Anticipating Sublimating

Many years ago I worked in a lab that often received dry ice in boxes with our blood product deliveries. The habit in the lab was to dump the excess frozen carbon dioxide into one of our stainless steel sinks. The staff would get excited each time there was a delivery because they liked to run tap water onto the ice to make a “waterfall” of smoke flow onto the floor when they were bored. Before too long, this repeated incorrect placement of dry ice resulted in severe damage to the sink and pipes below. The stainless steel basin cracked and the sink fell down onto the broken pipes below. That particular plumbing is not designed to handle such a low temperature, and the repair was not cheap. Luckily, no one was injured. I thought this was a long-dead practice in labs, but even today I get questions about proper dry ice disposal and am asked whether or not the sink is a good spot for that.

Dry ice sublimates at room temperature. That means it transforms from a solid state directly into a gas. Too much of this gas in a small space will reduce the normal oxygen levels in the area, potentially causing dizziness and asphyxiation. Letting dry ice sublimate in the work place can be a dangerous practice. If you have dry ice to dispose of, the best practice is to set it outside (where other could not have access to it) so it can dissipate into the open air.

Dry ice is often used in the transport of specimens, blood products, and certain lab reagents. The Department of Transportation considers it a dangerous good, and it must be used and labeled specifically if it is to be shipped by land or by air. If dry ice is used in shipping, an additional Class 9 miscellaneous hazard label also must go to the right of the Class 6.2 infectious substance label. In addition to the Class 9 label, the outer box must be labeled with the net quantity of dry ice used.

Another common use of dry ice is with the transport of outreach or clinic lab samples in courier vehicles. Certain samples must be kept frozen for testing, and the use of dry ice provides a convenient method for maintaining the necessary temperatures. Dry ice is placed in a cooler in the courier vehicle, and samples are placed until delivery to the reference laboratory. With that, there are specific safety practices that should be adhered to when using dry ice for this purpose. Couriers are often overlooked when considering safety training, but they are an important piece of the lab sample and testing process. Be sure couriers have complete safety training, including training for the proper handling of dry ice.

Couriers should limit the amount of dry ice placed inside the cooler that will rest in the vehicle. No more than three pounds of dry ice should ever be placed in that cooler. The cooler should never be completely sealed (remember the ice sublimates to gas, and the volume of the gas in the cooler will expand). Also, if dry ice is kept inside of a vehicle, the windows should be left opened, even a tiny bit. There have been incidents where too much dry ice in a closed vehicle has caused a driver to become dizzy or even become unconscious. Obviously, this is a potentially dangerous or even deadly situation and should be avoided completely.

In recent years, the College of American Pathologists (CAP) added new regulations for labs that handle dry ice. These safety rules include the use of appropriate (insulated or cryogenic) gloves and a face shield when handling dry ice. Safety Data Sheets should be available and staff who use dry ice must have documented training. CAP also discusses the need for using dry ice only in well-ventilated areas.

In the laboratory or outreach settings, employees are asked to work with many dangerous substances, bloodborne pathogens, chemicals, and sometimes dry ice. Inherently, these departments are not safe, but OSHA requires that employees be able to work safely in those places, and it can be done. Proper training and oversight of safety are the keys to ensuring your employees can collect, transport, and process lab samples in such a way in which all involved in these processes are kept safe.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

The Safety Sweet Spot

I have been through physical therapy for a few different issues in my life, and I must say (with apologies to the profession), I was never a believer. I had musculoskeletal issues that needed attending—a pinched nerve, neck pain, knee pain, etc. If you are past 40 years old and your body’s check engine light has blinked a few times, you know what I mean. Each time the series of physical therapy exercises seemed to be useless and a waste of time. They never really helped me. Recently, however, I subjected myself to a total knee replacement surgery. I knew PT would be a part of the recovery regimen, but I did not realize how important it was going to be for my overall recovery. Therapists taught me how to walk again, they taught me how to trust my body and that I could do things I did not believe possible until that next session. They caused pain (a necessary part of the journey), and they did all of these things with care and professionalism- despite my whining and sometimes less than positive attitude. For me, this is where the PT rubber hits the road. This is where the profession shines and has the successes that people talk about. I saw the real face of physical therapy, and I became a believer.

