Lab Safety: It’s Not Monkey Business

The monkeypox virus is poorly named. The actual source of the virus is unknown, although it is possible that African rodents and non-human primates (like monkeys) might harbor the virus and infect people. Either way, the virus has entered the United States again recently and has caused new safety concerns for laboratories around the country.

As with the novel Coronavirus pandemic, the monkeypox outbreak has created new safety concerns among laboratorians. How easily can this be transmitted? How should samples be handled or packaged for transport? Will this create a critical lab staffing shortage? How should waste be treated? It is vital that lab leaders and safety professionals answer these questions for staff and relay as much information as possible to allay unnecessary fears.

First, one of the most important areas of focus for laboratorians potentially working with monkeypox patient samples is to continue to utilize Standard Precautions. As always, all specimens in the lab setting need to be treated as if infectious. When handling standard clinical specimens (blood, body fluids, etc.) from suspected monkeypox patients, no extra safety precautions or PPE should be necessary in the lab. The quantity of pox virus likely to be in clinical specimens is low, although procedures that generate aerosols should always be avoided.

Laboratory staff should also be trained to package and ship Category B specimens. The current West African strain (clade) of monkeypox in the U.S. is not considered Category A under the Hazardous Materials Regulations (HMR), so monkeypox swab specimens for virus testing should be shipped similarly to other clinical specimens. Use the packaging kit and follow the instructions from the receiving testing lab.

There may be concerns about the spread of monkeypox infection among employees in the laboratory. Any infected employee should be using PPE when working in the department, and the monkeypox virus is only spread by close physical contact, direct contact with the infectious rash, scabs, or body fluids, and touching items (such as clothing or linens) that previously touched the infectious rash or body fluids. If there was contact with infected PPE or if an employee had prolonged face-to-face contact with an infected co-worker, that should be reported. The CDC states that monkeypox can spread from the time symptoms start until the rash has fully healed and a fresh layer of skin has formed. The illness typically lasts 2-4 weeks. People who do not have monkeypox symptoms cannot spread the virus to others. Direct any concerns to the employee health practitioners.

Laboratories should have an emergency management plan in place which includes how to handle staffing shortages. That plan may include sending routine testing to an alternate location, using point-of-care testing or reducing services to a limited test menu. In most laboratories, however, this monkeypox outbreak is unlikely to create a massive staffing outage. The virus does not spread quickly or in public, and a pandemic of monkeypox is not expected.

Handling monkeypox waste is another consideration for laboratories. Normally, the waste associated with monkeypox virus is considered a Category A waste (waste contaminated with a known highly infectious substance). However, waste from patients infected with the current West African strain of monkeypox is considered exempt from the category A Infectious Substance Regulations according to the Department of Transportation. It can be managed as regulated medical waste. Soiled laundry, including lab coats, should never be shaken or handled in manner that may disperse infectious particles. Laundry should be contained (bagged) at the point of use. Organizations should contact their local public health authority for more information if needed. As the past few years have shown, new threats will continue to emerge, and they will raise safety questions in the laboratory. As always, laboratorians should stay vigilant, pay attention to the work they do every day to avoid injuries and exposures when handling any specimens. Communicate with the hospital departments to ensure proper internal specimen transport of clinical and diagnostic (swab) specimens. Handling laboratory specimens has never been monkey business- the use of Standard Precautions and safe work practices will keep employees safe through this outbreak, and for whatever comes next.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

What’s NOT New in Cancer Care?

In June of 2017 just at the start of the annual American Society of Clinical Oncology (ASCO) meeting in Chicago, Illinois, there were at least 7 new FDA approvals for immuno-oncology agents targeting PD-L1 in cancer. At that time (2017), there were 2030 potential agents targeting 265 different targets across cancer including the modalities of t-cell targeted and other immunomodulators, cell therapy, cancer vaccines, oncolytic viruses, and CD3-targeted bispecific antibodies. Just three years later (2020), prior to the COVID-19 pandemic, this landscape had increased to 4720 potential agents targeting 504 targets across the same spectrum. That represents a 233% growth in these agents. Although only a fraction of these is “approved” (i.e., FDA approved and in use in patients clinically), many these agents are in clinical trials that require patient recruitment using pathology and other testing data. What does this mean for pathologists and laboratory professionals? Depending on the tumor being targeted and the target, there may or may not be a specific laboratory test that needs to be performed which may be routine, like histology parameters or immunohistochemistry, or may require advanced methods, like unique antibodies/clones, specific quantification methods, or molecular testing. The range of testing is not even unique to a specific therapy—for example, pembrolizumab uses staining for PD-L1, MSI, or no testing at all depending on tumor type. For the sub-specialized pathologist that focuses on one or two organs only, mastering the rapid pace and required diagnostic-therapeutic pairings is still a challenge. Imagine what it is like to be a general surgical pathologist in a community setting serving a community cancer center. Moreover, the diagnosis of a specific tumor is often completely disconnected for any biomarkers that may be indicated at the time of collection or several months later depending on therapeutic outcomes. This poses a range of problems in logistics and processing that are still being worked out at the individual system level. Still, the plethora of new treatments for cancer patients is very exciting.

