Three Rules to Manage Chemical Waste- It’s Complicated!

The lab technologist approached the Lab Safety Officer to ask what should be done with a collection of liquid wastes that were collected from the chemistry analyzers. The LSO had worked with multiple labs for years helping to determine how to dispose of their liquid chemical wastes according to the regulations. He thought he was pretty well aware of the hazardous chemical wastes coming from the labs, but he had no idea this chemistry analyzer waste existed. He dug a bit deeper. As he called around to the different labs in the system, he learned not all sites were handling the waste the same way. Some sites saved the excess waste and poured it into other containers to use on the analyzers. Some labs threw the containers in the trash with liquid inside, and other sites simply poured the excess chemicals down the sink drain.

Some laboratories and lab systems are very large, and there are probably many practices, some newer, some older, that have developed over time, because “someone said so,” or because a vendor said it was acceptable. The LSO may not always be able to know about every practice in each lab. Staff should always escalate questions about waste processes when there is a concern.

Managing hazardous (chemical) wastes is a complicated process, and training and education is needed in all laboratories. The regulations surrounding waste are numerous and complicated, and it would be unlikely that every lab employee would aware of all of them. Here are some basics that are true for all laboratories:

Pouring Bulk Wastes Down the Drain is (Usually) Incorrect and Possibly Illegal

In general, manually pouring bulk amounts of chemical waste down the drain is not permitted by the EPA. What is a bulk waste? It is defined as 200 mL or more. That means if you have >200 mL of a reagent left over in a container, you cannot pour it down a drain for disposal. That chemical is now waste and must be properly collected, labeled, and stored until a waste contractor can pick it up.

There are, of course, exceptions to every rule. If a waste drain line is connected to a drain, for example, that is not considered “pouring,” and it is acceptable provided a lab has informed the local wastewater treatment center about what is going down the drain. Performing a gram stain in microbiology and letting the residual chemicals go down the drain is allowed also. That is considered part of the gram stain process, and it is not viewed as “pouring” chemicals down the drain. Also, the wastewater facility is aware that these chemicals are going down the drain.

Another exception exists in some laboratories that have an external “chemical pit” which is tied to certain sinks and drains in the lab. That means that all wastes poured down these drains go straight to a collection tank which neutralizes the chemicals. The tank is emptied periodically by a contracted vendor. Since there is no waste going to the local wastewater system, the local authority does not need to be contacted about what goes down the lab drains.

Hazardous Waste Must be Properly Stored

Anytime a lab collects chemical waste, it must be properly stored. There are two types of waste storage areas, Satellite Accumulation Areas (SAA) and Central Accumulation Areas (CAA). A Satellite Accumulation Area is a storage area near to where the waste is generated. The SAA must be within the line of sight of where the waste is made, it cannot be in another room or around the corner. You must store the waste where it can be seen from where it was generated. You cannot move waste from one SAA to another SAA. You can. However, move waste from a SAA to a Central Accumulation Area (like a hazardous waste shed outside, for example).

SAAs can store up to 55 gallons of waste. Waste must be stored inside of a flammable cabinet if it is flammable, and acid wastes cannot be stored next to bases. SAAs and CAAs must have a specific emergency contact poster hung nearby which indicates the location of the nearest fire extinguisher as well as an emergency contact in case of a spill or accident. CAAs must be checked weekly for proper labeling, open containers, and leaking, and these checks must be documented.

Hazardous Waste Must be Properly Labeled

Anytime a lab collects chemical waste, it must be properly labeled per EPA regulations. All waste containers must be labeled with the identity of the contents and the words “Hazardous Waste.” There must also be an indication of the waste hazard(s), such as a pictogram or an NFPA diamond. If waste is collected into an empty reagent jug, you may not use the wording or warning label from the original jug.

Dates should never be placed on chemical waste labels when stored in a Satellite Accumulation Area, but dates always need to be on containers once moved to the Central Accumulation Area. If the waste vendor picks up containers directly from your SAA, you never need to place dates on the containers.

Again, the proper management of the laboratory hazardous wastes is complicated. There is a great deal to learn and to put in practice. Many regulations have exceptions, and some of them depend on the facility’s waste generator status. If you have questions, reach out to your EPA (or state branch) representative, or ask an available safety expert. Make sure your lab is handling chemical wastes appropriately and safely.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Safety Succession

In many laboratories, managing safety is rarely a full- time job. Many have to oversee the safety program while also managing day-to-day operations, and overseeing the quality or point of care programs. Some are lucky enough to be able to spend all of their time on the lab safety program. Either way, the role can include managing safety policies and procedures, performing audits, providing education and training, and consistently working to improve the overall culture.

