Lean Principles

Last month we touched on implementing lean principles to help improve efficiency within the lab, as opposed to relying strictly on physical changes. For example, purchasing a larger centrifuge as opposed to switching to a different methodology completely for your STAT testing needs. But what exactly does “lean” mean?

The overall focus of a “lean” laboratory is efficiency: optimizing delivery of results by efficiently utilizing resources, thereby reducing costs and improving speed (turnaround time). If a step or action does not add value, lean laboratories will seek to remove or minimize this perceived waste.

There are 8 key areas where lean processing can be applied to minimize waste, improve efficiency, and prevent unplanned downtime:

  1. Defects: This can apply to both your consumables (reagents, controls) as well as your instruments and equipment. QC reagents that are not as stable as the manufacturer claims them to be can lead to failures, repeats, and extra costs (and time). Older equipment may be more prone to failures and breaking down, leading to additional downtime. Ensure all maintenance tasks are completed on time to prevent these interruptions.
  • Overproduction: Performing testing that was not requested by the customer uses staff time and resources, and cannot be billed for. Evaluate your critical value policy – are you repeating and verifying every single critical result, even though the patient has been consistently running that way since admission? Consider tightening your delta check rules and only verifying values when the result is either new, or a significant change from the prior result.
  • Waiting: If a process is idle or stagnant, resources are being tied down that cannot be used to add value. There is value to batching certain tests due to QC requirements or cost (ELISA plates, electrophoresis gels); however waiting to batch CBC samples on an automated analyzer does not provide the same return value. Similarly, waiting until an instrument runs out of reagent completely before loading more on board can cause further delays if the reagent has special handling requirements (thawing, reconstituting) or has not yet been calibrated.

Evaluate your workload to ensure you have appropriate staffing levels that match your testing volume. If your laboratory receives a large drop off of samples from outpatient clinics at 5pm, consider staggering your work schedules so that you have coverage when you need it, while minimizing the amount of staff waiting for work to arrive.

  • Not engaging all employees: Your staff on the front lines are the experts – utilize this valuable resource by tapping into their creativity. Ask them what is working in your current process, and what they would like to see improved. You may be surprised by the innovative ideas they come up with, and they will have a vested interest in making the improvements work.
  • Transportation: Excessive movement of reagents or samples can lead to time wasted. Try to keep heavy or commonly used items stocked near the location they are used in. It is much easier to transfer a 5 gallon reagent cube from a storage shelf within the hematology department than to bring it up from a central supply room 3 floors below the lab. When possible, utilize automation to process samples and organize completed tubes ready for long-term storage.
  • Inventory: Determine appropriate par levels for each consumable, and avoid over ordering when possible. Excess inventory ties up capital budget, space, and depending on the product can risk wastage due to short expiration dates. For items requiring a long lead time (heavy reagent cubes traveling via ground shipping), plan accordingly to avoid excess rush delivery costs. Within your inventory management system, include all necessary information so that all staff can reorder supplies when the par threshold is exceeded: full description of the item, photo, physical location where it is stored, supplier, item #, par level, amount to order.
  • Motion/Distances: Reduce excess travel and motion of both your staff and your samples to improve efficiency. Strive to create a continuous process flow when designing your lab work areas. Work should move along the process path in a smooth and uninterrupted stream; rather than having to keep returning back to a different bench or department. If different departments frequently share specimens (CBC and HA1c on the same tube), consider colocation of these areas to reduce excess motion between them.
  • Extra processing: Performing non-value added work, having redundant paperwork, or overly complicated processing steps can lead to errors and wasted time. Focus on simplification and standardization. For example, consider implementing a barcode scanner to reduce transcription errors associated with manual entry of values.

When looking to implement lean processes within your lab, start small. Look to see which departments or processing steps are generating the most waste and focus your efforts in those areas first. Even small steps can yield a big return when executed well. Efficient labs lead to happy techs; happy techs lead to successful labs.

https://www.mt.com/us/en/home/library/guides/laboratory-division/1/lean_lab_guide.html

-Kyle Nevins, MS, MLS(ASCP)CM is one of ASCP’s 2018 Top 5 in the 40 Under Forty recognition program. She has worked in the medical laboratory profession for over 18 years. In her current position, she transitions between performing laboratory audits across the entire Northwell Health System on Long Island, NY, consulting for at-risk laboratories outside of Northwell Health, bringing laboratories up to regulatory standards, and acting as supervisor and mentor in labs with management gaps.