Then I began to wonder, what is that moment of shining for lab safety professionals? When do laboratorians become believers in lab safety? When does the safety rubber hit the road? What is that sweet spot that makes safety important to people?

I had a needle stick exposure early on in my career. It was before the advent of needle safety devices, and I picked up a used butterfly needle off of a bed and stuck myself in the finger. I was in a hurry, and not really paying attention. That event made me a much safer needle-handling phlebotomist- but would proper safety training have done the same? Would my risk tolerance have been different if someone had really explained the potential consequences of an exposure to me? Did the rubber hit the road for me because I had that experience? How does that get moved or changed so that safety behaviors become proactive instead?

I have hypothesized often that people will perform safely based on three motivators: knowledge about consequences, information about financial and environmental impacts, and punishment. Personal risk tolerance also plays a role, however. A technologist may be full well aware that an open specimen may splash, but they may also feel that the risk is low or that the result of a splash incident would not be severe, so they don’t use face protection. Sometimes, though, we make mistakes when deciding upon the risks, especially if we do not have sufficient education. Any open specimen is a potential exposure hazard, and all specimens should be treated as though hazardous.

In order for a lab safety program to have success, the working parts must be proactive. They must be in place to prevent injuries and exposures, and they should not be there only to figure out what to do after an event has occurred. When a program works in that proactive fashion, when staff is on board and participating, that’s when safety shines. That’s the safety sweet spot.

I’m thankful for professions that easily get it right- like physical therapy. People might not always see their value until they really need them, and that is when they shine. So maybe that’s true for lab safety – it shines when it is really needed. For lab safety professionals, then, the next step will be to get laboratorians to see that we need safety all the time.

A special thank you to Stephen, Audra, and the entire PT gang! You guys rock!

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

The Laboratory Safety Challenge

In 2014 there was an internet challenge which exploded in popularity. It was the ALS Ice Bucket Challenge in which people would dump cold water on their heads and post the video on social media. The person getting the ice water dumped on them would challenge others to post a video of their dousing and they would in turn donate to the cause of finding a cure for ALS, a progressive neurodegenerative disease. The challenge became a world-wide sensation and raised $115 million for ALS research. But, like many good things, the challenge had a dark side. Many people were injured while attempting the challenge, and at least two deaths were at least indirectly associated with it.

Another challenge has come to social media lately, and this one involves a technical skill in the laboratory. It, too, has a dark side. The blood smear challenge is the latest rage for lab techs who enjoy posting videos on Facebook, Instagram, and other social media platforms. Lab techs show off their skill by making the perfect blood smear. At first it was about who could make a smear with the most perfect beautiful, feathered edge. Then the challenge evolved into people making smears while holding the top slide with one finger or even a pencil. There are those who were quite proud to show off their skill and work.

When watching videos of people in various labs performing this challenge, I cannot help but cringe. Several of these lab techs are not wearing lab coats. Many are not wearing gloves, and I have not seen any perform the challenge while using face protection or goggles. Ignoring the safety regulations about using basic personal protective equipment is apparently the norm. These people post this online without a second thought to a public display of working in the lab without PPE. It speaks volumes about the safety culture in those laboratories, and what it says is not favorable.

The next, less obvious safety issue with the videos is that they are created using cell phones or other personal electronic devices in the laboratory. People are handling devices sometimes with gloves, sometimes without, or they are setting them on lab counters which are likely contaminated. The use of cell phones and other personal electronic devices is a dangerous infection control issue, but it is unfortunately all too common. Even before this latest challenge, lab staff all over the country pose for pictures for social media posts that are taken by cell phones. Despite the fact that known and reported infections have occurred in labs from cell phones (and other items brought home from work), techs continue to use them.  