But what happens when the lab safety officer has a job change, a promotion or is ready for retirement? What happens to all of that safety knowledge and experience? Wouldn’t a gap like that be a detriment to the lab’s safety program? Yes, and laboratories should always be preparing for such an event.

One way to get prepared for a transition of lab safety duties is to identify a potential replacement while you are still working in your role. Look for someone who has shown interest in your work or has asked good questions about safety issues. Ask them to shadow you as you perform your safety tasks. Ask them to review safety procedures that are due to be revised. Have them watch a lab safety audit and describe how it should be performed. Ask them to create and possibly present safety education for the staff.

This may seem more difficult if you are the lab manager with safety responsibilities. However, there can be a benefit to identifying someone among the staff to perform some of the safety tasks as they can eventually come off of your plate. Leaders should also always have an active succession plan, so if safety must remain under your purview, make sure it is part of your discussions with your potential leadership replacement(s).

If, as a safety leader you run a laboratory safety committee, look for potential future safety leaders in that group. There may be one or more good candidates for future lab safety leadership. You can assess their readiness by delegating projects and tasks. Again, things like creating safety education, working on policies, and performing audits are great “auditions” for a future job. You can also ask the committee to create a safety fair, or to develop a safety poster contest or other projects which help to raise safety awareness in the department.

Provide resources for potential leaders such as safety documents and regulations. Involve them in lab safety inspections. If the EPA, the local fire department, or even the wastewater authority arrives for an audit, allow those staff members to be involved in the process. Getting a taste of these typical lab safety events can help people discern whether or not they want a future in the field. Preparing the lab for an upcoming accreditation inspection is also great experience.

Another way to help someone on their path if they are interested in safety is to help them get certified. ASCP offers a Qualification in Lab Safety (QLS). Preparing for the certification will help someone learn more about specific safety topics like Bloodborne Pathogens, Chemical Hygiene, and Waste Management among others. The suggested study resources and references will remain important in the hands of a future lab safety leader.

Given the growing shortage of laboratorians, it is clear that it will become more difficult to fill job openings as the years pass. Labs cannot operate without specific people, however. Leaders are vital, bench staff are key, and safety professionals will always be necessary. Planning for succession is something that should be inherent in the department for most positions. The organizational chart should be designed with succession in mind and a staffing plan that goes beyond today. Lab Safety should always be a key piece in the lab’s overall succession process. 

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Safety in the Moment

Often I am asked how one who is responsible for laboratory safety (yet has other duties as well) can get the job done well. In today’s labs there is tight staffing, tight budgeting, and a score of regulatory duties that must be accomplished, and not all of these things revolve around safety. Many who oversee the lab safety program also must run the point of care program, the lab quality program, or even manage all of the day to day operations of the department. It’s a great deal to juggle, but there are methods you can use to make sure that laboratory safety doesn’t take a back seat.

One way to incorporate safety into your multiple roles each day is to start every meeting or huddle with a safety moment or story. Ask for a team member to discuss a safety story they witnessed or in which they were involved. Placing safety first lets the team members know it has priority, and relating an issue or incident has benefits as well. The safety moment may be as brief as reporting on how an employee provided PPE to a vendor that came into the department. That is a safety success worth mentioning, and there are doubtless others that can be mentioned. These safety stories may also be those that do not necessarily illustrate a success. Telling people about an incident and asking how it could have been avoided is a fast yet educational plus for your safety culture. Reviewing safety incidents is also beneficial so that others know what happened and they can be thinking of how to avoid the same thing from happening to others or themselves. Talking about safety in these ways takes little time, but if safety is incorporated into the language of the department, the culture will remain improved, and it is easy to fit this habit into your schedule.

Acting as a consistent role model is another way to incorporate safety into your multiple roles. Make sure you wear the correct clothing and shoes. If you walk in and out of the department, you should dress the part. Open-toed shoes or mesh sneakers should not be worn. Wear PPE when performing any work in the lab, including huddles or team meetings. It doesn’t take any extra time to model the safety behaviors you expect from the staff, and doing this shows the staff where safety stands in the department.

A third way to insert safety into your busy day is to make sure you are able to quickly spot safety issues and address them immediately. Developing your “Safety Eyes” is a vital tool – learn how to notice safety problems as you work in the lab. Train yourself to be able to do this by looking for one thing each week. For instance, look for PPE and dress code issues on week one. Purposely notice what people are wearing on their feet, look for proper PPR like lab coats and gloves. Check to see that they are worn properly. If you do this for one week, you will become much better at noticing issues with just a glance. The next week look for proper chemical labels, then fire safety issues, etc. Once your Safety Eyes are enabled, you will be able to easily see issues and manage to rectify them while performing your other lab duties.

