Over the River and Through the Woods…

Specimen handling and transport is a vital training topic in the realm of Laboratory Safety. There is much to consider here that affects specimen quality and integrity, and ultimately affects patient results. There are also considerations involving employee safety at every step of these processes. One group of employees that can easily be overlooked when it comes to proper safety training is lab couriers. They perform the important role of properly and safely transporting specimens for testing, but without the proper education and tools, these team members can quickly fall into situations of harm.

The courier was running late, and she had one last stop on her route at a medical office building with multiple physician offices and drop boxes. It was cold, and she decided to leave the vehicle running while she went inside to pick up more specimens and deliver lab reports. The car was also left unlocked. When she came back outside, the car was gone. It was found hours later in am empty field, but it had been set on fire. There were lab specimens and reports strewn all over the field and into the nearby woods.

Couriers need to be trained about the importance of their role, and that training should include information about security and protected health information (PHI). Be sure to include HIPAA training for all courier staff. When discussing security, enforce specific processes such as always turning off vehicles before exiting and properly securing all patient specimens and any paperwork being transported. Whether couriers use company vehicles or their own personal transportation for the job, making sure harm does not come to the vehicle nor any contents being transported is key.

The courier knew he had a long drive ahead of him because of the toll bridge, and he had several specimens that needed to be delivered as frozen. He went to the lab’s cooler and scooped a large pile of the dry ice into a big box using his hands. It was cold, but it helped to wake him up a bit. He placed the specimens in the box and placed it in the back seta of his vehicle. It wasn’t very warm out, so as he began his drive, the courier made sure the heat was on high and that all windows were closed. After a few miles, the courier began to fell very tired. He struggled to stay awake, and he couldn’t figure out why. After sitting in traffic on the bridge for a time, he pulled off the road and called the dispatcher to let them know he could not continue. When he got out of his vehicle, he began to feel better.

CAP regulations require that laboratory staff have dry ice safety training, but that requirement extends to anyone who may acquire the dangerous substance in the lab. Make sure staff are aware of the need for proper PPE use when handling dry ice. Insulated gloves, the use of a scoop or tongs, and face protection are necessary when scooping ice into a container. Couriers should carry no more than three pounds of dry ice in a vehicle, and there should always be adequate ventilation, including open windows in the vehicle when transporting dry ice. Dry ice converts rapidly from a solid state to a gas, and that gas rapidly displaces oxygen in the air making it difficult to breathe or stay conscious. High volumes of dry ice in a car can create a very deadly road situation in a short amount of time.

The courier was transporting pathology specimens in a cooler, but was unaware that the lid had popped off of one of the specimens and formaldehyde was splashing all over the inside of the cooler. As time went by, the courier began to feel queasy. After realizing that something did not smell right in the vehicle, she eventually stopped the van and pulled to the side of the road to investigate. She opened the cooler and quickly pulled out dripping specimens and set them on the carpet before feeling too sick to continue cleaning up the mess. She had to be taken to the Emergency Room for formaldehyde exposure symptoms while the Lab safety Officer had to bring spill clean-up supplies to the van to neutralize the formaldehyde. The carpet had to be removed and disposed of properly.

Courier vehicles need to be equipped with spill clean up supplies that can handle whatever types of spills could occur during transport. If formaldehyde is transported, couriers need training in the proper transport and clean up of that chemical. Biological spill kits should be available as well, and spill training should be a regular part of overall courier safety training.

I wish I could say that these were imaginary stories, but sadly, that is not the case. The stories, though, illustrate clearly what can happen when proper safety management and training are lacking. Every part of the laboratory pre-analytical process is important, and every lab team member involved in the process needs to be considered. Employ complete safety training, and assess safety competency on a regular basis. By providing the proper tools and safety training to couriers, you can ensure the quality of lab results, and you can prevent incidents like these with your employees.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Solutions, Not Resolutions