In 2017, the largest group of targets (which was heterogenous) were tumor associated antigens (TAA) which are molecules that are not normally found in the human body produced by tumor cells as the result of changes to cellular processes. Whether it is hybrid proteins, glycosylation, or phosphorylation products, etc., these unique antigens held amazing promise as something we could target and destroy without fear of hurting normal human cells. However, the bulk of these approaches were for tumor vaccines (>90%) in 2017, dropping to 58% in 2020 (and from a total of 265 to only 198). To date, however, only a handful of cancer vaccines have been fully approved including sipuluecel-T for metastatic prostate and T-VEC for advance melanoma. This example category creates a complex set of challenges for pathologists and laboratory professionals. What data is needed about a patient or their tumor before a vaccine can be used? Does it require special studies that are not easily available or are costly? After vaccination, what follow-up tissue or blood studies are needed to follow the patient? Who dictates which tests are required before treatment: industry or medicine? But the more important challenge is: When do we, as the laboratory, pull the trigger to develop and disseminate such information and on-board new tests? Certainly, we are not going to look at Phase I trials and start taking about needs for future diagnostics. But by Phase III (where there is still a high dropout rate before full FDA approval) the number of potential agents and tests may still be daunting. If we wait until approval, now we are behind because our clinical colleagues will start immediately wanting to use the therapy. Tumor vaccines are an interesting category because we assume, for the most part, that there is likely only a diagnostic role needed. But then consider targets like CD-19, PD-L1, PD-1, CD3, Her2, CTLA-4, CD20, MUC1, CD22 and so on which are very familiar to our laboratory family because we often have already a test for these markers.

But is it the correct clone?

Do we have to score or interpret it differently?

When the agent is for cell therapy (the largest growth area of therapy development with 294% growth alone), what role does the transfusion medicine team play in administering or monitoring the patient?

As with the prior example, at what point do we, as a specialty of diagnosticians, dig into the forthcoming clinical trial results to plan? If our colleagues are in academic centers and are part of the clinical trials, they often are aware of and are administering the very tests that determine trial entrance. But if one reads just a few clinical trials of these agents, you may find that the inclusion criteria require a large battery of tests; however, on the other end when it is clinical ready for prime time, only one biomarker may be needed. Such a clustered landscape of information poses frustrating challenges for the clinical team and laboratory team in trying to find the way forward to get patients the life-saving therapies that are quickly arriving.

There is no question that the collision of targeted therapeutics and evolving diagnostics (i.e., precision cancer medicine) has demonstrated phenomenal growth with ever increasing benefits for patients. Affordability and access to these therapeutics aside*, studies continue to be completed and published including combinations therapies and hybrid therapies which show incredible promise. At ASCO 2022, the results of the DESTINY-Breast04 Phase III trial showed that trastuzumab deruxtecan (HER2-directed antibody and topoisomerase inhibitor conjugate) show a 49% reduction in the risk of disease progression or death versus physician’s choice of chemotherapy for patients with HER2-low metastatic breast cancer. That finding should be read a few times to make sure that the impact of this statement is very clear for pathologists and the laboratory. Previously, how we report HER2 (0, 1+, 2+, 3+) was complicated and often required FISH for questionable cases to look directly for HER2 amplification. This new category of patients requires reporting accurately 1+ or 2+ (FISH negative) disease, as it has incredible implications for patients. This news follows the recent new indications for CDK inhibitors in breast cancer related to Ki-67 mitotic score. Just when we thought breast cancer was straightforward, there is more to know and, more importantly, more time and tedium and standardization needed to report it for each patient. And, of course, early triple-negative breast cancer can also be treated with checkpoint inhibitors after PD-L1 testing is performed…but that’s literally old news as the data was release in 2020 at the start of the pandemic.

Outside of therapeutics, diagnostics are evolving quite rapidly with the COVID-19-induced ability to use digital pathology more readily creating a super-highway for artificial intelligence products to be validated for clinical use. PaigeAI has two such products (one for prostate and the second for breast lymph node evaluation released March of 2022) and many others are sure to follow. In parallel, screening, imaging, and surgery have also had advancements that continue to improve patient care and outcomes. So, it seems that everything feels new in cancer but is that the case?

The bulk of tumors diagnosed in the US (and elsewhere) are done with simply H&E staining (up to 75%) with another 20% being further confirmed by a few IHC tests (bringing the total up to 95%). This is not new and, most importantly, is the standard of care for the time being that we use to classify tumors. That classification has dictated, to some degree, the correct NCCN or other cancer protocol that oncologists used to treat patients. At some point, however, sufficient data on the bulk of all tumor types will likely point precision medicine treatments at all cancers. At that point, will a tissue biopsy be necessary with full histology or will a fine needle aspiration with molecular testing dictate the care? The credible assumption is that standard histology and IHC will remain in practice for the foreseeable future because so much billing, accreditation, and compliance is tied closely to them. But we CAN envision a “histology-free” oncopathology approach that matches patients to treatments with a panel of biomarkers. Sounds amazing but also stressful from the point of view of your typical anatomic pathologist.

*But the final thought on this, and perhaps the most important, is cost. Much like the domestic energy market is facing a dwindling pool of customers who agree to pay more and more for “traditional power” while their neighbors pump excessive kilowatts into the grid with their solar panels and windmills enjoying essentially “free power”, progress in cancer screening, detection, and treatment should be dwindling the pool of potential patients and increasing the costs to deliver care to the remainder. However, data and trends suggest that cancer is increasing globally. Why, if we are spending so much money and development on cancer care? Poverty and access. Cancer care is both expensive (in the US) and relatively expensive (in LMICs) with a focus on a small group of patients (0.55% of a population per year develop cancer). Projections of populations who need certain therapeutics are calculated using payer pools and markets that are existing and reliable. That does not include the bulk of LMICs. So, when we consider the cost of the PD-L1 checkpoint inhibitor class per year per patient is upwards of $125,000 USD, how can we even consider that an option for impoverished patients living off $1 USD per day? But if we don’t sort that out and treat these patients, we are assuming that persons who are impoverished are less valuable than persons who can afford expensive care. That evil logic, however, doesn’t hold true because even individuals in the US often become destitute or lose the bulk of their fiscal well-being when they must pay for cancer care—a situation that simply does not occur in countries with socialized medicine and/or universal healthcare.