The Three Biggest Safety Audit Blunders

There are several potential safety indicators that can be used to help someone assess the effectiveness of a laboratory safety program. The results of a properly performed safety audit can be one of those indicators, and it can provide useful information to a lab safety professional whether he or she is new to the role or has been there for years. You’ll note, however, that the term “properly performed” was inserted, and that was no mistake. Safety audits are performed in laboratories across the world, but in some of these locations the environment remains very unsafe, and performing the audits hasn’t made any difference. Mistakes can be made when performing a laboratory audit, and those errors can lead to dangerous situations. While all audit errors need attention, there are three that can cause the most damage to your lab.

Probably the most common safety audit gaffe is a practice known as “pencil whipping.” This happens when someone quickly marks “yes” on every single item of the safety checklist without really checking for compliance. Pencil whipping occurs for many different reasons. The person performing the audit may be in a hurry, they may feel like they have performed the audit often and just know the answers, or they may just not care about the audit results. Perhaps there is no lab leadership oversight as to how the audit is performed, or maybe the person performing the audit doesn’t understand what the checklist items mean. No matter the reason, this pencil whipping of answers is dangerous. It provides false results, and it masks real safety issues in the department that will likely not have resolution. In an environment where this occurs, a preventable lab injury or exposure is likely to occur, and it could have lasting or even career-altering repercussions for the victims.

Another safety inspection misstep occurs when the person performing the audit begins going down the checklist with pre-conceived assumptions or a specific focus in mind. Some auditors have their minds made up about a lab safety culture before they start, and their version of what they see while inspecting may be skewed. That may cause them to cite a lab falsely and without enough investigation into a particular issue. Some inspectors might be so focused on one thing- chemical labeling, for example – that they miss other obvious safety issues such as trip hazards on the floor. This narrow focus or mindset can limit the effectiveness of a safety audit as it can prevent the auditor from noticing other real hazards in the laboratory.

The third safety audit blunder (and probably the one with the worst consequences) is a failure to follow up on the audit results. In a larger laboratory, a complete lab safety audit can take several hours. It may involve a procedure review, an employee file review, and a look through lab drawers and cabinets as well as a walk-through. However, even if all of the findings from that work is well-documented, it won’t mean anything if there is no follow-up. A failure to review and act upon audit results negates the entire process, no matter how well it was performed. Make sure your lab inspection method includes that final step – someone should review all results and ensure that any safety issues are addressed or resolved as soon as possible. A healthy lab safety cycle will include that review as well as repeat audits to make sure safety compliance is maintained on an on-going basis.

A properly performed audit can speak volumes about the overall lab safety program. If your audit form remains constant, it can be a good idea to train multiple people to perform the audit so the lab can be viewed with fresh eyes each time. Regardless of who performs the safety audit, make sure they refrain from pencil whipping, that their focus is not narrow, and that the person responsible handles the follow up of any safety issues discovered. By avoiding common audit blunders, a positive improvement of the lab safety culture can be assured.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Just Culture: Growing Trend or Lab Requisition?

Hello again everyone!

Last month, I discussed some really interesting topics at the intersection between psychiatry and pathology—two fields that aren’t exactly the closest; more so “diverged” in the hospital milieu as if in a poem by Robert Frost. This month I’d like to bring the conversation back to a topic I’ve addressed before: improving multidisciplinary medicine and creating a Just Culture in medicine.

Not exactly culture with a swab or agar dish, a Just Culture is an all-encompassing term for system-based thinking and process improvement not at the expense of individuals. In a post I made last July, the topic of high reliability organizations (or HROs) is one that addresses communication and accountability in high stakes environments—like healthcare!

