By the Numbers: Injuries and Exposures in the Lab

Finding information about the number of Laboratory Acquired Infections (LAIs) and other laboratory injuries in the United States is difficult. Many events are not reported, and of those that are reported at the facility level, only some are required to be reported to national agencies. A report by the CDC cites four studies that collectively identified 4,079 LAIs resulting in 168 deaths occurring between 1930 and 1978. Again, those are just the reported occurrences, and the data says nothing about other injuries in the lab such as slips, trips, and falls, or lacerations.

The Bureau of Labor Statistics (BLS) provides benchmark injury and exposure data for clinical laboratories, but this information too, is limited to that which is reported. That said, the information may still be of value—it can be used to compare your lab’s reportable injury data to labs across the nation. This can provide one form of assessing your overall lab safety.

The BLS provides annual clinical lab workplace injury data in the form of a rate. That rate is obtained via a calculation:

(Number of injuries and illnesses X 200,000) / Employee hours worked = Incidence rate

Incidence rates can be used to show a relative level of injuries and illnesses among different industries and within the same industry. Because a common base and a specific period of time are involved, these rates can help determine both problem areas and progress in preventing work-related injuries and illnesses. In this equation, the number of injuries and illnesses comes from your log of work-related incidents reported on your department’s OSHA 300 log. The worked hours from your lab should not include any non-work time (even if it is paid) such as vacation, sick leave, or holidays. You can estimate the worked hours on the basis of scheduled hours or eight hours per workday. The 200,000 is a constant—it represents the equivalent of 100 employees working 40 hours per week, 50 weeks per year, and provides the standard base for the incidence rates.

It takes time for national annual injury and illness rates to be calculated, so the most recent data from the BLS today is from the year 2018. Back in 2014 the rate for clinical labs was 3.4, and in 2015 it went down to 3.3. In fact, the BLS lab data shows a steady decline in reported incidents over the past twelve years. The most recent rate is 3.1. That’s good news that could mean that lab safety awareness is improving across the country.

How does your laboratory data compare to national numbers? It’s a good idea to use the calculation so that you can see how your lab is doing. If your injury, exposure and illness numbers are on the rise, it’s time to take action. Look for the causes of the incidents and implement methods of prevention. If you see a pattern of the same type of incidents, you may need to execute a safety stand-down around that specific process.

Now that you can compare your reportable data to a benchmark, what about the non-reportable events in your lab? They should get attention as well. Events like closing a finger in a drawer or cutting a finger on a clean microtome blade should always be reported to lab management and the occupational health department, but they may not be required to be reported elsewhere. They still need the same follow-up in the lab, however, and as a lab safety professional, you should be an integral part of the process to engender safety success in the lab.

While there is no national data to compare to for all types of lab injuries and exposures, it is still helpful to collect the information and calculate your lab’s rate. You can keep track of that overall rate and look for trends and make improvements on all incidents in the laboratory. Be sure to promote a culture of transparency and non-punitive reporting so that all lab accidents can be documented.

Knowing how many LAIs and other injuries in laboratories are occurring across the nation is no easy task. The best place to begin is within your own lab. Collect the data and become more familiar with this indicator that can guide you to the right path to improved employee safety in the lab.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

From Safety Eyes to X-Ray Vision

In the Immunohistochemical stain lab, Rory made up his special stains under the chemical fume hood. One of the reagents he used was hydrochloric acid. At the end of each month there was usually a little bit of acid that needed to be disposed of as waste. He poured the waste acid into a glass jar and labeled the jar as “waste HCl.” He then carried the jar through the door to the room next door where there was an acid storage cabinet. That was where the contracted chemical waste vendor picked up other wastes from the lab.

Lydia was working the night shift in blood bank when she was changing the waste container on the automated type and screen analyzer. She splashed some waste into her eye when pulling the container out of the analyzer. She rubbed some water from the restroom sink in her eyes and decided not to report the incident as she was already in trouble with the supervisor for her continued absences.