Cancer care is rapidly evolving and the new tools and therapies available are incredible and miraculous for many patient types who would have faced a death sentence even 10 years ago. But with this amazing progress, we cannot ethically let people with limited resources succumb to these diseases over something so trivial as money. To do so poses harm and sets us up for failure as a species. It is for these reasons that ASCP engages in global health outreach. We are excited to have recently launched the Access To Oncology Medicines (ATOM) program with UICC and more than 2 dozen partners which will rapidly bring high-quality generic cancer therapeutics to low- and middle-income countries. In parallel with the St. Jude/WHO efforts on pediatric cancer globally, we will deliver quality cancer diagnosis and treatment to all patients everywhere.

If you want to learn more about PD-L1 testing and/or overcoming barriers to I-O in persons of color, new education from ASCP is available at no cost at https://www.ascp.org/content/learning/immuno-oncology/.

You can also check out our free educational resources on HER2-low breast cancer and Ki-67 testing in breast cancer at https://www.ascp.org/content/learning/breast-cancer.

Special thanks this month the Kellie Beumer (instructional design) and Melissa Kelly (monitoring and evaluation) from the ASCP medical education grants team for their thoughtful inputs into this piece.

References

  1. https://www.cancerresearch.org/en-us/scientists/immuno-oncology-landscape
  2. https://www.mskcc.org/cancer-care/diagnosis-treatment/cancer-treatments/immunotherapy/cancer-vaccines
  3. https://www.astrazeneca.com/media-centre/press-releases/2022/enhertu-efficacy-results-in-her2-low-breast-cancer.html
  4. https://www.urmc.rochester.edu/news/story/what-is-ki-67-in-breast-cancer
  5. https://www.nejm.org/doi/full/10.1056/NEJMoa1910549
milner-small


-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.

Laboratory Ergonomics: Safe Today, Healthy Tomorrow

Ergonomics is a safety topic that gets little respect in the laboratory, but it can become very important over time. The effects of poor ergonomics are cumulative, and they can appear suddenly. When they arise, the pain and treatment are often difficult, and as people age, healing is slower as well. Because the consequences of repetitive motion injuries are slow to appear, it can be a challenge to raise concerns and create solutions regarding ergonomics. Education and action today can prevent a great deal of future injuries and staff shortages.

There are several areas in the lab where a focus on ergonomics can create benefits, and creating healthy movement and comfort does not need to be expensive or difficult. Laboratory workstations have a primary and secondary work zone.  Keep the most frequently used objects in the primary zone (within 18 inches of reach) and less frequently used in the secondary zone (within three feet).  Every employee is a different size. Teach staff to take a minute before beginning work to adjust the chair and other work items to make the workstation more comfortable.  Eliminate clutter beneath the workstation to allows room to stand or sit allowing for foot and leg comfort.

Chairs should have 4-way and preferably 6-way adjustability and come in a variety of sizes to fit the employees who work in the lab.  Chairs should have five legs with casters that are appropriate for the surface being used (e.g.: hard casters on carpet and soft casters on tile).  The backrest should flex between 90 and 113 degrees with arm rests removed on chairs in the technical area to allow the chair to get closer to the benchtop. 

The tops of computer monitors should be at eye level.  Since many employees may use the same monitor, having it on a movable arm will help each user move the monitor to an acceptable level.  Any glare on the monitor screen can be reduced with a glare screen or by reducing the light in the department.  Keyboards should lay flat to allow the hands and wrist to work in a neutral position and the arms to work at a 90 degree level for comfort.

When using a centrifuge, stand directly in front and work over the top when loading and unloading, and use two hands to close the lid.  Centrifuges should be placed low enough so that employees can see into the body of the machine easily. Place antifatigue mats in front of laboratory equipment that requires standing for long periods of time. These mats relieve lower back and leg discomfort.  When bending and lifting, employees should lift using their thighs and not the back. Teach staff to hold objects close to the body when lifting.  Never lift more than 50 pounds without assistance from other employees or an assistive device such as a hand truck.

Capping and uncapping tubes for an extended period, phlebotomy, and transcription are laboratory tasks that require the use of the same muscle groups in the hands.  When working in these areas, it is important to vary the tasks every 2-3 hours per day and take mini-breaks to stretch fingers and arms in order to prevent carpal tunnel issues.

Breaks are an important part of overall ergonomic health.  It is better to take a five minute break every hour than to take a 15 minute break every four hours.  It is especially important if you are using a microscope or a computer for an extended period of time.  Remember the 20-20-20 rule: Every 20 minutes look up to focus on something 20 feet away and blink your eyes 20 times.  This will allow you to moisturize your eyes and give them a short rest. This can help to prevent ergonomics issues such as Computer Vision Syndrome which can result in neck pain, vision problems, and headaches.

Ergonomics safety is important on all areas of the laboratory, and the best way to ensure good work practices is to perform an ergonomics assessment. An ergonomic assessment should include identifying physical work activities or conditions of the job that are associated with work-related musculoskeletal disorders (MSDs) and how to eliminate these hazards.  For additional information, review the Occupational Safety and Health (OSHA) laboratory ergonomics fact sheet (https://www.osha.gov/sites/default/files/publications/OSHAfactsheet-laboratory-safety-ergonomics.pdf).