The turn of the year is a quasi-inspiring time for many people who attempt to change something about themselves or their situation with “New Year’s Resolutions.” When my friends and I were heading to brunch on New Year’s Day in southern California, there were many people running (alone or in groups) which I hadn’t seen before and my one thought was, “How long will that last?” When I returned to Chicago after the holidays, I dusted off my gym membership card and logged some treadmill time—my one thought was, “I hope this lasts!” But we are all too familiar with the breaking of these resolutions by most of us, and the ultimate regret we feel in the latter part of the year when our hopes and dreams of thinness/money/power/rare pokemon/fame have been dashed by the collision with our actual lives and the limited time we have to get done what needs to be done. Fortunately, we are human beings and we are allowed to be disappointed with ourselves over this (or these) tiny failings as long as our life trajectory is heading the way we want*. Then there are those handful of people that each of us will ultimately know who stick to their resolution and shed the weight, get a new job, or (hopefully with increasing numbers!) quit smoking! And we are more inspired by their actual doing of these things than by our lack of resolve.

As individuals, this trivial annual mindset is acceptable and even entertaining. But as a society, empty promises and feigned changes are simply unacceptable. To certain things, we must as a society—and as individuals in that society—commit. Recycling, for example, is a strategy that is both an economic and environmental boon. But as of January 2018, our major “solution” for plastics (especially from the West) that was China has now ended. Other nations willing to take these recyclables stopped their acceptance as well towards the end of 2018. What can we do to solve (not resolve) this situation permanently? Each country should consider first the role of plastics in their society and perhaps, like many African nations, simply ban the product(s). Secondly, encouraging personal recycling and reuse of plastics, for example through water filters to refill plastic bottles or fees on reusable grocery bags, can minimize impact. But, ultimately, each nation needs a sustainable recycling plan that represents a balance of production and utilization, creating a negative plastic total impact (i.e., no new plastic created).

In pathology, the theme of recycling is very important for any laboratory but can have major benefits for laboratories in developing nations. Formalin, xylene, alcohol, and paraffin (the four principle reagents for pathology processing), can be recycled using devices or process plans that can have minimal capital costs to set up. Consider that a given country may have shipping challenges such that an order placed today for 10 gallons of neutral buffered formalin may take 6 weeks to 6 months to arrive and cost 3 to 5 times the price in another country. In that setting, recycling formalin is clearly a superior approach and extrapolates to xylene and alcohol. Process approaches to paraffin (e.g., collecting waste paraffin from trimming and lids, using minimized mold sizes, lateral flow to minimize contamination) can optimize the use of the wax and reduce costs.  As these four reagents represent core elements to the process, efficient utilization, reuse, and management can keep costs low and processes running. But the laboratory must commit to this process and adhere to it every moment of every day to change patient’s outcomes for the better.

Similarly, core histology equipment (unlike many clinical laboratory machines) is almost indestructible when properly managed and maintained. Laboratories in developed nations may replace this equipment when it is several years to a decade old when the equipment may have another decade (or sometimes two) left of life. Decisions to replace functional equipment are left to the individual laboratory; however, once this process occurs, functional equipment should not be left to collect dust and should be moved to a new location where it can be of value. Every laboratory considering the replacement of older equipment must ask the question, “What is the remaining functional life of this device?” If that number is many years or the often stated 70%, a plan for donation of the equipment is highly suggested.  It is this philosophy that inspired the ASCP Center for Global Health program along with many other groups to actively seek out donated, functional equipment and transfer it to nations and colleagues who desperately need it to maintain their pathology services (Do you have equipment for donation? Email us!). This is especially important because the perceived demand for histology equipment in many low-income countries is so low that manufacturers and distributors refuse to become involved with the equipment (especially with trade and tariff barriers standing in the way). But, in truth, the demand is the same per population as in any other country with at least one high volume, functional pathology laboratory needed for every 1 to 3 million people (depending on population age structure and clinical utilization).

As we begin a new year together, reflecting on what we did (and didn’t) do in 2018 and what we can (and should) do in 2019 is an iterative process that can guide us through many decisions. I hope that everyone reading this blog takes a few moments (or even an hour if you can spare it!) to delve into 2018 and really plan for 2019 with true solutions in mind for any challenges you identify. And, lastly, always take some time every day to think outside yourself and even your laboratory to others in your local community or in foreign lands. Consider what little (and big) things you can do that may improve the life of just one person other than yourself and commit to those things.