I often talk to Lab Safety Professionals about using their “Safety Eyes” while performing their duties. It’s a latent ability we all have and can develop with some practice. With it, one can walk into a laboratory and quickly see safety issues and even make a swift assessment of the overall safety culture. Much of what can be seen using that super-power belongs to the lab’s physical environment- that which lies on the surface and should be visible to all. But sometimes there are deeper issues, those that may be more hidden. With practice, one might easily spot incorrect use of PPE, unlabeled chemicals or trip hazards. But how do you spot those other safety issues that can be just as dangerous- or even more so? How can your Safety Eyes ability be honed into something more powerful….like X-ray vision?

In the first scenario above, you may see nothing wrong, especially if you’ve performed that process yourself for years. One week later the EPA inspector came in for a laboratory waste audit, and they cited the lab for moving waste from the point of its generation to another area which was not designated as a Central Accumulation Area (CAA). Hazardous (chemical) waste cannot be moved to another location outside the line of sight of its generation point unless that other area is treated a CAA.

In the second scenario Lydia woke up the next day because her eye began to burn. She went to the emergency room and told her story. Because she missed the window of opportunity for proper treatment of an unknown source exposure to biohazards, she had to undergo long-term treatments which involved strong medications which have unpleasant side effects. She also had to be tested regularly for Hepatitis and HIV.

Some people you may know in the lab have been performing unsafe acts for years with little or no known consequences. Have they been doing the right thing or have they been lucky? What will it take to correct those unsafe actions? A fine? An exposure or injury? Hopefully not. Sometimes the reason unsafe acts occur is that staff is unaware of the regulations or the potential consequences. Influencing others’ safety behaviors is another more subtle super-power of the Lab Safety Professional, but it can be both important and useful.

As a safety professional, make sure you develop your basic super powers- your Influence and your Safety Eyes- but also be sure to augment what you already know how to use. Learn to use some X-ray Vision. Look more deeply for those processes and actions that may have been in place for years. It is not too late to make a change and prevent an incident that was years in the making.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

The Power of the Pause

The majority of laboratory injuries and exposures are preventable, and most of them occur because staff is not paying close attention to the situation. They lose their situational awareness or were never paying attention to it from the start. Unfortunately, lab safety professionals spend much of their time investigating such incidents rather than being able to prevent them. If laboratory staff could understand the power of the pause, labs would have fewer dangerous incidents.

One illustration of that power can be seen in a simple exercise. A group of people is asked to read aloud quickly a list of words that indicate different colors- green, red, etc. The words themselves, however, are written in different colors, and the colors do not match the words. For example, the word “red” is written in black, the word “blue” is written in green, etc. This first part goes well, you’re just asking them to read the actual words. Next, however, it gets harder. The people are asked to quickly go down the list again, but this time they are asked to say the color of the word, not that actual word. Typically, this does not go well. For the next step, the exercise is repeated at a much slower pace, with a slight pause between each word. Once a pause is placed between each word, the people recite the correct colors. The incongruent words and colors creates what is known as the “Stroop Effect,” first theorized in 1935, but pausing is a means of overcoming this issue in our brains.

When investigating a needle stick incident, the lab safety officer learned the employee completed the draw, attempted to engage the needle safety device, but stuck their finger when grabbing the needle to toss it into the sharps container. She did not notice the safety device did not engage and the needle was still exposed. The employee stated she was busy and in a hurry because there were many other patients waiting. I have always said that when a lab employee is stressed and busy, that’s when stopping for a moment to gain situational awareness is most important. Had this employee paused for a moment to ensure the needle safety device was fully engaged, the incident would never have occurred.

The lab manager had to speak to a chemistry tech after a serum splash exposure to the eyes. When looking at the work area, the manager noticed there was an adjustable face shield in place but that staff moved it into place only when needed. The tech admitted he was busy at the time of the splash and that he neglected to move the shield into place before uncapping specimens. Again, a pause to think about safety here would have helped.