Over one third of all U.S. worker injuries are related to MSDs caused by poor ergonomics. Laboratory employees are valuable resources, now more than ever, and preventing time away from work, surgeries and medical bills for laboratorians should be a priority. The results of poor ergonomic practices in the lab do not show up today, but they will have effects tomorrow if we don’t pay attention to them. Those effects can be career-altering, career-ending, and they can interfere with the happy and healthy retirement that we all want to enjoy. Take steps today to prevent that future- provide training, raise awareness, and perform ergonomics assessments to make sure staff remains comfortable and healthy for all of their tomorrows.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Three Rules to Manage Chemical Waste- It’s Complicated!

The lab technologist approached the Lab Safety Officer to ask what should be done with a collection of liquid wastes that were collected from the chemistry analyzers. The LSO had worked with multiple labs for years helping to determine how to dispose of their liquid chemical wastes according to the regulations. He thought he was pretty well aware of the hazardous chemical wastes coming from the labs, but he had no idea this chemistry analyzer waste existed. He dug a bit deeper. As he called around to the different labs in the system, he learned not all sites were handling the waste the same way. Some sites saved the excess waste and poured it into other containers to use on the analyzers. Some labs threw the containers in the trash with liquid inside, and other sites simply poured the excess chemicals down the sink drain.

Some laboratories and lab systems are very large, and there are probably many practices, some newer, some older, that have developed over time, because “someone said so,” or because a vendor said it was acceptable. The LSO may not always be able to know about every practice in each lab. Staff should always escalate questions about waste processes when there is a concern.

Managing hazardous (chemical) wastes is a complicated process, and training and education is needed in all laboratories. The regulations surrounding waste are numerous and complicated, and it would be unlikely that every lab employee would aware of all of them. Here are some basics that are true for all laboratories:

Pouring Bulk Wastes Down the Drain is (Usually) Incorrect and Possibly Illegal

In general, manually pouring bulk amounts of chemical waste down the drain is not permitted by the EPA. What is a bulk waste? It is defined as 200 mL or more. That means if you have >200 mL of a reagent left over in a container, you cannot pour it down a drain for disposal. That chemical is now waste and must be properly collected, labeled, and stored until a waste contractor can pick it up.

There are, of course, exceptions to every rule. If a waste drain line is connected to a drain, for example, that is not considered “pouring,” and it is acceptable provided a lab has informed the local wastewater treatment center about what is going down the drain. Performing a gram stain in microbiology and letting the residual chemicals go down the drain is allowed also. That is considered part of the gram stain process, and it is not viewed as “pouring” chemicals down the drain. Also, the wastewater facility is aware that these chemicals are going down the drain.

Another exception exists in some laboratories that have an external “chemical pit” which is tied to certain sinks and drains in the lab. That means that all wastes poured down these drains go straight to a collection tank which neutralizes the chemicals. The tank is emptied periodically by a contracted vendor. Since there is no waste going to the local wastewater system, the local authority does not need to be contacted about what goes down the lab drains.

Hazardous Waste Must be Properly Stored

Anytime a lab collects chemical waste, it must be properly stored. There are two types of waste storage areas, Satellite Accumulation Areas (SAA) and Central Accumulation Areas (CAA). A Satellite Accumulation Area is a storage area near to where the waste is generated. The SAA must be within the line of sight of where the waste is made, it cannot be in another room or around the corner. You must store the waste where it can be seen from where it was generated. You cannot move waste from one SAA to another SAA. You can. However, move waste from a SAA to a Central Accumulation Area (like a hazardous waste shed outside, for example).

SAAs can store up to 55 gallons of waste. Waste must be stored inside of a flammable cabinet if it is flammable, and acid wastes cannot be stored next to bases. SAAs and CAAs must have a specific emergency contact poster hung nearby which indicates the location of the nearest fire extinguisher as well as an emergency contact in case of a spill or accident. CAAs must be checked weekly for proper labeling, open containers, and leaking, and these checks must be documented.

Hazardous Waste Must be Properly Labeled

Anytime a lab collects chemical waste, it must be properly labeled per EPA regulations. All waste containers must be labeled with the identity of the contents and the words “Hazardous Waste.” There must also be an indication of the waste hazard(s), such as a pictogram or an NFPA diamond. If waste is collected into an empty reagent jug, you may not use the wording or warning label from the original jug.

Dates should never be placed on chemical waste labels when stored in a Satellite Accumulation Area, but dates always need to be on containers once moved to the Central Accumulation Area. If the waste vendor picks up containers directly from your SAA, you never need to place dates on the containers.

Again, the proper management of the laboratory hazardous wastes is complicated. There is a great deal to learn and to put in practice. Many regulations have exceptions, and some of them depend on the facility’s waste generator status. If you have questions, reach out to your EPA (or state branch) representative, or ask an available safety expert. Make sure your lab is handling chemical wastes appropriately and safely.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Safety Succession

In many laboratories, managing safety is rarely a full- time job. Many have to oversee the safety program while also managing day-to-day operations, and overseeing the quality or point of care programs. Some are lucky enough to be able to spend all of their time on the lab safety program. Either way, the role can include managing safety policies and procedures, performing audits, providing education and training, and consistently working to improve the overall culture.

But what happens when the lab safety officer has a job change, a promotion or is ready for retirement? What happens to all of that safety knowledge and experience? Wouldn’t a gap like that be a detriment to the lab’s safety program? Yes, and laboratories should always be preparing for such an event.

One way to get prepared for a transition of lab safety duties is to identify a potential replacement while you are still working in your role. Look for someone who has shown interest in your work or has asked good questions about safety issues. Ask them to shadow you as you perform your safety tasks. Ask them to review safety procedures that are due to be revised. Have them watch a lab safety audit and describe how it should be performed. Ask them to create and possibly present safety education for the staff.

