious specimens. Brain tissue, eye tissue, and pituitary tissue are considered high-risk specimens, and contact with these should be avoided. When asked to handle a brain biopsy, medical staff and safety experts should work out a plan. For instance, a lab tech who is trained in Category A packaging could go to the OR, dress in fully protective PPE (including a body suit, gloves, and hood), and receive the specimen in the OR and package it there. The specimen is then ready for transport to the reference laboratory. If another department asks you to handle tissue samples from a suspected CJD patient, stop everything and escalate the issue immediately. Contact your medical director, your manager, or the safety officer and await further instructions.

There are other specimen types a lab might receive from a prion patient. Blood, serum, urine, feces, and sputum are considered no-risk specimens. Prions are not found in these types of specimens, and they may be handled and processed as usual.

The last category of specimens from prion patients is known as “low-risk.” These specimens include CSF, kidney, liver, spleen, lung, lymph nodes, placenta, and olfactory epithelium tissues. Of course the most common specimen a lab would see from this group is a spinal fluid, and labs do need to make sure they do not handle it as a normal specimen.

Lab staff should be notified when a specimen is going to be sent from a prion patient, particularly when a low-risk specimen like a CSF is on the way. Procedures should be in place, and it is recommended that such specimens have special labels on them to alert those of the potential risks.

There is no record of lab employees becoming infected with prions from handling low-risk specimens, but they must still be handled with care. All testing of low-risk specimens should be performed inside a Biological Safety Cabinet (BSC). Use disposable equipment as much as possible. For example, use disposable cups for stains or reagents where possible. Perform manual testing only; do not run low-risk specimens on automated analyzers as disinfection is not easily accomplished.

While using standard bleach solutions to disinfect surfaces is recommended after processing low-risk specimens, a lab spill of such a specimen is an entirely different matter, and this is why lab specimens should have special labeling. When a low-risk specimen spills, the area should be flooded with 2N Sodium Hydroxide (NaOH) or undiluted sodium hypochlorite (bleach). Remember, never mix bleach with formaldehyde as it produces a dangerous gas, so if a pathology specimen is spilled, only use NaOH. Leave the solution on the spilled material for one hour, then rinse with water. Place the spill materials into a sharps container so that they will be incinerated. If a spill of a low-risk CJD or prion specimen occurs, contact a manager, a medical director, or the safety officer immediately.

Laboratory professionals handle infectious specimens every day which is why it is so important that we utilize Standard Precautions. Wear PPE when working in the lab and treat all specimens as if they were infectious. It’s the only way to prevent a lab-acquired infection. If you see a co-worker not wearing gloves or a lab coat and working at a lab counter or computer, use coaching to remind them that those surfaces are potentially contaminated with pathogens, and they can be deadly. We can protect ourselves from low-risk prion disease (and other pathogens) with everyday PPE. If a specimen is processed in the lab and it is found later the patient was prion-positive, you do not want to be the one who wasn’t wearing PPE when you handled the specimens. The results will be potentially disastrous for you and your family.

Remember, if you receive a phone call that a CJD or prion specimen is being sent to the lab, escalate the situation immediately. Find out if your lab is able to receive and process that type of specimen. Protect yourself, and keep your lab safe from CJD and other infectious pathogens.

 

Scungio 1

-Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.