No matter your role in the laboratory, part of the job involves talking to other people. Make safety a part of those conversations when the opportunity arises. You might speak to your lead technologist about an instrument installation. Ask about new reagents that might need to be added to the chemical inventory.  Find out if there will be new waste streams generated. Was a risk assessment performed to look for other possible dangers?

Incorporating safety into your already busy day might seem like an impossibility, but it can be done. It is important that it is done. You are managing different parts of the lab, but if people are getting injured and exposed because there is no focus on safety, there won’t be much left to manage! Try these few ways to blend safety into your schedule- add one at a time and see how it works. In time you will notice that these small tasks make a big improvement on your lab safety culture.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Where have all the Techs Gone?

Electronic media is replete with articles and editorials of employers lamenting the shortage of workers. Signs offering hiring bonuses hang outside of restaurants, stores, and other retail outlets all across the country.

The inability to find workers has forced employers to take another look at their business model and reevaluate whether the model is still viable in its current form. The power balance in the employer/ employee dynamic has shifted. Employers accustomed to having their choice of applicants now find themselves scrambling to find workers.

No schools, No students

The healthcare industry, including the medical laboratory, is not exempt from the shortage despite healthcare experts and administrators knowing that the trending laboratory employee shortage was inevitable years ago.

Laboratory school administrators and managers have been sounding the alarm about the lack of community college and university medical technology program applications. Many academic medical technology programs are shuttered due to a lack of students.  The decrease in the number of students going into the laboratory field and the normal attrition rate of older workers retiring or moving on to higher-paying occupations has led to a high vacancy rate and a loss of expertise.

Burnout

The pandemic has added more pressure on a cohort of employees experiencing the stress of a new and unknown danger. These allied health professionals were (and are) the front-line response to a disease threatening everyone, regardless of economic or social demographics. Lab worker burnout has become a documented phenomenon

We call them heroes, but in reality, these are the same people working every day (pandemic or not), serving patients and delivering quality test results. Labs across the nation are filled with these everyday people. But just like everyone, laboratory workers have families, feelings, and needs they are trying to meet while being asked to give a little more. Many have little left to give and are now leaving the field to pursue other less stressful occupations or to simply enjoy the life they have worked so hard to build.

Start recruiting early

How can healthcare organizations stem the tide of those choosing to leave the lab and simultaneously attract young fresh minds to the unglamorous and less financially rewarding but necessary field of laboratory testing?

Presentations to elementary school children are a great way to introduce the next generation to the laboratory field. What child doesn’t like looking into a microscope to see their own red and white blood cells? Roadshows put on in junior high and high schools are a great way to kindle interest in healthcare just when students are beginning to ponder the question of what they want as a career.

Educational Aid

The cost of college continues to rise. Scholarships are often garnered by high-performing “A” students. But there is a pool of “B” students that could also benefit from financial assistance and would be just as welcomed into clinical laboratories. Broadening and diversifying the qualifications to receive a scholarship and financial aid could conceivably add to the pool of potential laboratory workers. Another unique idea is to allow laboratory workers’ dependents access to unused employee educational benefits.

Wellness in the Lab

Resources should also be dedicated to retaining technicians and technologists who are considering leaving the laboratory field.  The level of compensation is meaningful, but studies have shown that employees often leave the job for more esoteric reasons. Reducing stress, supporting a culture of wellness, inclusiveness, and belonging can differentiate one workplace from another. The theme of workplace wellness was extensively discussed at this year’s ASCP 2021 annual meeting in Boston.

The Need is Real

The pandemic has highlighted the importance of the laboratory to the health of the nation. The medical laboratory should use this moment in the spotlight to advocate for more resources and emphasize the necessity for more laboratory programs and students to meet the future testing needs of the nation.

Of course, many lab managers are wondering what to do today to stem the slow leak of personnel. Providing mental health support and financial incentives do work to keep these knowledgeable workers in the lab. Managers realize that laboratory science is a demanding high acuity job with little or no margin for error. To maintain quality, the healthcare industry will need to change its perceptions about the laboratory and address the lack of technicians and technologists with the same interest and retention resources given to nurses and doctors.

-Darryl Elzie, PsyD, MHA, MT(ASCP), CQA(ASQ), has been an ASCP Medical Technologist for over 30 years and has been performing CAP inspections for 15+ years. Dr. Elzie provides laboratory quality oversight for four hospitals, one ambulatory care center, and supports laboratory quality initiatives throughout the Sentara Healthcare system.