Other issues with the blood smear challenge may be less obvious. Unless these smears are being used, valuable lab supplies are being wasted. Slides and blood-dispenser cap piercing devices cost money, and many lab supplies manufacturers have run into supply shortages this year because of the pandemic. To have a lab waste money or run into shortages for the sake of this challenge might seem foolhardy to some.

Another safety issue with the challenge is the blatant act of playing around with human, potentially infectious blood to make the smears. Staff use engineering controls, work practice controls and PPE to separate people from the hazards in the laboratory. To place oneself at risk unnecessarily, especially during the COVID-19 pandemic, borders on reckless.

When the COVID-19 pandemic began affecting labs over a year ago, many laboratorians became concerned for their own personal safety. They were unsure about how they might catch this virus and what effects it might for them and their family. These were valid concerns, and some still have fears today. In conversations with lab staff over the past months I reminded them that they work with bloodborne pathogens every day, and many are as potentially dangerous (or more) than the COVID-19 virus. If Standard Precautions are used on the job, workers will be safe from infections from COVID-19 and other pathogens. The same is true today. Laboratorians may be less worried about the coronavirus, but the risk of infection in labs from this and other pathogens is as real as ever. Using engineering controls, PPE, and safe work practices is the only way to ensure lab staff can go home without bringing something dangerous to our families.

Challenges can be fun. I participated in the ALS Ice Bucket Challenge. I came out unscathed, but I was likely just lucky, not safe. The same is true for those posting pictures and videos online from inside laboratories. You might have been working that way for years and nothing has happened. Again, that is just luck, and it will run out. Make sure you and your staff are doing what is right, and what is safe. The real challenge is how to get laboratorians in all labs to work safely and follow basic safety regulations. Can your lab meet that challenge?

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Truth or Consequences: The Wrong Question

It was with sadness that I watched the episode of Jeopardy! which featured Alex Trebek’s final appearance. While I hadn’t watched the game show consistently since 1984 when he first began to host, Alex had certainly become an icon in U.S pop culture and I had enjoyed watching him often. The quiz show has always been different than most- the answer must be given in the form of a question, and it must be the correct question in order to score points. As with most games, contestants don’t always ask the right question. That can happen with lab safety, as well.

I was performing an audit in a laboratory when the manager was bringing a new employee through during her orientation. I was introduced as the Lab Safety Officer, and I described some of my duties like auditing and safety compliance monitoring. The new employee immediately asked, “What happens if you catch someone not doing what they should?” That was the wrong question.

As an experienced lab safety professional, I often see people fail to follow certain lab safety regulations. Unfortunately, you do not have to look far to find lapses in lab safety practices. Vendors and service representatives and other visitors walk into labs across the country and lab staff ignore them. The visitors are not given information about the hazards in the department and they are not offered PPE. A look on social media will reveal multiple pictures of lab workers not wearing PPE as well. Oh- and they are taking those pictures with cell phones they shouldn’t be using (sometimes the hand holding the phone is gloved, other times it is not). While I am concerned about these unsafe behaviors, I am equally concerned about those that witness them and say nothing.

The COVID-19 pandemic has raised the public awareness of an important aspect of personal safety: the unsafe behavior of others can have a direct affect on your own safety. People who refuse to wear masks or who are sick and do not isolate themselves may create situations where the virus is spread to others. In the past year, many people have realized this and have felt empowered to say something to those who are not exhibiting safe behaviors. That realization that they may be in danger has made people feel comfortable speaking up for their safety and that of others around them. Perhaps that is what is needed in the lab setting as well.