Just Culture isn’t a stranger to lab medicine. The American Society of Clinical Laboratory Science (ASCLS) published a position paper in 2015 utilizing this trending healthcare buzzword. On the subject of patient safety, ASCLS believes “Medical Laboratory Professionals must adopt a ‘fair and just culture’ philosophy, recognizing that humans make errors, and understanding the science of safety and error prevention.” (Source: ASCLS 2015, https://www.ascls.org/position-papers/185-patient-safety-clinical-laboratory-science) We all know how we maintain patient safety in the lab, right? We do that through quality control, QA measures, competencies (both internal and from accrediting bodies like CAP), and continuing education. Raise your hand if your lab is getting inspected, just finished getting inspected, will be inspected soon, or if you’ve recently done competency/proficiency testing yourself, CE courses for credentialing, or are reading this blog right now! We’re all “continuing” our education in health care ad infinitum because that’s how it works—we keep learning, adjusting, and ensuring best practices concurrent with the latest knowledge. And, instead of punishing lab professionals when we make errors, we try to be transparent so that each error is a learning opportunity moving forward.

Image 1. I’d panic too if my lab was being inspected by 007. What, you wouldn’t?

I’m currently in my OB/GYN rotation at Bronx-Care and during the most recent Grand Rounds we had someone talk about “Just Culture”—a sort of continuation on the themes of the same lecture series that inspired my article on HROs. Essentially, the theme is that disciplining employees for violating rules or causing error(s) in their work is less effective than counseling, educating, and system-oriented and best-practice-informed care. In this talk, we watched a short video (embedded below) which walked us through approaching faults or errors in medicine in a way that empowers and educates. A story from MedStar Health, a Maryland-based health system, demonstrates how systems-based thinking can be the best way to solve problems in healthcare.

Video 1. “Annie’s Story” has become a widespread example of Just Culture for nearly twenty years. Being serious about high reliability and just culture means adopting a system’s approach to analyzing near misses and harm events—shame and discipline are becoming antiques. Learn more about Quality and Patient Safety (http://ow.ly/M1aZk) and Human Factors Engineering in Healthcare (http://MedicalHumanFactors.net)

Annie, a nurse in the MedStar Hospital system, is the spotlight story in this video. She came across an error message on a glucometer after checking someone who was acutely symptomatic. She double checked it and made clinical decisions, with her providing team, to give insulin. This sent the patient into a hypoglycemic event which required ICU support. In the story, she was actually suspended and reprimanded for her “neglect”—other nurses made the same error just days later. This prompted some action, inciting nursing managers and other administrators to investigate further, ultimately involving the biomedical engineers from the company to weigh in on this systemic fault in glucose POCT. Annie returned to work, and the problem was recognized as not user-error, but system error; she went on to talk about how she felt unsure of her clinical competency after being reprimanded. Imagine if you accidentally reported the presence of blast cells in a manual differential in a pediatric CBC while you were alone on a night shift only to find out from the manager on days that you made a pretty big mistake with clinical implications. Then imagine you were suspended for a few weeks instead of simply asked to explain and identify opportunities to increase your knowledge. Pretty harsh, right? I’m glad the MLS who did that didn’t lose his job and only had to do a few more competency trainings…yep.

Fine. It was me. I mentioned mistakes in my discussion on HROs and discussed that particular mistake in part of a podcast series called EA Shorts with a clinical colleague of mine. Everyone makes mistakes, especially in training, and that’s okay! It’s how we deal with them that matters.

Image 2 (a, b). Take a look at that glucometer. Would you have caught the error? Did you catch the “LO” value in the background vs. the out-of-range foreground prompt? Or was the screen prompt as distracting for you as it was for Annie? Who was responsible for this error: nurse, lab, or engineer?

Anyone else notice a stark absence of professional laboratory input in the video? I assume many of you sharp-sighted lab automation veterans didn’t miss the glaring “LO” behind the dialogue box on the glucometer. And, to me, that begs the question: was there any lab input on this instrument, its training, or its users? Nurse Annie made a mistake—but she’s not alone, according to a Joint Commission study from November last year, close to 11% of users make mistakes when prompted with error messages compared to 0% of users misinterpreting normal values on screens of a particular model of glucometer. And that’s just one type of instrument. Imagine 1 in 10 nurses, medical assistants, or patients misinterpreting their glucose readings. (Source: The Joint Commission Journal on Quality and Patient Safety 2018; 44:683–694 Reducing Treatment Errors Through Point-of-Care Glucometer Configuration) This should also be a good opportunity to remind us all of CLIA subpart M, the law that outlines who can accredit, use, and report point-of-care results. Herein lies another problem, stated well by the American Association for Clinical Chemistry (AACC) in 2016, “… another criteria for defining POCT—and possibly the most satisfactory definition from a regulatory perspective—is who performs the test. If laboratory personnel perform a test, then this test typically falls under the laboratory license, certificate, and accreditation, even if it is performed outside of the physical laboratory space, and regardless of whether the test is waived or nonwaived. On the other hand, waived or nonwaived laboratory tests performed by non-laboratory personnel are nearly always subject to a different set of regulatory and accreditation standards, and these can neatly be grouped under the POCT umbrella,” and that can mean trouble when we’re all trying to be on the same clinical page.