Moving Beyond Data to Action

On October 6th, 2021, the Lancet Commission on Diagnostics launched the “Transforming access to diagnostics” commission report with a virtual program and release of several publications. One of the publications included a study led by Dr. Sue Horton on access to diagnostics using data from 14 countries, mostly in Africa, from 2004 to 2018 with single timepoint data used to evaluate the relationship of access to diagnosis with a variety of factors. The diagnostics that were evaluated did not include histopathology, crucial for the diagnosis of cancer; however, the study did show importantly that income and population density had demonstrable relationships with access to diagnostics at the primary care level. For hospital-based access, there was no relationship which led the authors to conclude, among many other and relevant points, that access to diagnostics in “primary health care is the diagnostic so-called last mile and particularly affects poor, rural, and marginali[z]ed communities globally; appropriate access is essential for equity and social justice.” In the Commission report, the authors describe a tiered system with three levels that countries should incorporate into a national laboratory strategy and suggest that the burden of affording this system should fall on the governments. Moreover, they demonstrate the extremely important data around use of global markets to show that while the top four countries supply nearly 50% of all diagnostics, those same four countries only supply 24% of pharmaceuticals. In the opening statements to the Lancet Commission launch, Dr. John Nkengasong espoused very strongly the importance of manufacture of diagnostics WITHIN LMICs as one much needed solution.

For example, I was assisting a colleague with access to immunohistochemistry antibodies for which they were currently paying $700 USD for one vial of CD20. I traced the manufacture back to the US supplier (where the antibody was produced) and attempted to buy a vial as a private citizen with a credit card and was surprised to see that I could do so for $220 USD. This is the exact same vial of CD20 antibody. Why was my colleague paying a 218% markup? When I inquired with the company of manufacture, they reported that they had existing contracts to supply 2nd, 3rd, and 4th party vendors that they could not violate (i.e., they could not sell directly to a purchaser on the continent of Africa). The local supplier charging the $700 USD suppled a very large number and breadth of medical supplies including other diagnostic tests and reagents. Those reagents were reasonably priced, and several were on sustained government contracts. However, the CD20 antibody was not. Why is that the case? Let’s assume you are a supplier of widgets and wobbles. Your demand for widgets is huge and you sell more than 100,000 widgets per month to 20 different consumers. For wobbles, one person orders one wobble once per year. Your widgets ship room temperature but your wobbles require a cold chain, lest they be destroyed. What would you do? You could choose not to sell wobbles. You could choose to charge a ridiculous price for wobbles so that the excess time, energy, and expense of getting one wobble to your consumer is worth the effort. But you would not sell the wobbles for a similar profit margin as your widgets. It just wouldn’t make business since. Now imagine that the wobbles are manufactured in a country other than your own and to get them, you buy them from a country supplier who buys them from a regional supplier. So, wobbles already come with additional markups. You do have a third choice which is to manufacture wobbles locally, cut out the middle people, and charge much less but still make more profit. This is a great model if wobbles can be easily manufactured; however, when wobbles require an enormous capital investment, is it worth it to sell a couple of wobbles a year? Of course not. This business-based example is one of the drivers for a $700 USD vial of CD20. If a local manufacturer, in country or in a neighboring country, could manufacture and sell, this reagent would be more affordable and feasible as an available diagnostic. Specifically, patients with lymphoma would have access to rituximab for CD20.

But note the Commissions finding that almost 50% of diagnostics are made in the top 4 countries. This means, naturally, that the pricing for these reagents and supplies will be based on that economy and/or GDP, not on the economy or GDP of every country down to the lowest on any given scale. Consider the Big Mac Index, which looks at buying power relative to the US dollar. The only African country used in the Big Mac Index is South Africa and it is third from the bottom. To be clearer, if you have 100 South African Rand, you could get about $6.69 USD if you exchanged it directly (ignoring fees). If you want to buy a Big Mac in the USA, the average consumer price is $5.65; however, in South Africa, it’s 33.50 Rand. Based on the Dollar:Rand exchange rate, we are paying only $2.24 USD in South Africa for the same sandwich that would cost us $5.65 in the US. So, the Rand is undervalued. Now, let’s look at our vial of CD20 (not revealing the country to protect identities). According to the current exchange rate, you get $4.34 USD for every 10,000 units of this countries currency. Based on this model, if the CD20 was being EVENLY exchanged with cash (as opposed to being undervalued or discounted as we saw with South Africa), it should cost 450,586 units of this country’s currency. Instead, it is costing them 1,612,053 units. If we assume that this country could/should achieve a Big Mac Index equivalent discounted of the CD20 as we see with the Big Mac itself in South Africa, it should cost them 307,057 units or $133 USD. The difference? The Big Mac is manufactured and locally distributed directly to the customer in South Africa. The CD20 is not. So, one step to achieving an equitable pricing structure in healthcare for LMICs, especially in Africa, needs either direct discounted by US- and European-based manufacturers—unlikely to occur because of fear of alternative market access—or these products need to be manufactured and supplied locally.