In another situation, a microbiology technologist was eager to start the day and get it done since her vacation began the next day. She quickly went through the daily checklist and checked items off but did not actually perform the checks. Halfway through the day, she noticed it seemed warm and that it was unusually quiet at her biological safety cabinet work station. She decided to look at the gauges and noticed that there was no protective air flow in operation. She had been working with TB samples all morning. When she reported the issue, the manager told her that all employees in the area would need to go to Employee Health and be followed up for TB exposures. Pausing to perform the safety checks at the beginning of the shift would have made a big difference in that outcome for several employees.

Pausing for safety in the laboratory setting can be a powerful tool, even during the busiest moments. In fact, that’s when it works best. Use that pause in your arsenal, and teach maintaining situational awareness with your staff so that future injuries and exposures can be prevented.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Fighting Fire with Fire

In 1939, the first issue of Marvel Comics introduced the original Human Torch, an android named Jim Hammond who would burst into flames when exposed to oxygen. Fourteen years before that, President Calvin Coolidge proclaimed the first National Fire Prevention Week to commemorate the Chicago fire of 1871 which killed over 300 people 54 years earlier. In that entire span of 68 years, from 1871 to 1939, over 17,000 people died in fires in the United States. Because of fire awareness campaigns over the years, the number of home and work place deaths have greatly decreased, and the risk of fire in your lab goes down when fire safety awareness increases as well.

In the laboratory, fire safety begins with a look at the physical environment. It is important to make sure the department is set up to prevent a fire from starting and to keep one from spreading if a fire ignites. The electrical wiring in the lab plays a large part in fire safety. Frayed cords are the number one cause of laboratory fires, and daisy-chained extension cords or multi-plug adaptors are fire hazards as well. Damaged outlets can also present danger. Because equipment may move often in the environment, it is a good idea to check for safety in the lab electrical set up regularly. In audits I have performed this year alone, I have discovered three damaged electrical cords just waiting to cause a fire. Things change rapidly in the lab physical environment, so looking for these potential safety issues is vital.

The next aspect of the lab physical layout that needs attention is flammable chemical storage. There are complicated regulations about that, and multiple classes of flammable liquids, but you can simplify storage rules to make it easy to understand. In general, there should be no more than one gallon of a flammable liquid out in the lab per every 100 square feet. If there are automatic sprinklers in the department, that amount can go up to two gallons. If safety cans are used, the amount can be doubled again. Any excess volume of flammable liquids should be stored inside of a flammable safety cabinet with self-closing doors. Remember, the point of these storage limits is so that if a fire occurs, there is not a large amount of flammable material in one location. That slows the spread of the fire and allows automatic fire extinguishing systems to be able to perform their job effectively.

Fire-fighting equipment should be available as well, and staff are required to have training to use that equipment if it is available in the department. The best training includes a regular hands-on return demonstration and periodic fire drills. Making sure staff can use fire extinguishers and know how to respond to a fire situation may be the one of the most important safety training policies you can implement. Fire blankets are typically not required per local fire code, but if they are in place, be sure staff is aware of how to use them should the need arise.

The last actions in a departmental fire situation include evacuating and preventing the spread of the fire. To that end, it is important to keep aisles clear and wide for safe travel, and all exit routes and stairwells should be checked to make sure no obstructions exist. Staff should be aware of their primary and secondary evacuation routes, and all exits should be adequately marked. Make sure employees know to close fire and smoke doors during a fire situation.

Even in modern times there are structure fires in the work place, and unfortunately, laboratories are not excluded from that list. The Human Torch could catch fire and not get burned, but we all know that is science fiction, and burns from a fire are no joke. The best practice is to be prepared for a fire-provide training, conduct physical environment rounds, and run drills often. That will protect your staff and make you a true safety super hero.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

The Fundamental Attribution Error

As laboratory safety professionals, we know that an important part of the job is the ability to coach other lab team members when unsafe situations are observed. To coach someone is to confront a coworker about an issue for the sake of safety-theirs, yours, or that of a patient. Those coworkers may be fellow lab employees, supervisors, managers, or even physicians. The word “confront” might sound strong, particularly to those who may be uncomfortable with these types of encounters, but this coaching is an important and valuable skill. 