In previous posts, I’ve mentioned the excellent knowledge contained within the Lab Management University (LMU) program. One of the modules I went through discussed this topic exactly: Empowerment as a Function of Leadership and Peak Performance. In short, if we want to be good leaders in the lab, we have to set expectations for positive patient outcomes, including safety. Good leadership should empower their staff with education, support, and resources. Poor management can create toxic environments with staff that can be prone to mistakes. If we can be dynamic leaders, who adapt to ever-improving best practices and respond with understanding and compassion to mistakes, then our colleagues become just as reliable as your favorite analyzer during that CAP inspection I mentioned.

Image 3. LMU class module for promoting Just Culture and inciting positive behavior in your department.

I often get clinician input about how the processes between the bedside and the lab can be improved. Often, they include comments about the need to share relevant clinical data for improving diagnostic reporting or improving a process between specimen collection and processing. But what often gets left out is the human element: the scientist behind the microscope, the manager behind the protocol, and the pathologist behind the official sign out report. Let’s continue to incorporate all of the feedback our colleagues provide while maintaining a safe and empowered culture for ourselves, our staff, and our patients.

What do you think? How does your lab, hospital, clinic, etc. address POCT safety or patient safety at large? Do you operate within a Just Culture? Share and comment!

Thanks and see you next time!

–Constantine E. Kanakis MSc, MLS (ASCP)CM graduated from Loyola University Chicago with a BS in Molecular Biology and Bioethics and then Rush University with an MS in Medical Laboratory Science. He is currently a medical student actively involved in public health and laboratory medicine, conducting clinicals at Bronx-Care Hospital Center in New York City.

Personal and Situational Variables of Leadership Development

Several aspects influence whether people learn from experiences in order to become a better leader. These variables can either be personal traits of the individual learner or situational aspects of the circumstances. Both personal and situational variables of experiential learning increase the development of leaders.

Personal Variables

Being exposed to experiences does not necessarily mean that people learn from them. There are some personal attributes necessary to foster learning from experiences in order to develop one’s leadership potential. The main variable that influences experiential learning is the capacity and practice of self-reflection. Being able to draw lessons from experiences is indeed what drives leadership development and self-reflection increases the number of lessons noticed in each experience. Furthermore, experiences that are challenging promote learning. How challenging an experience is can be seen as situational, however it is also personal as some people are more drawn to challenging experiences than others. Additionally, motivation to learn increases experiential leadership development. Whether the learning is motivated through goals, actions, or to simply seek knowledge, motivation influences leadership development.

In addition to being reflective, motivated, and challenged, experiential learners also need to think and act. Thinking is important because it allows the learning to plan and strategize. Finally, acting is one of the most critical aspects of learning, because it closes the cycle of learning and creates the next cycle of experiential learning.

Furthermore, assessments bring a deep level of self-awareness about their behavioral and thinking patterns, behaviors, and preferences. Knowing what one does well, where one can improve, and where the developmental gaps are is essential for leadership development. The experience with assessment is both a personal and situational variable, because how people are rated or rate themselves depends on the situation and on the personality of the person being rated. Finally, vicarious learning is learning through other people’s experiences. However, not everyone who witness other people’s leadership challenges, solutions, and behaviors develop their own leadership skills. Therefore, this is both a situational and personal variable as a person needs to be motivated to learn but also needs access to a vicarious learning opportunity.