This may seem more difficult if you are the lab manager with safety responsibilities. However, there can be a benefit to identifying someone among the staff to perform some of the safety tasks as they can eventually come off of your plate. Leaders should also always have an active succession plan, so if safety must remain under your purview, make sure it is part of your discussions with your potential leadership replacement(s).

If, as a safety leader you run a laboratory safety committee, look for potential future safety leaders in that group. There may be one or more good candidates for future lab safety leadership. You can assess their readiness by delegating projects and tasks. Again, things like creating safety education, working on policies, and performing audits are great “auditions” for a future job. You can also ask the committee to create a safety fair, or to develop a safety poster contest or other projects which help to raise safety awareness in the department.

Provide resources for potential leaders such as safety documents and regulations. Involve them in lab safety inspections. If the EPA, the local fire department, or even the wastewater authority arrives for an audit, allow those staff members to be involved in the process. Getting a taste of these typical lab safety events can help people discern whether or not they want a future in the field. Preparing the lab for an upcoming accreditation inspection is also great experience.

Another way to help someone on their path if they are interested in safety is to help them get certified. ASCP offers a Qualification in Lab Safety (QLS). Preparing for the certification will help someone learn more about specific safety topics like Bloodborne Pathogens, Chemical Hygiene, and Waste Management among others. The suggested study resources and references will remain important in the hands of a future lab safety leader.

Given the growing shortage of laboratorians, it is clear that it will become more difficult to fill job openings as the years pass. Labs cannot operate without specific people, however. Leaders are vital, bench staff are key, and safety professionals will always be necessary. Planning for succession is something that should be inherent in the department for most positions. The organizational chart should be designed with succession in mind and a staffing plan that goes beyond today. Lab Safety should always be a key piece in the lab’s overall succession process. 

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Safety in the Moment

Often I am asked how one who is responsible for laboratory safety (yet has other duties as well) can get the job done well. In today’s labs there is tight staffing, tight budgeting, and a score of regulatory duties that must be accomplished, and not all of these things revolve around safety. Many who oversee the lab safety program also must run the point of care program, the lab quality program, or even manage all of the day to day operations of the department. It’s a great deal to juggle, but there are methods you can use to make sure that laboratory safety doesn’t take a back seat.

One way to incorporate safety into your multiple roles each day is to start every meeting or huddle with a safety moment or story. Ask for a team member to discuss a safety story they witnessed or in which they were involved. Placing safety first lets the team members know it has priority, and relating an issue or incident has benefits as well. The safety moment may be as brief as reporting on how an employee provided PPE to a vendor that came into the department. That is a safety success worth mentioning, and there are doubtless others that can be mentioned. These safety stories may also be those that do not necessarily illustrate a success. Telling people about an incident and asking how it could have been avoided is a fast yet educational plus for your safety culture. Reviewing safety incidents is also beneficial so that others know what happened and they can be thinking of how to avoid the same thing from happening to others or themselves. Talking about safety in these ways takes little time, but if safety is incorporated into the language of the department, the culture will remain improved, and it is easy to fit this habit into your schedule.

Acting as a consistent role model is another way to incorporate safety into your multiple roles. Make sure you wear the correct clothing and shoes. If you walk in and out of the department, you should dress the part. Open-toed shoes or mesh sneakers should not be worn. Wear PPE when performing any work in the lab, including huddles or team meetings. It doesn’t take any extra time to model the safety behaviors you expect from the staff, and doing this shows the staff where safety stands in the department.

A third way to insert safety into your busy day is to make sure you are able to quickly spot safety issues and address them immediately. Developing your “Safety Eyes” is a vital tool – learn how to notice safety problems as you work in the lab. Train yourself to be able to do this by looking for one thing each week. For instance, look for PPE and dress code issues on week one. Purposely notice what people are wearing on their feet, look for proper PPR like lab coats and gloves. Check to see that they are worn properly. If you do this for one week, you will become much better at noticing issues with just a glance. The next week look for proper chemical labels, then fire safety issues, etc. Once your Safety Eyes are enabled, you will be able to easily see issues and manage to rectify them while performing your other lab duties.

No matter your role in the laboratory, part of the job involves talking to other people. Make safety a part of those conversations when the opportunity arises. You might speak to your lead technologist about an instrument installation. Ask about new reagents that might need to be added to the chemical inventory.  Find out if there will be new waste streams generated. Was a risk assessment performed to look for other possible dangers?

Incorporating safety into your already busy day might seem like an impossibility, but it can be done. It is important that it is done. You are managing different parts of the lab, but if people are getting injured and exposed because there is no focus on safety, there won’t be much left to manage! Try these few ways to blend safety into your schedule- add one at a time and see how it works. In time you will notice that these small tasks make a big improvement on your lab safety culture.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Where have all the Techs Gone?

Electronic media is replete with articles and editorials of employers lamenting the shortage of workers. Signs offering hiring bonuses hang outside of restaurants, stores, and other retail outlets all across the country.

The inability to find workers has forced employers to take another look at their business model and reevaluate whether the model is still viable in its current form. The power balance in the employer/ employee dynamic has shifted. Employers accustomed to having their choice of applicants now find themselves scrambling to find workers.

No schools, No students

The healthcare industry, including the medical laboratory, is not exempt from the shortage despite healthcare experts and administrators knowing that the trending laboratory employee shortage was inevitable years ago.

Laboratory school administrators and managers have been sounding the alarm about the lack of community college and university medical technology program applications. Many academic medical technology programs are shuttered due to a lack of students.  The decrease in the number of students going into the laboratory field and the normal attrition rate of older workers retiring or moving on to higher-paying occupations has led to a high vacancy rate and a loss of expertise.