Coaching your peers is no easy task, and it takes practice to be able to do it well. I recently walked into a laboratory that was unfamiliar to me, and I saw a technologist working at the bench with no lab coat, no gloves, and no face protection. At first I thought, “that would never happen in a one of my labs,” and then, “the lab safety culture here is terrible.”

I learned I was wrong on both counts, and the incident reminded me of the necessity to stop and think before forming an opinion or even speaking about a lab safety issue. I provide training often about how to coach staff who are acting unsafely while in the lab, and I have learned that how a coaching moment will go depends largely on what is in the head of the coach before he or she speaks. It is important to remember that if someone acts in a manner that displeases or disappoints you, there are several possible sources of influence acting on that person.

Psychologists have coined it the “Fundamental Attribution Error.” Humans who are disappointed usually think the other person has committed the wrong intentionally or because they are not intelligent. Neither of these conclusions is ever correct, and that thought process usually leads to a coaching session that will not be successful.

Take the scenario I mentioned above, for example. What is your gut reaction when you see someone working in a lab without PPE? Maybe that lab tech just found out a relative had passed away and they were waiting for someone to relieve them, or maybe there were no lab coats or gloves available in their size. The possibilities are endless, so you need to train yourself to be calm first and to ask questions to learn what is really happening without making assumptions. It’s more difficult to do than one would think.

The success of a safety coaching moment is determined in your head before you even speak. You have the power to make it a positive event. It is true that some people just will not accept it well no matter what we do (a reminder to ourselves to always be ready to accept coaching), but by and large a successful event starts in the mind of the person who is coaching for safety.

When you see a lab safety problem, it is vital that you confront the person. However, before you do so, ask yourself, “why would a rational person behave this way? What am I not seeing here?” If you start with that, your coaching for safety will be much more successful, and you will see a positive change in your overall lab safety culture.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

The Disaster Risk Assessment

There are multiple types of risk assessments required when managing a laboratory safety program. OSHA’s Bloodborne and Airborne pathogens standards require assessing the risk of employees’ exposure to particular lab hazards. Risk assessments can be used to determine whether or not to add an emergency eyewash station, and all lab chemicals need to be assessed for the hazards they pose. These are just some assessments that are needed, and there are particular steps to take when performing them. But what about the lab emergency management plan? Should the lab perform a risk assessment for that? The answer is yes, although the terminology used may be different. To prepare a disaster readiness plan for the lab, the risk assessment that is needed is known as a Hazard Vulnerability Analysis (HVA).

The Centers for Medicare & Medicaid Services (CMS) requires that all healthcare facilities use an “all-hazards” approach when considering emergency preparedness and planning. While some laboratories may be included with the facility-wide disaster plan, the lab should absolutely have its own plan with specific instructions that apply directly to the department. That means the lab should also consider an all-hazards approach.

It may seem daunting to try to consider every possible disaster that could occur in the department, but that is not exactly what the directive from CMS dictates. An all-hazards approach means that emergency plans should be scalable or flexible so that it can be used for many types of disasters. The plan should focus on the lab’s ability to continue to offer services, especially those deemed critical, as a disaster situation unfolds.

The first step to the plan creation is the risk assessment- the Hazard Vulnerability Analysis. The HVA can be a table that lists all of the potential types of disaster; natural, man-made, facility-specific, etc. List as many as you can think of, and be sure to include specific disasters that may be particular to your locale (earthquakes, blizzards, etc.). Rate each disaster type by probability, severity of impact, and level of readiness of the lab to respond. Using that data, you can calculate the risk percentage for each emergency type.

One other requirement imposed by CMS is that facilities must include emerging infectious diseases as one potential type of hazard class. With the advent of particular diseases in the past years like Ebola, Zika, and certain influenza types, it is important to consider how an outbreak would affect lab operations and staffing. The risk level of infectious diseases may vary as incidents and outbreaks occur in particular geographic regions or if pandemics arise.

The HVA should be reviewed and updated as necessary each year. Things change that can affect what is on your HVA list. The addition of a nearby airport might make you consider adding airline disaster to the HVA. A change in weather patterns could occur as well. In 2011 a surprise earthquake in Virginia made state facilities re-look at their HVA list of possible emergency situations. Also, the actual list of disasters might not change, but there may be a change in the potential of a particular incident occurring.