Situational Variables

Some of the factors that influence learning from experiences are situational. This means that people have to be in a specific type of situation in order to not merely experience something but to increase their leadership effectiveness based on that experience. Experiences in themselves are situational; for the most part one cannot make certain experiences happen but they happen to people instead. However, there are three specific aspects of employment that people can seek that foster situational learning opportunities. The first one is getting a new job, changing job status, or job location. There is a tremendous amount of experiential learning that takes place when one of these aspects of a current job changes. The second is a change in task-related characteristics, such as a process or systems change. Thirdly, obstacles increase learning. Such obstacles can be difficult supervisors or employees, another company launching a similar program, or a crisis. All these experiences promote learning because jobs are central in leadership development, as well as, different assignments and experience with obstacles.

Support is an additional situational variable that increases learning. Support promotes learning because it makes people feel reassured and safe. Feeling safe also increases learners’ motivation, competency, and self-efficacy, which all promotes learning. Additionally narrative accounts shared by leaders and the organization promotes learning from experience, even if the narratives are fictional. Hearing stories about effective and ineffective leadership increases listeners’ own leadership skills through cognitive elaboration and transportation. Finally, allowing people to experience the consequences of decisions increases their learning and develop their leadership potential. Experiencing the consequences will increase people’s understanding of the impact of decisions and how departments and tasks are interconnected.

People learn in many different ways, but we all go through experiences, whether they happen to people directly, through vicarious learning, or through narratives. The better leaders can maximize learning from experiences, the more prepared the next generation of leaders will be to tackle challenges, dilemmas, and problems.

 

lotte-small

-Lotte Mulder earned her Master’s of Education from the Harvard Graduate School of Education in 2013, where she focused on Leadership and Group Development. She’s currently working toward a PhD in Organizational Leadership. At ASCP, Lotte designs and facilitates the ASCP Leadership Institute, an online leadership certificate program. She has also built ASCP’s first patient ambassador program, called Patient Champions, which leverages patient stories as they relate to the value of the lab.

Meaningful Metrics

Performance improvement (PI) metrics are a great way to assess the overall quality of your laboratory program. They allow you to track vital data related to CMS outcome measures, which can directly impact the financial well being of your organization. However, labs should be careful when choosing which metrics to monitor, and should routinely evaluate if the metrics they’re using are still meaningful to them.

Even a small laboratory will generate a ton of data throughout the year. The key questions to ask yourself are: 1) What do I want to know? 2) What will I do about it once I have the answer?

There may be different sets of metrics that laboratories will have to monitor and report, depending upon who the target audience of the final data analysis will be. Metrics and reports can be generated for your patients/customers, internal laboratory staff, management, and senior leadership. You may also be called upon to share your metrics with regulatory agencies as well to prove the effectiveness of your quality assurance program.

Ensure your reports are relevant and meaningful to the audience they are being shared with. Customer/Patient centered metrics can include items such as satisfaction survey results, average waiting time for outpatient blood drawing locations, and average cost/revenue per test. Internal laboratory staff metrics can include turnaround time reports for STAT tests, compliance with critical call notifications to providers, and percent completion for required monthly maintenance tasks. Higher level metrics that can be reported to management and administration may include performance on proficiency testing surveys, regulatory inspection results, and percent of corrected reports that were issued.

If goals have been met and sustained consistently, consider raising the bar and challenging yourself even further. Each metric should have 3 goals: 1) Minimum Threshold (must be achieved each review period), 2) Annual Goal (desired overall goal to account for monthly fluctuations in the data), 3) Stretch Goal (motivational tool, achievable but not guaranteed a high rate of success). Increase your minimum threshold limits to be closer to your stretch goals, and see what your particular organization can realistically meet and sustain. Be careful to not set unrealistic expectations, as this can lower morale and result in misleading interpretations of the data. Work with your clinicians and regulatory agencies to determine appropriate, and realistic goals, and utilize national benchmark standards when available.

Metrics that were added to address and monitor a specific known issue or problem should be evaluated for necessity once the issue is corrected. Consider reducing the monitoring of these items from monthly down to quarterly, semi-annually, or annually until you have confidence that it no longer requires monitoring.

When issues are identified, a root cause investigation should be performed with the intent of identifying the true cause of the problem – not to point blame to a particular person. The depth and intensity of your investigation will depend upon the specific metric which failed to meet its goal.

Properly identify the problem. To learn from our mistakes, we must first properly identify them. What may seem like an obvious root cause, may not be the real reason for an issue. For example, turnaround time metrics – if you did not complete STAT troponin tests in <45 minutes, simply purchase a new instrument that is faster. Well, it’s not quite that simple.