Burnout

The pandemic has added more pressure on a cohort of employees experiencing the stress of a new and unknown danger. These allied health professionals were (and are) the front-line response to a disease threatening everyone, regardless of economic or social demographics. Lab worker burnout has become a documented phenomenon

We call them heroes, but in reality, these are the same people working every day (pandemic or not), serving patients and delivering quality test results. Labs across the nation are filled with these everyday people. But just like everyone, laboratory workers have families, feelings, and needs they are trying to meet while being asked to give a little more. Many have little left to give and are now leaving the field to pursue other less stressful occupations or to simply enjoy the life they have worked so hard to build.

Start recruiting early

How can healthcare organizations stem the tide of those choosing to leave the lab and simultaneously attract young fresh minds to the unglamorous and less financially rewarding but necessary field of laboratory testing?

Presentations to elementary school children are a great way to introduce the next generation to the laboratory field. What child doesn’t like looking into a microscope to see their own red and white blood cells? Roadshows put on in junior high and high schools are a great way to kindle interest in healthcare just when students are beginning to ponder the question of what they want as a career.

Educational Aid

The cost of college continues to rise. Scholarships are often garnered by high-performing “A” students. But there is a pool of “B” students that could also benefit from financial assistance and would be just as welcomed into clinical laboratories. Broadening and diversifying the qualifications to receive a scholarship and financial aid could conceivably add to the pool of potential laboratory workers. Another unique idea is to allow laboratory workers’ dependents access to unused employee educational benefits.

Wellness in the Lab

Resources should also be dedicated to retaining technicians and technologists who are considering leaving the laboratory field.  The level of compensation is meaningful, but studies have shown that employees often leave the job for more esoteric reasons. Reducing stress, supporting a culture of wellness, inclusiveness, and belonging can differentiate one workplace from another. The theme of workplace wellness was extensively discussed at this year’s ASCP 2021 annual meeting in Boston.

The Need is Real

The pandemic has highlighted the importance of the laboratory to the health of the nation. The medical laboratory should use this moment in the spotlight to advocate for more resources and emphasize the necessity for more laboratory programs and students to meet the future testing needs of the nation.

Of course, many lab managers are wondering what to do today to stem the slow leak of personnel. Providing mental health support and financial incentives do work to keep these knowledgeable workers in the lab. Managers realize that laboratory science is a demanding high acuity job with little or no margin for error. To maintain quality, the healthcare industry will need to change its perceptions about the laboratory and address the lack of technicians and technologists with the same interest and retention resources given to nurses and doctors.

-Darryl Elzie, PsyD, MHA, MT(ASCP), CQA(ASQ), has been an ASCP Medical Technologist for over 30 years and has been performing CAP inspections for 15+ years. Dr. Elzie provides laboratory quality oversight for four hospitals, one ambulatory care center, and supports laboratory quality initiatives throughout the Sentara Healthcare system.

Moving Beyond Data to Action

On October 6th, 2021, the Lancet Commission on Diagnostics launched the “Transforming access to diagnostics” commission report with a virtual program and release of several publications. One of the publications included a study led by Dr. Sue Horton on access to diagnostics using data from 14 countries, mostly in Africa, from 2004 to 2018 with single timepoint data used to evaluate the relationship of access to diagnosis with a variety of factors. The diagnostics that were evaluated did not include histopathology, crucial for the diagnosis of cancer; however, the study did show importantly that income and population density had demonstrable relationships with access to diagnostics at the primary care level. For hospital-based access, there was no relationship which led the authors to conclude, among many other and relevant points, that access to diagnostics in “primary health care is the diagnostic so-called last mile and particularly affects poor, rural, and marginali[z]ed communities globally; appropriate access is essential for equity and social justice.” In the Commission report, the authors describe a tiered system with three levels that countries should incorporate into a national laboratory strategy and suggest that the burden of affording this system should fall on the governments. Moreover, they demonstrate the extremely important data around use of global markets to show that while the top four countries supply nearly 50% of all diagnostics, those same four countries only supply 24% of pharmaceuticals. In the opening statements to the Lancet Commission launch, Dr. John Nkengasong espoused very strongly the importance of manufacture of diagnostics WITHIN LMICs as one much needed solution.

For example, I was assisting a colleague with access to immunohistochemistry antibodies for which they were currently paying $700 USD for one vial of CD20. I traced the manufacture back to the US supplier (where the antibody was produced) and attempted to buy a vial as a private citizen with a credit card and was surprised to see that I could do so for $220 USD. This is the exact same vial of CD20 antibody. Why was my colleague paying a 218% markup? When I inquired with the company of manufacture, they reported that they had existing contracts to supply 2nd, 3rd, and 4th party vendors that they could not violate (i.e., they could not sell directly to a purchaser on the continent of Africa). The local supplier charging the $700 USD suppled a very large number and breadth of medical supplies including other diagnostic tests and reagents. Those reagents were reasonably priced, and several were on sustained government contracts. However, the CD20 antibody was not. Why is that the case? Let’s assume you are a supplier of widgets and wobbles. Your demand for widgets is huge and you sell more than 100,000 widgets per month to 20 different consumers. For wobbles, one person orders one wobble once per year. Your widgets ship room temperature but your wobbles require a cold chain, lest they be destroyed. What would you do? You could choose not to sell wobbles. You could choose to charge a ridiculous price for wobbles so that the excess time, energy, and expense of getting one wobble to your consumer is worth the effort. But you would not sell the wobbles for a similar profit margin as your widgets. It just wouldn’t make business since. Now imagine that the wobbles are manufactured in a country other than your own and to get them, you buy them from a country supplier who buys them from a regional supplier. So, wobbles already come with additional markups. You do have a third choice which is to manufacture wobbles locally, cut out the middle people, and charge much less but still make more profit. This is a great model if wobbles can be easily manufactured; however, when wobbles require an enormous capital investment, is it worth it to sell a couple of wobbles a year? Of course not. This business-based example is one of the drivers for a $700 USD vial of CD20. If a local manufacturer, in country or in a neighboring country, could manufacture and sell, this reagent would be more affordable and feasible as an available diagnostic. Specifically, patients with lymphoma would have access to rituximab for CD20.