Unsafe behaviors in the laboratory can easily have consequences that may affect many in the department. Spills and exposures are just some incidents that may occur. Messy lab areas can create trips or falls, and improper storage of chemicals or hazardous wastes can be dangerous as well. Perhaps laboratory staff don’t think enough about the dangerous consequences because there isn’t enough training about them. Perhaps they don’t think about the potential consequences to others because they haven’t been told about the possible physical, environmental, or financial consequences. When the new lab employee asked the question, “What happens if you catch someone not doing what they should,” I should have had an immediate answer. I should have said that she asked the wrong question. The real question is, “More importantly, what happens to you if you’re not doing what you should?” Teaching staff about the consequences of unsafe lab practices is something that should start on day one, and the awareness of these issues should be raised often and continuously. The truth is, it is important to correct your own unsafe behaviors, but it is also important to feel empowered to correct unsafe issues that are witnessed. The truth is, we all have a responsibility for our safety and that of everyone else who may be in the laboratory. If we own that responsibility, then no one’s safety has to be in…jeopardy.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

2020: Lessons Learned in Lab Safety

2020 will be a year for many to remember, no matter your profession. If you worked in a laboratory, though, you know many things happened along the way which were both difficult and unexpected, and much of the year was consumed with work surrounding the COVID-19 pandemic. Changes and challenges came along which would test the resiliency of any lab safety professional. With luck, though, there were good lessons learned and new ideas about how to face certain lab safety issues in the future.

The Fear of Biohazards

One of the earliest challenges many lab leaders faced this year was dealing with the fears of staff who would have to work with COVID-19 patients and specimens. With the news reporting daily death tolls and unscientific data (like mortality rates when the total number of cases could not be determined), the amount of fear that was generated for some people became obvious at work. Staff members became afraid of handling any specimens, and people began unnecessary practices like double-bagging swabs or wearing gloves when transporting specimens.

Getting employees to deal with those fears and to continue to work became a priority for many very quickly. Many lab leaders conducted meetings and educational sessions. It was important to remind staff that they usually handled specimens every day which contain bacteria and other viruses that could be as harmful to them. They had to remember that if they used Standard Precautions with all samples, they could remain safe. In some locations COVID-19 FAQ newsletters were used to address hot-button issues and answer common questions about PPE, high-touch surfaces, and aerosol generating procedures. It was a good lesson to learn, lab staff need regular information about the proper handling of the hazards they work with and knowledge about how to remain safe on the job.

PPE Changes

Another challenge that arose was trying to keep up with the changes in recommendations for PPE use in the lab and for those who collected COVID-19 swab specimens. In the beginning of the year, masks were not required in the workplace, but that changed. Then cloth masks were not allowed in some organizations. The use of face shields or goggles was mandated, in some locations they were even required in break rooms and hallways. Phlebotomists who once wore only gloves now had to wear gowns, masks and face shields, and in some instances N95 respirators were used. These changes required education, training and an explanation for staff as to why the extra PPE was necessary.

Changes also came to how laboratorians would utilize PPE. Because of international shortages of supplies, the CDC provided information about extended use and re-use of the equipment. Organizations moved from using disposable lab coats and gowns to reusable ones. Hospitals had to set up methods for reprocessing and disinfecting gowns and N95 respirators for reuse using UV lighting or a hydrogen peroxide vapor treatment. Laboratorians and other healthcare workers learned how to extend the normal wear time of N95 respirators, masks, and other disposable PPE and how to store items rather than toss them out. While PPE supply issues seem to have calmed down, labs learned many lessons about how to handle such shortages in the future.

New Testing

As the pandemic progressed, many labs were asked to bring on board new COVID-19 testing. This testing typically had to be brought on board quickly, and in some cases new laboratory space had to be found. Many considerations had to be discussed such as room ventilation, safety equipment (BSCs, eyewash stations, spill kits, etc.), and proper specimen transport.

The best approach for this (as with any new process in the lab) is to conduct a complete risk assessment. One method is to identify the risks associated with the new testing, rate the likelihood and consequences of potential hazards in the process, and then implement steps to mitigate those hazards. Performing these assessments routinely and reviewing them will help to keep your staff safe as work continues in the department all year.