Break it down further into pre-analytic, analytic, and post-analytic times. Is the bulk of your 45 minute window taken up in the pre-analytic phase? Are samples being held in a central receiving area for 20 minutes and batched before being brought to the chemistry department? Are you testing serum (which needs to first clot before being spun) or plasma (which can be spun down immediately)? Is there a delay in verifying/releasing results into your LIS where autoverification would improve this process?

Before attributing instrument downtime as a cause, confirm that the outliers were in fact during the time period when the instrument was down. There’s a higher chance you have a pattern of poor TAT performance around change of shifts or meal breaks, than during a 6hr downtime on a single day in the month. Also look at how you are analyzing your metrics to ensure they are accurate. Are you including add-on tests based on their original received time, or based on when the troponin was added to the original order?

Develop a corrective action/preventive action plan. Based on what you identified to be the true root cause(s) that contributed to poor PI metrics, develop a plan for addressing these weaknesses. Identify who specifically will be responsible for performing each step in the action plan, and who will be held accountable for ensuring it was performed.

Implement the plan(s). Document the date the corrections were fully implemented, along with any delays or obstacles encountered.

Collect and analyze more data. Depending on the severity of the failed metric, you may want to begin analyzing the effectiveness of your improvement plan immediately. If there was a spike in the number of employee safety incidents reported last month due to ongoing construction in a department, the work conditions should be monitored daily/weekly for improvements.

Conversely, looking at data too soon may not paint an accurate picture of the true effectiveness of your corrective actions. Some corrective action plans may require several steps or phases for full implementation. For example, a process change will require an update to your procedure manual, retraining of all staff, and then rolling out the new process. This may take several days-weeks before 100% implemented and improvements can be detected.

Monitor the results. Check for sustainability of your corrections – staff may be on their best behavior the first week after being spoken to, but can return to old habits after that. They may not fully understand that although one process is easier for them, it is adversely affecting the overall performance of the entire lab team.

If you are consistently struggling to meet your metrics, consider looking for ways to implement lean process changes. Upgrading to a STAT spin centrifuge may save you 5 minutes on the pre-analytical side; but you may still have room for improvement. Do you consistently receive 20 samples at a time, meanwhile your centrifuge will only hold 8 tubes? Do you receive tubes of different sizes (adult vs pediatric), and is your centrifuge capable of quickly and easily interchanging inserts to accommodate both types?

Ultimately, be sure to engage your frontline staff and listen to their opinions on what is working, and what could be improved upon. They are the ones doing the tasks day in/day out, and are your subject experts on where some of the shortfalls may lie. Even if the answer is simply not having enough staff available, having detailed analytical metrics can help management justify the cost of adding additional team members, and also pinpoint the exact days and times where the help is needed most.

Bio

Kyle Nevins, MS, MLS(ASCP)CM is one of ASCP’s 2018 Top 5 in the 40 Under Forty recognition program. She has worked in the medical laboratory profession for over 18 years, and is currently employed at Northwell Health Laboratories on Long Island, NY. In her current position as a Laboratory Supervisor for the Northwell Consulting Team, she transitions between performing laboratory audits across the entire Northwell Health System, consulting for at-risk laboratories outside of Northwell Health, bringing laboratories up to regulatory standards and acting as supervisor and mentor in labs with management gaps.

-Kyle Nevins, MS, MLS(ASCP)CM is one of ASCP’s 2018 Top 5 in the 40 Under Forty recognition program. She has worked in the medical laboratory profession for over 18 years. In her current position, she transitions between performing laboratory audits across the entire Northwell Health System on Long Island, NY, consulting for at-risk laboratories outside of Northwell Health, bringing laboratories up to regulatory standards, and acting as supervisor and mentor in labs with management gaps.

Over the River and Through the Woods…

Specimen handling and transport is a vital training topic in the realm of Laboratory Safety. There is much to consider here that affects specimen quality and integrity, and ultimately affects patient results. There are also considerations involving employee safety at every step of these processes. One group of employees that can easily be overlooked when it comes to proper safety training is lab couriers. They perform the important role of properly and safely transporting specimens for testing, but without the proper education and tools, these team members can quickly fall into situations of harm.