*If your life trajectory is not going the way you want, consider performing a personal SWOT (strengths, weaknesses, opportunities, threats) analysis and think outside the box about where you are and where you want to be. Don’t be afraid to make life changes or new life choices that give you a better piece of mind and stronger sense of self and self-awareness. A room full of happy people who are self-aware and emotionally intelligent can solve problems at light speed because their personal issues (good or bad) don’t get in the way. So, for 2019, I strongly encourage everyone to consider really solving (not resolving) the problems you perceive in your life so that we can all work together to solve (not resolve) the challenges we face as a society moving into the next decade.

milner-small

-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.

Contextual Factors of Work

Work is central to the human experience, even though the actual practice of work has continuously changed through the decades. These changes impact personal life as well, since there is a strong correlation between work life and life outside of formalized productivity. There are certain factors that influence how work is practiced that impact people’s approach to work.

The first factor is technology. Technology has significantly altered the practice and implications or work. For example, try to compare what office work was like 50 years ago compared to now, or how laboratory diagnostics were different back then. In today’s age, the majority work tasks are conducted on the computer or through technological advances: emailing, writing, analyzing, diagnosing. Fifty years ago, such tasks were conducted via phone, typewriters, or by hand. Technology has also increased the amount of information available to workers. This information allows organizations to prepare to lead in a VUCA world, namely one that is volatile, uncertain, complex, and ambiguous.

The second factor that influences work is globalization. Through the increase in technology and information as mentioned above, cultural, linguistic, and national boundaries do not impact the work environment as much as they did. Such lack of confines pushes both organizations and individual workers to be more competitive due to reduced market and job security, respectively. On the other hand, it also increases collaborations and opportunities to help others. For example, through telepathology, we are now able to provide diagnostics to people in places that do not have access to local laboratory services.

The third factor that has an impact on work is the psychological contract between worker and employer. During the industrial age, this contract was mostly stable and predictable and was based on the assumption that if workers performed well, had integrity, and were responsible their work created a sense of connection. In today’s work culture, this contract has shifted towards a focus on self-development, experience, and personal long-term goals instead of a long-term relationship between worker and employer.

Lastly, a factor that influences work is the knowledge gap. Since many of the unskilled jobs are now conducted by computerized machines, employers will rely more on workers with specific skills and knowledge. However, educational opportunities are not equally distributed and the lower classes are at a clear disadvantage.

It is important to understand these factors when working with people from different educational, technological, and cultural backgrounds. All these factors influence people and how they perform their jobs.

lotte-small

-Lotte Mulder earned her Master’s of Education from the Harvard Graduate School of Education in 2013, where she focused on Leadership and Group Development. She’s currently working toward a PhD in Organizational Leadership. At ASCP, Lotte designs and facilitates the ASCP Leadership Institute, an online leadership certificate program. She has also built ASCP’s first patient ambassador program, called Patient Champions, which leverages patient stories as they relate to the value of the lab.

Training and Competency: They’re the Same Thing, Right?

As a fitting end to my previous 3-part series on how to prepare for and survive your regulatory inspections, one of the hospitals we provide consulting services to was just visited by The CAP. Overall we did great and I’m proud of everyone there, but the inspectors found a weak area for us to improve upon that others may be struggling with as well: documentation of training and competency.

It is a common misnomer that training and competency are equivalent and essentially the same thing. Whether you’re subject to CLIA, CAP or your local state DOH requirements, you will be required to provide proof (documentation) of both training AND competency for each employee, for each task that they perform. This is not just limited to your technical staff, but also includes non-technical personnel (phlebotomists, lab assistants, LIS personnel,transport couriers, etc.), as well as staff outside of the immediate laboratory testing area (respiratory clinics with blood gas analyzers, Point of Care testing, etc.).