What I have trouble agreeing with completely and, in some cases, even it part, is the concept of all healthcare costs falling on the government of a population with the expectation that they deploy a “one size fits all” approach to any aspect of healthcare. When we consider the US and Europe (again, the top four producers of diagnostics), we find one as a largely private commercial system driven by government pricing for elder care and the other a socialist system with universal healthcare enhanced by private care. For both systems, there is a huge economic base which either drives capitalism across the system from raw materials to final product or an enormous tax base that can cover the bulk of the costs of the systems. As we move from these four down the GDP ladder to LMICs, we don’t see, despite that we would like to nicely categorize countries into clear groups, a solution that would work “globally” because major pieces of economic development are needed as pre-requisites for a capitalist open market or one payer system. Each country has a unique set of circumstances (e.g., history, genetic diversity, geography, natural resources, tourism, disease burden, language, population size, etc.) that cannot be reduced to simply a GDP value or Big Mac Index factor. Moreover, it is wholly within the realm of colonialism, which we supposedly abandoned 70 to 80 years ago, to think that we can propose a system for “all countries” that would even remotely approach the solving the problems of these countries. Although it is an excellent mental exercise to idealize a healthcare system as having something as simple as three tiers and trying to allocate what tools and resources are needed at each level to accommodate the population, the reality is that such a framework is only a starting point with a lot of work needed to fully realize what type of system would be best for a given country. Very small islands and small nations may have only one hospital to serve its entire population and insufficient patients of a given type to justify the expense of certain tools. Extremely large countries with large populations will need a myriad of systems with their own tiers that support patients based on location, socioeconomic status, language, etc. and these systems likely overlap in geography. And the expertise to best determine that system is the health and government leadership of that country, not an external set of non-specific instructions. The external set of instructions, however, are extremely important, as noted, as a starting point, but each country that identifies a gap in their diagnostics, for example, has to assess their specific situation. At the heart of this problem is the need to stop talking about the challenges of global healthcare and start (or continue) directly working on fixing them.

At ASCP, we approach our global outreach through assessment, gap identification, implementation planning, and execution (AGIE). Through that approach, we have deployed and/or support 19 sites in 15 countries with telepathology; however, in an additional 10 countries, we have active programs that have not yet reached a point of telepathology deployment. Had we said, from the beginning, “We are going to give everyone telepathology”, we would have wasted an enormous amount of time and money. By following an AGIE approach, we have navigated to the specific problems of each site with whom we collaborate and attempted to solve them. And we do so with more than 80 collaborative partners. The Lancet Commissions on Diagnostics most recent launch is an excellent first alert for those who have not been engaged in global health for the last 20 years that there are still major challenges and problems in global healthcare and diagnostics. Our hope is that funders, governments, industry, health system members, patients, and advocates will view this as a rallying cry to direct resources and energy to join those of us who have been engaged in this work to move the needle even further. Access to diagnostics for every patient everywhere. It is ASCP’s simple mantra, and we hope, together, we can achieve that goal.

References

milner-small


-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.

Lab Safety Whiplash

The world seemed like a brighter place just a few short weeks ago. The pandemic seemed to be nearing an end, and life was returning to normal. In laboratories, the COVID-19 testing volumes decreased, wearing surgical masks all day long at work was no longer the norm, and the workday had that old feeling of familiarity again. Then, suddenly, it all came roaring back. The COVID-19 Delta Variant, loading its victims with over 1000 times more viral particles than the original could, came to visit. Now masking and social distancing are back with a vengeance, and everyone holds their collective breath as we wait to see what other cancellations and restrictions will come our way. It is almost worse this time because we know what the future will bring, and it isn’t pretty.

So how do we deal with it in the laboratory? How do we manage our lab safety program as our staff deals with this physical and mental whiplash? Many labs already saw the fatigue workers exhibited in the past 18 months. People stopped distancing from each other, they became less diligent about hand hygiene in the department, and PPE use became a bigger compliance issue than it had been when the pandemic began.

Fortunately, this is not a new challenge for lab safety professionals. Even without a pandemic, maintaining an awareness for the importance of lab safety has been a consistent need. Those who have been in the field for years and have never had a chemical exposure or a needle stick become complacent about the hazards where they work. Formaldehyde is treated like it was water, and contaminated blood tubes are handled with no gloves. This “disease” spreads also, when new employees observe these poor safety behaviors and emulate them. A poor safety culture does not have to become a pandemic, however, there is a cure, even in times such as these.

First, determine where your lab safety culture lies on the spectrum- is it very broken, or does it just need a little boost? Make an assessment of the overall culture using surveys or by talking to lab staff and leadership directly. Review your findings with the staff so that they are clear about why you are tackling the issues. That act alone raises awareness in the department. If possible, obtain a commitment from staff to improve the overall safety culture. Find safety champions who will work with you on the on-going project. Be sure safety is being discussed daily and is placed in front of the staff. Use huddles, e-mails and safety boards to promote a positive culture.