The courier was running late, and she had one last stop on her route at a medical office building with multiple physician offices and drop boxes. It was cold, and she decided to leave the vehicle running while she went inside to pick up more specimens and deliver lab reports. The car was also left unlocked. When she came back outside, the car was gone. It was found hours later in am empty field, but it had been set on fire. There were lab specimens and reports strewn all over the field and into the nearby woods.

Couriers need to be trained about the importance of their role, and that training should include information about security and protected health information (PHI). Be sure to include HIPAA training for all courier staff. When discussing security, enforce specific processes such as always turning off vehicles before exiting and properly securing all patient specimens and any paperwork being transported. Whether couriers use company vehicles or their own personal transportation for the job, making sure harm does not come to the vehicle nor any contents being transported is key.

The courier knew he had a long drive ahead of him because of the toll bridge, and he had several specimens that needed to be delivered as frozen. He went to the lab’s cooler and scooped a large pile of the dry ice into a big box using his hands. It was cold, but it helped to wake him up a bit. He placed the specimens in the box and placed it in the back seta of his vehicle. It wasn’t very warm out, so as he began his drive, the courier made sure the heat was on high and that all windows were closed. After a few miles, the courier began to fell very tired. He struggled to stay awake, and he couldn’t figure out why. After sitting in traffic on the bridge for a time, he pulled off the road and called the dispatcher to let them know he could not continue. When he got out of his vehicle, he began to feel better.

CAP regulations require that laboratory staff have dry ice safety training, but that requirement extends to anyone who may acquire the dangerous substance in the lab. Make sure staff are aware of the need for proper PPE use when handling dry ice. Insulated gloves, the use of a scoop or tongs, and face protection are necessary when scooping ice into a container. Couriers should carry no more than three pounds of dry ice in a vehicle, and there should always be adequate ventilation, including open windows in the vehicle when transporting dry ice. Dry ice converts rapidly from a solid state to a gas, and that gas rapidly displaces oxygen in the air making it difficult to breathe or stay conscious. High volumes of dry ice in a car can create a very deadly road situation in a short amount of time.

The courier was transporting pathology specimens in a cooler, but was unaware that the lid had popped off of one of the specimens and formaldehyde was splashing all over the inside of the cooler. As time went by, the courier began to feel queasy. After realizing that something did not smell right in the vehicle, she eventually stopped the van and pulled to the side of the road to investigate. She opened the cooler and quickly pulled out dripping specimens and set them on the carpet before feeling too sick to continue cleaning up the mess. She had to be taken to the Emergency Room for formaldehyde exposure symptoms while the Lab safety Officer had to bring spill clean-up supplies to the van to neutralize the formaldehyde. The carpet had to be removed and disposed of properly.

Courier vehicles need to be equipped with spill clean up supplies that can handle whatever types of spills could occur during transport. If formaldehyde is transported, couriers need training in the proper transport and clean up of that chemical. Biological spill kits should be available as well, and spill training should be a regular part of overall courier safety training.

I wish I could say that these were imaginary stories, but sadly, that is not the case. The stories, though, illustrate clearly what can happen when proper safety management and training are lacking. Every part of the laboratory pre-analytical process is important, and every lab team member involved in the process needs to be considered. Employ complete safety training, and assess safety competency on a regular basis. By providing the proper tools and safety training to couriers, you can ensure the quality of lab results, and you can prevent incidents like these with your employees.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Solutions, Not Resolutions

The turn of the year is a quasi-inspiring time for many people who attempt to change something about themselves or their situation with “New Year’s Resolutions.” When my friends and I were heading to brunch on New Year’s Day in southern California, there were many people running (alone or in groups) which I hadn’t seen before and my one thought was, “How long will that last?” When I returned to Chicago after the holidays, I dusted off my gym membership card and logged some treadmill time—my one thought was, “I hope this lasts!” But we are all too familiar with the breaking of these resolutions by most of us, and the ultimate regret we feel in the latter part of the year when our hopes and dreams of thinness/money/power/rare pokemon/fame have been dashed by the collision with our actual lives and the limited time we have to get done what needs to be done. Fortunately, we are human beings and we are allowed to be disappointed with ourselves over this (or these) tiny failings as long as our life trajectory is heading the way we want*. Then there are those handful of people that each of us will ultimately know who stick to their resolution and shed the weight, get a new job, or (hopefully with increasing numbers!) quit smoking! And we are more inspired by their actual doing of these things than by our lack of resolve.