Simply put, training is coaching, mentoring, and teaching someone step-by-step how to perform a specific task. Proper documentation of this training includes:

  • Objectives for the training (i.e., “After completing training, staff will understand howto successfully perform maintenance tasks on the hematology CBC analyzer.”)
  • Identification of the methods to be used during the training (direct observation, monitoring recording & reporting of results, review of worksheets & preventive maintenance records, evaluation of problem solving skills)
  • Identification of the materials to be used during the training (cleaning agents, QC samples, previously tested & scored proficiency testing material)
  • Criteria used to assess the effectiveness of the training (minimum score of 90% on critical thinking quiz, ±10% correlation with previously tested sample)
  • Signature of both the trainee and trainer confirming that training was completed, and when

In addition to the obvious routine tasks a lab professional will need to perform (running QC, instrument maintenance, running patients), don’t forget to document their training for the low frequency tasks performed as well. Based on an employee’s job description, they may be involved in additional tasks such as specimen handling, safety precautions, packing and shipping of samples to reference labs, computer system training, telepathology training, and supervisory functions. These tasks too will require documentation of training.

Documentation of all of these tasks can be organized through the use of a departmental orientation checklist. This will help you keep track of what each staff members’ specific job junctions will include that they need to be trained on, and which tasks have been completed by each trainer. Depending on the task, training can be completed quickly after several minutes of demonstration (waived urine hCG testing), or may take several weeks for staff to fully understand and master the task (flow cytometry leukemia work-up). Keep in mind that until a staff member has documented training followed by successful assessment of competency of that task, they should not be permitted to perform or result patient testing independently of their trainer.

Once training has been completed and documented, you must then assess each staff member’s ability to successfully perform these tasks. This is their competency, where you assess if the training was successful and staff are able to perform each assigned task correctly. To fully demonstrate successful competency of non-waived tests, all 6 of the following elements must be documented for each employee, for each task:

  1. Direct observation of patient test performance, including patient identification, specimen collection, handling, processing and testing.
  2. Monitoring the recording & reporting of test results, including when appropriate the handling of critical results.
  3. Review of testing worksheets, QC records, proficiency testing results, and preventive maintenance records.
  4. Direct observation of performance of instrument maintenance and function checks.
  5. Assessment of test performance through testing previously analyzed specimens, internal blind testing samples or external proficiency testing samples.
  6. Evaluation of problem-solving skills.
  7. Observation of compliance with safety protocols (based upon your specific local state DOH regulations).

The documentation of your competency elements should include the date each item was evaluated, as well as a way to identify and recreate the test performance if asked by an inspector. This is most easily accomplished with the specimen ID number, or PT survey name so records can be located or reprinted.

Be mindful of your local state regulations regarding the specific requirements for who can perform a competency assessment. In many cases, assessors will need an additional supervisor competency for themselves to confirm they are able to successfully assess the performance of their peers. If weaknesses are identified during the competency assessment, additional training should be performed with appropriate corrective actions documented. Competency should be reassessed to ensure staff are correctly performing all duties, prior to them resuming patient testing.

So to summarize:

During training, I am showing you how to do something. I will document all aspects of the training steps that I reviewed with you. When I assess your competency, you are showing me that you know how to do the task correctly. You will document your results as you were trained how to do, and I will validate the accuracy of your work.

-Kyle Nevins, MS, MLS(ASCP)CM is one of ASCP’s 2018 Top 5 in the 40 Under Forty recognition program. She has worked in the medical laboratory profession for over 18 years. In her current position, she transitions between performing laboratory audits across the entire Northwell Health System on Long Island, NY, consulting for at-risk laboratories outside of Northwell Health, bringing laboratories up to regulatory standards, and acting as supervisor and mentor in labs with management gaps.

Safety for the New Year

While it doesn’t seem possible, another year is drawing to a close. At this time of year, I often ask my clients what they have worked on or what they have accomplished with regard to laboratory safety in the past twelve months. Sometimes they can readily answer, especially if there was a major project that took a big chunk of their time. Other people, though, struggle with an answer wondering if they did indeed accomplish any of their safety goals. I contend that we all have had successes and achievements, though, but we might need to dig a little deeper to find them.