Unsafe behaviors in the laboratory can easily have consequences that may affect others in the department. Spills and exposures are just some incidents that may occur. Messy lab areas can create trips or falls, and improper storage of chemicals or hazardous wastes can be dangerous as well. Perhaps laboratory staff don’t think enough about the dangerous consequences because there isn’t enough training about them. Perhaps they don’t think about the potential consequences to others because they haven’t been told about the possible physical, environmental, or financial consequences. Maintaining awareness of these issues is always key.

The COVID-19 pandemic and its apparent rebound has made for some very long months for employees in healthcare, and the struggles do not appear to be ending anytime soon. As safety leaders, it is important for us to do what we can to help staff build resilience against the whiplash and to reinvigorate them to continue with good safety practices. We must remind them that despite all of the changes in safety guidelines in the recent past that the basics – PPE use, using engineering controls and work practice controls- are there to help us get safely through the day so that we can still go home healthy and to be able to enjoy our lives so that we can see the end of these unusual times.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Win, Lose, or Draw?

In the 1962 Japanese release of King Kong vs. Godzilla, it was pretty easy to determine who the winner of the epic battle was (it was Kong, if you’re keeping track). Almost 60 years later, the two famous giant behemoths met again on the big screen, this time in an American version. This second battle, while fun to watch, had a less-obvious outcome. Those who sided with either monster had moments to cheer during the movie, but in the end, (spoiler alert!) a secondary issue overshadowed the much-hyped monster match. It seemed obvious to me that the script writers tried their best to satisfy audiences on both sides of the aisle. In doing this, however, the movie lost a little bit of its punch. That can happen in lab safety as well. If the message isn’t strong or clear, safety issues will ensue.

The lab manager noticed an increase in employee injuries on the job. Someone cut their finger on a microtome blade. Two different specimen processors splashed serum into their eyes. A night shift tech kneeled onto the floor to pick up a box, and her knee landed on broken glass that hadn’t been swept up. It was clear people were not paying close attention while they were performing their duties. The manager held a meeting in the lab to raise safety awareness. He delivered his message, but staff noticed he was chewing gum and that he did not put on a lab coat even though he was in the lab for over 20 minutes. The message was not clear. He said he was for a safer lab, but he didn’t look to anyone like he meant it.

Jake was new to the histology lab and he was excited to make a good impression as he began his career. During his departmental orientation, the supervisor stressed the importance of chemical safety. Formaldehyde and xylene were in use in the department, and they were potentially dangerous. Jake got the message and was ready to show the department he could work there safely. After orientation was done, Jake came to work to begin cutting tissue. When he sat down at his station, he opened the drawer for supplies and saw a packet of oatmeal a spoon, and a coffee cup. The medical director came in to the lab to welcome Jake, and he noticed she was drinking tea. The message Jake received about safety was no longer clear. The supervisor spoke about safety, but it was clear no one enforced it.

When the message we send to staff about lab safety is mixed, we really can’t blame them when the culture is bad. The problem is that many leaders are not aware they are sending this confusing communication. If you’re not sure if you are one of those leaders, take a step back and look in the mirror. What kind of message do you send? Do you support safety? Do you do it with your words AND your actions? What sort of example do you set?

If you’re not in lab leadership, you still have a responsibility to represent safety with your lab practices as well. Everyone has an impact on the overall safety culture, not just leaders. What do you do to promote safety in your department?

Maybe you are an employee and it’s your leader who is sending mixed messages. First, make sure you’re choosing the side of safety in your work no matter what others are doing. Second, it may be time to “manage up” and ask leadership why certain unsafe practices occur. If the leader is part of the problem, it is acceptable to point that out, provided you do so with purpose, tact and professionalism.

Leading by example for safety is vitally important no matter your role in the department. Choose your side, stick to it in all circumstances, and over time you will be able to be declared the decisive winner. Those mixed safety messages usually lead to a draw, or worse, a loss for the team. 

Because I have been a Godzilla fan for decades, I thoroughly enjoyed this latest film entry. In truth, I was able to discern a clear winner of his fight with Kong despite the writer’s intentions, but that may be because I had support for my favorite going in. That might be your way to victory as well. Root for “Team Safety,” and your support will be noticed and followed for the win!

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Lab Inspections in a COVID World

The current pandemic has highlighted the importance of the laboratory in the delivery of healthcare. Patients and families depend on the laboratory to delivery accurate and timely results.  Regulations have been written to ensure laboratories meet society’s expectations.  Medical laboratories are one of the most highly regulated industries requiring biennial inspections by accrediting agencies. Despite operating under the COVID-19 testing pressures, laboratories still need to be inspection-ready.