As individuals, this trivial annual mindset is acceptable and even entertaining. But as a society, empty promises and feigned changes are simply unacceptable. To certain things, we must as a society—and as individuals in that society—commit. Recycling, for example, is a strategy that is both an economic and environmental boon. But as of January 2018, our major “solution” for plastics (especially from the West) that was China has now ended. Other nations willing to take these recyclables stopped their acceptance as well towards the end of 2018. What can we do to solve (not resolve) this situation permanently? Each country should consider first the role of plastics in their society and perhaps, like many African nations, simply ban the product(s). Secondly, encouraging personal recycling and reuse of plastics, for example through water filters to refill plastic bottles or fees on reusable grocery bags, can minimize impact. But, ultimately, each nation needs a sustainable recycling plan that represents a balance of production and utilization, creating a negative plastic total impact (i.e., no new plastic created).

In pathology, the theme of recycling is very important for any laboratory but can have major benefits for laboratories in developing nations. Formalin, xylene, alcohol, and paraffin (the four principle reagents for pathology processing), can be recycled using devices or process plans that can have minimal capital costs to set up. Consider that a given country may have shipping challenges such that an order placed today for 10 gallons of neutral buffered formalin may take 6 weeks to 6 months to arrive and cost 3 to 5 times the price in another country. In that setting, recycling formalin is clearly a superior approach and extrapolates to xylene and alcohol. Process approaches to paraffin (e.g., collecting waste paraffin from trimming and lids, using minimized mold sizes, lateral flow to minimize contamination) can optimize the use of the wax and reduce costs.  As these four reagents represent core elements to the process, efficient utilization, reuse, and management can keep costs low and processes running. But the laboratory must commit to this process and adhere to it every moment of every day to change patient’s outcomes for the better.

Similarly, core histology equipment (unlike many clinical laboratory machines) is almost indestructible when properly managed and maintained. Laboratories in developed nations may replace this equipment when it is several years to a decade old when the equipment may have another decade (or sometimes two) left of life. Decisions to replace functional equipment are left to the individual laboratory; however, once this process occurs, functional equipment should not be left to collect dust and should be moved to a new location where it can be of value. Every laboratory considering the replacement of older equipment must ask the question, “What is the remaining functional life of this device?” If that number is many years or the often stated 70%, a plan for donation of the equipment is highly suggested.  It is this philosophy that inspired the ASCP Center for Global Health program along with many other groups to actively seek out donated, functional equipment and transfer it to nations and colleagues who desperately need it to maintain their pathology services (Do you have equipment for donation? Email us!). This is especially important because the perceived demand for histology equipment in many low-income countries is so low that manufacturers and distributors refuse to become involved with the equipment (especially with trade and tariff barriers standing in the way). But, in truth, the demand is the same per population as in any other country with at least one high volume, functional pathology laboratory needed for every 1 to 3 million people (depending on population age structure and clinical utilization).

As we begin a new year together, reflecting on what we did (and didn’t) do in 2018 and what we can (and should) do in 2019 is an iterative process that can guide us through many decisions. I hope that everyone reading this blog takes a few moments (or even an hour if you can spare it!) to delve into 2018 and really plan for 2019 with true solutions in mind for any challenges you identify. And, lastly, always take some time every day to think outside yourself and even your laboratory to others in your local community or in foreign lands. Consider what little (and big) things you can do that may improve the life of just one person other than yourself and commit to those things.

*If your life trajectory is not going the way you want, consider performing a personal SWOT (strengths, weaknesses, opportunities, threats) analysis and think outside the box about where you are and where you want to be. Don’t be afraid to make life changes or new life choices that give you a better piece of mind and stronger sense of self and self-awareness. A room full of happy people who are self-aware and emotionally intelligent can solve problems at light speed because their personal issues (good or bad) don’t get in the way. So, for 2019, I strongly encourage everyone to consider really solving (not resolving) the problems you perceive in your life so that we can all work together to solve (not resolve) the challenges we face as a society moving into the next decade.

milner-small

-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.