If your lab or facility has not yet performed the HVA risk assessment, there is no need to panic. There are several model HVA tools available on line that can be used. As with any risk assessment, be sure to keep documentation readily available, review it each year, and make sure staff are trained about not only the HVA process, but in how to use the emergency management plan as well. There is a great amount of work that can go into preparing for a disaster, and training and drills for your staff will help to facilitate a smoother activation of the plan when the real emergency situation occurs.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Think S.P.I.L.L.E.D.

Large biological and chemical spills are not a common occurrence in the laboratory. That’s a good thing, but when they do occur, they can create a very dangerous situation. It is vital that lab staff know how to handle such events even though they may not be commonplace.

Some laboratories differentiate between large and small spills. They may have an emergency number to call for a hazardous spill response team. Other smaller facilities simply don’t have that in place. Either way, it’s important for laboratory professionals to know they are the experts about the biological and chemical materials they use, and they need to be in charge as the experts when a spill situation needs to be managed.

Most laboratory spills can be managed using a standardized step-wise process known as the S.P.I.L.L.E.D. procedure. I don’t usually ask lab staff to memorize the acronym, but having the information contained on a poster with the lab spill kits can make a clean-up procedure go smoothly.

S = Secure the Site – Make sure no one walks through the area where a spill has occurred. It could be a dangerous situation if a hazardous chemical is spilled, and you would never want someone slipping in the area or tracking the spilled material to another area.

P = Protect Yourself – Arm yourself with the appropriate Personal Protective Equipment (PPE). In a lab spill event, this would mean using a lab coat, gloves, and face protection to prevent accidental splashes.

I = Inspect the Spill – Look to see what was spilled. If it is a hazardous chemical, is there a concern about fumes? Obtain a Safety Data Sheet to see if section 6 will give any special information about handling the accidental release or spill of that chemical. Consider other spill concerns such as broken glass or possible ignition sources if flammable material is involved.

L = Lay Down a Barrier – If the spill is large and spreading, lay down spill pillows or booms designed to contain a flow of liquids. Surround the spill area with these materials. Sometimes, the use of an emergency shower can create the need for a barrier to be made.

L = Lay Down Absorbents – No matter the size of the spill, the next step is to place any absorbent powders, granules or clean-up pads to soak up the spilled material. If the absorbent is also a neutralizer, make sure you allow the necessary time for neutralization to occur.

E = Extract the Mess – Use implements to pick up the materials used for stopping and absorbing the spill.

D = Dispose of the Waste – Properly dispose of all materials involved with the spill clean-up. If there was glass involved, be sure to use a sharps container.  Biohazard material should go into an appropriate container, and chemical waste materials may need to be disposed of separately for pick-up by a chemical waste vendor.

Lab staff should be able to access spill control materials quickly, and the necessary items should be stored in a location designated by signage. Perform an inventory of spill supplies and make sure there are adequate materials that could handle spills of the biohazards and chemicals stored and used in the department. Be sure items in the spill kit are not expired, and if there is no expiration date for absorbent powders, check them at least annually for effectiveness.

All laboratory staff need to have complete spill clean-up training. Give information about the types and locations of spill kits and how to handle various types of spills that can occur. Once that training is done, it will become important to perform spill drills in the department. Drills can be performed a number of different ways, but a common method involves having a “victim” spill water onto the floor and claim the material splashed into their eyes. Watch from a distance to see how the staff reacts. Do they provide appropriate first aid? Do they inspect the container label? Do they access the correct clean-up supplies and facilitate cleaning efficiently? Make notes of how the drill went, discuss them with the staff, and repeat the drills until all staff are comfortable with a spill situation. Biological and chemical spills should not be a common occurrence in the lab. When they do occur, however, the situation can become serious quickly, and a fast and effective clean-up needs to occur. Because these events are rare, it becomes important to provide regular spill training and drills so staff can remain ever-ready to handle them.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.