New Inspection Process

As a result of social-distancing mandates and state-level restrictions, laboratories need to adjust to a new inspection environment. The College of American Pathologists (CAP) is temporarily allowing virtual inspections and has created information on its website about a few laboratories’ experiences with the virtual inspection process.

The CAP has also shared some expectations laboratories should be aware of when discussing inspection aspects.

Currently, in states where there are travel restrictions with quarantine requirements, a greater than 5% positivity rate, or where the institutions have travel/visitor restrictions, the laboratory medical director may choose to have a virtual inspection. However, the laboratory should be aware that they will still be required to have an in-person on-site inspection within 4-6 months if virtually inspected.

In addition, the laboratory director and the inspection team must both agree to perform a virtual inspection.

Virtual Aspects

Laboratories should take into consideration some of the aspects of a virtual inspection. In-person inspections for many small to medium laboratories often consist of inspectors being on-site for only one day. Conversely, virtual inspections can be weeks or even a month in duration depending on the laboratory’s size, the number of specialties, and the inspectors’ availability.

Virtual inspections also require a lot of document handling. Laboratories utilizing manual worksheets, quality control and troubleshooting logs will need to upload these documents for review. The CAP has created a secure website for this purpose, but it still requires personnel to scan each document individually.

Technical Priorities

There is also the risk of technical issues hampering the virtual process. Laboratories must have reliable Wi-Fi, electronic communication devices (laptops, tablets, cameras) and have personnel comfortable with the challenges inherent in managing multiple requests simultaneously. Having a dedicated IT person for an inspection is a great but difficult to get asset.

Mult-day Inspection

If there are no limiting COVID restrictions, laboratories may still opt for an in-person inspection.

Some inspection teams (in agreement with the laboratory medical director) have modified the in-person inspection process so that it is conducted over a 3-4 day time period. In this process, only a few inspectors come on each day to inspect specific disciplines. Usually, one inspector will return the next day to provide some continuity to the inspection process.

Instead of an intense one-day process, spreading an in-person inspection out to 3-4 days allows the team and facility to practice social distancing, reduces the level of stress, and gives the laboratory more time to provide evidence or have a deficiency changed to “corrected on-site.”

Competency Note

Laboratories need to be reminded that regardless of COVID, the requirements for competency still apply. New hires must still have semi-annual competencies performed at the required frequencies, and the laboratory must be able to provide competency documentation during an inspection.  There are no exceptions to the competency mandate.

Conclusion

It is expected laboratory administrators and managers may have a bit of angst regarding the uncertainty that comes with a new inspection process affecting the entire laboratory. Amid the COVID crises, the laboratory has been tasked to deliver high-quality results efficiently. Laboratories across the nation have met the COVID challenge and are able to adapt to the demands inspections require. Virtual inspections are just another example of the laboratory adapting to meet its regulatory and accrediting requirements.

-Darryl Elzie, PsyD, MHA, MT(ASCP), CQA(ASQ), has been an ASCP Medical Technologist for over 30 years and has been performing CAP inspections for 15+ years. Dr. Elzie provides laboratory quality oversight for four hospitals, one ambulatory care center, and supports laboratory quality initiatives throughout the Sentara Healthcare system.

The Safety Sweet Spot

I have been through physical therapy for a few different issues in my life, and I must say (with apologies to the profession), I was never a believer. I had musculoskeletal issues that needed attending—a pinched nerve, neck pain, knee pain, etc. If you are past 40 years old and your body’s check engine light has blinked a few times, you know what I mean. Each time the series of physical therapy exercises seemed to be useless and a waste of time. They never really helped me. Recently, however, I subjected myself to a total knee replacement surgery. I knew PT would be a part of the recovery regimen, but I did not realize how important it was going to be for my overall recovery. Therapists taught me how to walk again, they taught me how to trust my body and that I could do things I did not believe possible until that next session. They caused pain (a necessary part of the journey), and they did all of these things with care and professionalism- despite my whining and sometimes less than positive attitude. For me, this is where the PT rubber hits the road. This is where the profession shines and has the successes that people talk about. I saw the real face of physical therapy, and I became a believer.

Then I began to wonder, what is that moment of shining for lab safety professionals? When do laboratorians become believers in lab safety? When does the safety rubber hit the road? What is that sweet spot that makes safety important to people?

I had a needle stick exposure early on in my career. It was before the advent of needle safety devices, and I picked up a used butterfly needle off of a bed and stuck myself in the finger. I was in a hurry, and not really paying attention. That event made me a much safer needle-handling phlebotomist- but would proper safety training have done the same? Would my risk tolerance have been different if someone had really explained the potential consequences of an exposure to me? Did the rubber hit the road for me because I had that experience? How does that get moved or changed so that safety behaviors become proactive instead?