But note the Commissions finding that almost 50% of diagnostics are made in the top 4 countries. This means, naturally, that the pricing for these reagents and supplies will be based on that economy and/or GDP, not on the economy or GDP of every country down to the lowest on any given scale. Consider the Big Mac Index, which looks at buying power relative to the US dollar. The only African country used in the Big Mac Index is South Africa and it is third from the bottom. To be clearer, if you have 100 South African Rand, you could get about $6.69 USD if you exchanged it directly (ignoring fees). If you want to buy a Big Mac in the USA, the average consumer price is $5.65; however, in South Africa, it’s 33.50 Rand. Based on the Dollar:Rand exchange rate, we are paying only $2.24 USD in South Africa for the same sandwich that would cost us $5.65 in the US. So, the Rand is undervalued. Now, let’s look at our vial of CD20 (not revealing the country to protect identities). According to the current exchange rate, you get $4.34 USD for every 10,000 units of this countries currency. Based on this model, if the CD20 was being EVENLY exchanged with cash (as opposed to being undervalued or discounted as we saw with South Africa), it should cost 450,586 units of this country’s currency. Instead, it is costing them 1,612,053 units. If we assume that this country could/should achieve a Big Mac Index equivalent discounted of the CD20 as we see with the Big Mac itself in South Africa, it should cost them 307,057 units or $133 USD. The difference? The Big Mac is manufactured and locally distributed directly to the customer in South Africa. The CD20 is not. So, one step to achieving an equitable pricing structure in healthcare for LMICs, especially in Africa, needs either direct discounted by US- and European-based manufacturers—unlikely to occur because of fear of alternative market access—or these products need to be manufactured and supplied locally.

What I have trouble agreeing with completely and, in some cases, even it part, is the concept of all healthcare costs falling on the government of a population with the expectation that they deploy a “one size fits all” approach to any aspect of healthcare. When we consider the US and Europe (again, the top four producers of diagnostics), we find one as a largely private commercial system driven by government pricing for elder care and the other a socialist system with universal healthcare enhanced by private care. For both systems, there is a huge economic base which either drives capitalism across the system from raw materials to final product or an enormous tax base that can cover the bulk of the costs of the systems. As we move from these four down the GDP ladder to LMICs, we don’t see, despite that we would like to nicely categorize countries into clear groups, a solution that would work “globally” because major pieces of economic development are needed as pre-requisites for a capitalist open market or one payer system. Each country has a unique set of circumstances (e.g., history, genetic diversity, geography, natural resources, tourism, disease burden, language, population size, etc.) that cannot be reduced to simply a GDP value or Big Mac Index factor. Moreover, it is wholly within the realm of colonialism, which we supposedly abandoned 70 to 80 years ago, to think that we can propose a system for “all countries” that would even remotely approach the solving the problems of these countries. Although it is an excellent mental exercise to idealize a healthcare system as having something as simple as three tiers and trying to allocate what tools and resources are needed at each level to accommodate the population, the reality is that such a framework is only a starting point with a lot of work needed to fully realize what type of system would be best for a given country. Very small islands and small nations may have only one hospital to serve its entire population and insufficient patients of a given type to justify the expense of certain tools. Extremely large countries with large populations will need a myriad of systems with their own tiers that support patients based on location, socioeconomic status, language, etc. and these systems likely overlap in geography. And the expertise to best determine that system is the health and government leadership of that country, not an external set of non-specific instructions. The external set of instructions, however, are extremely important, as noted, as a starting point, but each country that identifies a gap in their diagnostics, for example, has to assess their specific situation. At the heart of this problem is the need to stop talking about the challenges of global healthcare and start (or continue) directly working on fixing them.

At ASCP, we approach our global outreach through assessment, gap identification, implementation planning, and execution (AGIE). Through that approach, we have deployed and/or support 19 sites in 15 countries with telepathology; however, in an additional 10 countries, we have active programs that have not yet reached a point of telepathology deployment. Had we said, from the beginning, “We are going to give everyone telepathology”, we would have wasted an enormous amount of time and money. By following an AGIE approach, we have navigated to the specific problems of each site with whom we collaborate and attempted to solve them. And we do so with more than 80 collaborative partners. The Lancet Commissions on Diagnostics most recent launch is an excellent first alert for those who have not been engaged in global health for the last 20 years that there are still major challenges and problems in global healthcare and diagnostics. Our hope is that funders, governments, industry, health system members, patients, and advocates will view this as a rallying cry to direct resources and energy to join those of us who have been engaged in this work to move the needle even further. Access to diagnostics for every patient everywhere. It is ASCP’s simple mantra, and we hope, together, we can achieve that goal.

References

milner-small


-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.

Lab Safety Whiplash

The world seemed like a brighter place just a few short weeks ago. The pandemic seemed to be nearing an end, and life was returning to normal. In laboratories, the COVID-19 testing volumes decreased, wearing surgical masks all day long at work was no longer the norm, and the workday had that old feeling of familiarity again. Then, suddenly, it all came roaring back. The COVID-19 Delta Variant, loading its victims with over 1000 times more viral particles than the original could, came to visit. Now masking and social distancing are back with a vengeance, and everyone holds their collective breath as we wait to see what other cancellations and restrictions will come our way. It is almost worse this time because we know what the future will bring, and it isn’t pretty.