Regulations in the realm of laboratory safety did not stay the same in 2018, and if you kept up with any of them, you made some progress. For many U.S. states, the beginning of the year brought about the Environmental Protection Agency’s Generator Improvement Rule (GIR). Among other things, this new set of regulations changed how labs (and other departments) label their waste containers. All hazardous (chemical) waste containers must now be labeled with the exact words “Hazardous Waste,” and there must be a description of the waste as well as some form of a hazard warning. That warning can be in the form of a pictogram or even a NFPA/HMIS warning legend. The GIR also now allows Small Quantity Generator sites to dispose of larger amounts of waste twice per year without needing to upgrade their EPA status to a Large Quantity Generator.

The College of American Pathologists (CAP) added some standards that affect lab safety practices as well. One new requirement includes the need for a laboratory security policy. Labs need to state how they restrict access of personnel into the area, and they need to spell out how to handle visitors to the department. Other new regulatory standards include the need for the safe handling of liquid nitrogen and dry ice. Labs must provide proper training and PPE for the handling of these dangerous materials, and there is even a new requirement for the placement of oxygen sensors where liquid nitrogen is used. If your CAP inspection window opens soon, you have probably already made these changes.

While keeping up with regulations might be your goal, sometimes lab inspection results can spur you on to making accomplishments for the advancement of safety. In one lab, an inspector found a freezer full of patient samples that were mixed with methanol. The freezer was not designated as explosion-proof as required by NFPA-45, the Standard on Fire Protection for Laboratories Using Chemicals. Upon further investigation, the lab safety officer found a few other freezers and refrigerators which were storing flammable materials inappropriately. This led to re-arranging some materials, and it also led to the purchase of more explosion proof units where needed.

Another lab received an OSHA inspection and received a fine for not following the training requirements of the Bloodborne Pathogens standard. The regulations state that during staff training, there must be an “opportunity for interactive questions and answers with the person conducting the training session.” Most labs offer an annual computer-based training for Bloodborne Pathogens, and that does not satisfy OSHA inspectors. The lab that was cited made a change to how the mandatory training program was offered, and they created a method for which staff could ask questions of the trainer. This was another example of an inspection which helped the lab make safety improvements.

In the world of lab safety, it sometimes feels like simply surviving day-to-day is the accomplishment. We’ve put out fires, we’ve responded to questions, and we’ve submitted our required monthly injury and exposure reports. It may feel like performing the job is simply a reaction to what is going on each day, and that is difficult for the lab safety professional. We realize that being proactive is better, we know that is how we decrease employee harm and improve the safety culture. However, I invite you to take a second look at your past twelve months. Yes, it may be that changes were made because regulatory agencies altered the standards- but there is no way to predict that unless you sit on the decision-making board of those organizations. Yes, you might have had to respond to inspection citations, but isn’t it good to have another set of eyes helping you to make safety improvements? Try not to always think about why safety improvements were made. Instead, remember to view them as positives- they are another step to improving safety the way you do it every year. They are truly accomplishments, and as you approach the new year, you can use them as stepping stones toward your next safety goals.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Lab Value Changes in Transgender Females

For our next edition of transgender laboratory medicine, we will explore how transgender women use hormone therapy to physically transition to their affirmed female gender. While transgender men just take testosterone, transgender women take both estradiol and an anti-androgen. In the United States, that anti-androgen is spironolactone.

Figure 1. I was amazed in freshman biology by how structurally similar these hormones were and how they lead to such dramatically different phenotypes. Spironolactone is quite a bit different with the same cholesterol backbone. Credit Wikipedia

Estradiol is administered either as an oral pill, an injectable liquid or a transdermal patch. The estradiol pills are the cheapest option as they have been made generic for use as birth control. The transdermal can be the easiest to use, but is also the most expensive version and may not deliver as much estradiol as the other routes. Oral estradiol usually starts in adults at a low-dose (2 mg) then is titrated up to 4-6 mg and rarely up to 8mg. The end-point of estradiol titration is not to reach a certain hormone level, but to achieve desired physical traits. Endocrine guidelines do suggest keeping estradiol levels below peak physiologic levels (200 pg/mL).While little evidence currently exists for side effects of supraphysiologic estradiol, blood clots are a serious known side effect.