I have hypothesized often that people will perform safely based on three motivators: knowledge about consequences, information about financial and environmental impacts, and punishment. Personal risk tolerance also plays a role, however. A technologist may be full well aware that an open specimen may splash, but they may also feel that the risk is low or that the result of a splash incident would not be severe, so they don’t use face protection. Sometimes, though, we make mistakes when deciding upon the risks, especially if we do not have sufficient education. Any open specimen is a potential exposure hazard, and all specimens should be treated as though hazardous.

In order for a lab safety program to have success, the working parts must be proactive. They must be in place to prevent injuries and exposures, and they should not be there only to figure out what to do after an event has occurred. When a program works in that proactive fashion, when staff is on board and participating, that’s when safety shines. That’s the safety sweet spot.

I’m thankful for professions that easily get it right- like physical therapy. People might not always see their value until they really need them, and that is when they shine. So maybe that’s true for lab safety – it shines when it is really needed. For lab safety professionals, then, the next step will be to get laboratorians to see that we need safety all the time.

A special thank you to Stephen, Audra, and the entire PT gang! You guys rock!

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

The Laboratory Safety Challenge

In 2014 there was an internet challenge which exploded in popularity. It was the ALS Ice Bucket Challenge in which people would dump cold water on their heads and post the video on social media. The person getting the ice water dumped on them would challenge others to post a video of their dousing and they would in turn donate to the cause of finding a cure for ALS, a progressive neurodegenerative disease. The challenge became a world-wide sensation and raised $115 million for ALS research. But, like many good things, the challenge had a dark side. Many people were injured while attempting the challenge, and at least two deaths were at least indirectly associated with it.

Another challenge has come to social media lately, and this one involves a technical skill in the laboratory. It, too, has a dark side. The blood smear challenge is the latest rage for lab techs who enjoy posting videos on Facebook, Instagram, and other social media platforms. Lab techs show off their skill by making the perfect blood smear. At first it was about who could make a smear with the most perfect beautiful, feathered edge. Then the challenge evolved into people making smears while holding the top slide with one finger or even a pencil. There are those who were quite proud to show off their skill and work.

When watching videos of people in various labs performing this challenge, I cannot help but cringe. Several of these lab techs are not wearing lab coats. Many are not wearing gloves, and I have not seen any perform the challenge while using face protection or goggles. Ignoring the safety regulations about using basic personal protective equipment is apparently the norm. These people post this online without a second thought to a public display of working in the lab without PPE. It speaks volumes about the safety culture in those laboratories, and what it says is not favorable.

The next, less obvious safety issue with the videos is that they are created using cell phones or other personal electronic devices in the laboratory. People are handling devices sometimes with gloves, sometimes without, or they are setting them on lab counters which are likely contaminated. The use of cell phones and other personal electronic devices is a dangerous infection control issue, but it is unfortunately all too common. Even before this latest challenge, lab staff all over the country pose for pictures for social media posts that are taken by cell phones. Despite the fact that known and reported infections have occurred in labs from cell phones (and other items brought home from work), techs continue to use them.  

Other issues with the blood smear challenge may be less obvious. Unless these smears are being used, valuable lab supplies are being wasted. Slides and blood-dispenser cap piercing devices cost money, and many lab supplies manufacturers have run into supply shortages this year because of the pandemic. To have a lab waste money or run into shortages for the sake of this challenge might seem foolhardy to some.

Another safety issue with the challenge is the blatant act of playing around with human, potentially infectious blood to make the smears. Staff use engineering controls, work practice controls and PPE to separate people from the hazards in the laboratory. To place oneself at risk unnecessarily, especially during the COVID-19 pandemic, borders on reckless.

When the COVID-19 pandemic began affecting labs over a year ago, many laboratorians became concerned for their own personal safety. They were unsure about how they might catch this virus and what effects it might for them and their family. These were valid concerns, and some still have fears today. In conversations with lab staff over the past months I reminded them that they work with bloodborne pathogens every day, and many are as potentially dangerous (or more) than the COVID-19 virus. If Standard Precautions are used on the job, workers will be safe from infections from COVID-19 and other pathogens. The same is true today. Laboratorians may be less worried about the coronavirus, but the risk of infection in labs from this and other pathogens is as real as ever. Using engineering controls, PPE, and safe work practices is the only way to ensure lab staff can go home without bringing something dangerous to our families.

Challenges can be fun. I participated in the ALS Ice Bucket Challenge. I came out unscathed, but I was likely just lucky, not safe. The same is true for those posting pictures and videos online from inside laboratories. You might have been working that way for years and nothing has happened. Again, that is just luck, and it will run out. Make sure you and your staff are doing what is right, and what is safe. The real challenge is how to get laboratorians in all labs to work safely and follow basic safety regulations. Can your lab meet that challenge?

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.