So how do we deal with it in the laboratory? How do we manage our lab safety program as our staff deals with this physical and mental whiplash? Many labs already saw the fatigue workers exhibited in the past 18 months. People stopped distancing from each other, they became less diligent about hand hygiene in the department, and PPE use became a bigger compliance issue than it had been when the pandemic began.

Fortunately, this is not a new challenge for lab safety professionals. Even without a pandemic, maintaining an awareness for the importance of lab safety has been a consistent need. Those who have been in the field for years and have never had a chemical exposure or a needle stick become complacent about the hazards where they work. Formaldehyde is treated like it was water, and contaminated blood tubes are handled with no gloves. This “disease” spreads also, when new employees observe these poor safety behaviors and emulate them. A poor safety culture does not have to become a pandemic, however, there is a cure, even in times such as these.

First, determine where your lab safety culture lies on the spectrum- is it very broken, or does it just need a little boost? Make an assessment of the overall culture using surveys or by talking to lab staff and leadership directly. Review your findings with the staff so that they are clear about why you are tackling the issues. That act alone raises awareness in the department. If possible, obtain a commitment from staff to improve the overall safety culture. Find safety champions who will work with you on the on-going project. Be sure safety is being discussed daily and is placed in front of the staff. Use huddles, e-mails and safety boards to promote a positive culture.

Unsafe behaviors in the laboratory can easily have consequences that may affect others in the department. Spills and exposures are just some incidents that may occur. Messy lab areas can create trips or falls, and improper storage of chemicals or hazardous wastes can be dangerous as well. Perhaps laboratory staff don’t think enough about the dangerous consequences because there isn’t enough training about them. Perhaps they don’t think about the potential consequences to others because they haven’t been told about the possible physical, environmental, or financial consequences. Maintaining awareness of these issues is always key.

The COVID-19 pandemic and its apparent rebound has made for some very long months for employees in healthcare, and the struggles do not appear to be ending anytime soon. As safety leaders, it is important for us to do what we can to help staff build resilience against the whiplash and to reinvigorate them to continue with good safety practices. We must remind them that despite all of the changes in safety guidelines in the recent past that the basics – PPE use, using engineering controls and work practice controls- are there to help us get safely through the day so that we can still go home healthy and to be able to enjoy our lives so that we can see the end of these unusual times.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Win, Lose, or Draw?

In the 1962 Japanese release of King Kong vs. Godzilla, it was pretty easy to determine who the winner of the epic battle was (it was Kong, if you’re keeping track). Almost 60 years later, the two famous giant behemoths met again on the big screen, this time in an American version. This second battle, while fun to watch, had a less-obvious outcome. Those who sided with either monster had moments to cheer during the movie, but in the end, (spoiler alert!) a secondary issue overshadowed the much-hyped monster match. It seemed obvious to me that the script writers tried their best to satisfy audiences on both sides of the aisle. In doing this, however, the movie lost a little bit of its punch. That can happen in lab safety as well. If the message isn’t strong or clear, safety issues will ensue.

The lab manager noticed an increase in employee injuries on the job. Someone cut their finger on a microtome blade. Two different specimen processors splashed serum into their eyes. A night shift tech kneeled onto the floor to pick up a box, and her knee landed on broken glass that hadn’t been swept up. It was clear people were not paying close attention while they were performing their duties. The manager held a meeting in the lab to raise safety awareness. He delivered his message, but staff noticed he was chewing gum and that he did not put on a lab coat even though he was in the lab for over 20 minutes. The message was not clear. He said he was for a safer lab, but he didn’t look to anyone like he meant it.

Jake was new to the histology lab and he was excited to make a good impression as he began his career. During his departmental orientation, the supervisor stressed the importance of chemical safety. Formaldehyde and xylene were in use in the department, and they were potentially dangerous. Jake got the message and was ready to show the department he could work there safely. After orientation was done, Jake came to work to begin cutting tissue. When he sat down at his station, he opened the drawer for supplies and saw a packet of oatmeal a spoon, and a coffee cup. The medical director came in to the lab to welcome Jake, and he noticed she was drinking tea. The message Jake received about safety was no longer clear. The supervisor spoke about safety, but it was clear no one enforced it.

When the message we send to staff about lab safety is mixed, we really can’t blame them when the culture is bad. The problem is that many leaders are not aware they are sending this confusing communication. If you’re not sure if you are one of those leaders, take a step back and look in the mirror. What kind of message do you send? Do you support safety? Do you do it with your words AND your actions? What sort of example do you set?

If you’re not in lab leadership, you still have a responsibility to represent safety with your lab practices as well. Everyone has an impact on the overall safety culture, not just leaders. What do you do to promote safety in your department?

Maybe you are an employee and it’s your leader who is sending mixed messages. First, make sure you’re choosing the side of safety in your work no matter what others are doing. Second, it may be time to “manage up” and ask leadership why certain unsafe practices occur. If the leader is part of the problem, it is acceptable to point that out, provided you do so with purpose, tact and professionalism.

Leading by example for safety is vitally important no matter your role in the department. Choose your side, stick to it in all circumstances, and over time you will be able to be declared the decisive winner. Those mixed safety messages usually lead to a draw, or worse, a loss for the team. 

Because I have been a Godzilla fan for decades, I thoroughly enjoyed this latest film entry. In truth, I was able to discern a clear winner of his fight with Kong despite the writer’s intentions, but that may be because I had support for my favorite going in. That might be your way to victory as well. Root for “Team Safety,” and your support will be noticed and followed for the win!

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.