Part of the reason for anti-androgens in treating transgender women, is that even in women, testosterone levels are orders of magnitude higher. Spironolactone is primarily used as a glucocorticoid analog to block the mineralocorticoid receptor in the kidney to induce diuresis while retaining potassium. The structure of spironolactone is similar enough totestosterone that it also binds the androgen receptor and blocks the effect of testosterone. While enlarged breasts are considered a side effect in heart failure patients, it is an intended effect of spironolactone in transgender women. While hyperkalemia (high potassium) is a well known adverse effect of spironolactone, it seems to manifest more in patients with co-morbid conditions such as heart or kidney failure rather than in healthy patients.2

Table 1. This table describes the time frame of physical traits that manifest in transgender women while taking feminizing hormone therapy. Based on Hembree et al. 2017 (1).

For feminizing hormone therapy, red blood cell indices are the one of the most responsive laboratory parameters. The hemoglobin, hematocrit, and RBC number are all seen to decrease during hormone therapy in transgender women. A previous study of 55 transgender women3 showed that hemoglobin levels decreased significantly from cis-gender male levels to be not significantly different from cis-gender female hemoglobin. With a larger patient group, we were able to confirm this previous finding of decreased hemoglobin, but transgender women’s hemoglobin levels are still significantly different from individuals with sex-assigned female at birth (Figure 2).

Figure 2. A. Figure from Roberts et al 2014. B. TW= Transgender women, Baseline TW= TW with no history of hormone therapy, Baseline TM= transgender men with no history of hormone therapy. ***p<0.0001 Data expressed as interquartile range with median (box) and 2.5th to 97.5th percentile (whiskers).

Roberts et al also found that creatinine levels remain closer to cisgender male levels compared to cisgender female creatinine values3. This brought up the concept that not all lab values change predictably to the reference interval of the opposite gender. We further confirmed this finding in our larger cohort, but we further found a significant difference in transgender women from their baseline levels (Figure 3).

Figure 3. A. Figure from Roberts et al 2014. B. TW= Transgender women, Baseline TW= TW with no history of hormone therapy, Baseline TM= transgender men with no history of hormone therapy. ***p<0.0001 Data expressed as interquartile range with median (box) and 2.5th to 97.5th percentile (whiskers).

Overall, red blood cell and creatinine levels change the most in transgender women taking hormone therapy, but they don’t go as far as being comparable to lab values of individuals of the opposite sex assigned at birth. Our summary of this data will be published soon and interested labs can note what we found to be the central 95th percentile of common lab values including those presented here. I will go into greater detail about some unexpected effects of hormone therapy in following blog posts. I hope you’re looking forward to it as much as I am!

References

  1. Hembree WC,Cohen-Kettenis PT, Gooren L, Hannema SE, Meyer WJ, Murad MH, et al. Endocrine Treatment of Gender-Dysphoric/Gender-Incongruent Persons: An Endocrine Society*Clinical Practice Guideline. J Clin Endocrinol Metab. 2017
  2. Roberts TK, Kraft CS,French D, Ji W, Wu AHBB, Tangpricha V, et al. Interpreting Laboratory Results in Transgender Patients on Hormone Therapy. Am J Med. 2014;127:159–62.
  3. Plovanich M, Weng QY,Mostaghimi A (2015). “Low Usefulness of Potassium Monitoring Among Healthy Young Women Taking Spironolactone for Acne”. JAMA Dermatol. 151 (9):941–4. 

-Jeff SoRelle, MD is a Molecular Genetic Pathology fellow at the University of Texas Southwestern Medical Center in Dallas, TX. His clinical research interests include understanding how the lab intersects with transgender healthcare and advancing quality in molecular diagnostics.

On Lab Medicine: A Model for Quality Improvement

What do gopher holes have in common with quality improvement? More than you might think! In a paper available on Lab Medicine’s advanced access, Dr. Yaolin Zhou writes about a novel framework for quality improvement initiatives called EPIDEM, or “explore, promote, implement, document, evaluate, and modify.”

Read the paper and let us know what you think!