The COVID-19 pandemic affected other areas of work in the laboratory. Accreditation agencies delayed inspections, and now they are trying virtual auditing. Staffing levels are affected by virus exposures in the community or within the department, and while organizations do their best to follow national safety guidance, many have different approaches. The pandemic is not over, and soon healthcare workers will be offered a vaccine. What new lessons will we continue to learn as the situation continues to develop? Time will tell. The important thing for lab leadership is to stand for what keeps those in their department safe. Continue to follow standard precautions, and escalate issues when the unusual occurs. Remember, we will get through this, but as we do, take the opportunity to learn from the experience this year and when moving ahead!

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

The Lab Safety Professional: How to Grow Your Role

In any professional career path, there are people who want to learn, to grow, and to advance professionally. That’s no different in the world of laboratory safety, and there are good opportunities to make that happen. If you’ve been in your position for a while, you might be asking what the purpose is for growing in your role. There are good reasons, and there are easy ways to go about it as well.

One reason to advance yourself professionally in the role of lab safety is that it can help you to stay on top of the latest regulations. That, in turn, will help you do a better job with keeping your lab safe and up to date, a goal we should all have. Advancement in the role can also keep you excited and motivated about your career which may make you a stronger safety leader. That motivation can lead to involvement with other laboratorians and professional organizations which creates advocacy for lab medicine (and safety) as a whole. Those interactions have the potential to bring positive changes to the overall field of lab safety. Embarking on the road to professional growth in lab safety also has personal benefits. It keeps you from becoming stagnant in your job. Armed with the latest information and making positive changes to keep your safety program running strong, the professional growth may lead to new and exciting career opportunities that did not previously exist.

Staying on top of changes and news in the world of lab safety is important to keeping your safety program up to date and in compliance with the latest regulations. It can be difficult sometimes to find the time to read professional articles or newsletters, but if you learn to skim headlines and read the relevant material, you can remain aware of new or updated safety regulations. There is an abundance of free literature available, and there are even safety and occupational health resources that are not specific for labs, but which contain valuable safety information on topics like PPE, the physical environment, ergonomics, or waste management. Request free newsletters from important safety resources such as OSHA, the CDC and NIOSH. These organizations have a major impact on lab safety guidelines and regulations.

Knowing your written and published laboratory safety resources is important as well. The Laboratory Biosafety Manual is a free book available from the World Health Organization (WHO) website. The latest version is the 3rd edition, and it was published in 2004, but an updated version will be released soon. The CDC’s Biosafety in Microbiological and Biomedical Laboratories (BMBL) 5th Edition is an excellent resource for biosafety information, and its next edition is also due to be published soon. OSHA offers a Laboratory Safety Guidance book on line as well, and the information withing aids in obtaining compliance with safety regulations that are required in all labs.

Another way to become more actively involved in lab safety is to volunteer to write or edit CLSI lab safety guidelines. The Clinical & Laboratory Standards Institute (CLSI) accepts volunteers from government, industry, and clinical labs to assist with guideline development, editing, and approval. Through their process, you can work on teams to create best safety practices that are viewed around the world. The experience of working with other lab safety professionals will broaden your knowledge and expand the resources you now access. Being a part of the CLSI document development process is a worthwhile and professionally rewarding experience.

Lastly, a lab safety professional can grow their role through certification. There are some general safety certifications that can be achieved, but there is only one in the United States that is specific to clinical lab safety: The Qualification in Laboratory Safety (QLS) offered by ASCP. The process of applying, studying, and testing for this certification can take you to that next level of lab-specific safety knowledge and expertise. The certification also bestows upon you increased credibility as an expert. If you have some experience in your role and are looking for the next step, getting that ASCP QLS is for you.

There are those who might think a career in safety sounds boring, and a narrower focus on clinical lab safety may even appear to be limiting as a career choice. That is not the case – there are a wide variety of methods to grow in such a career and truly become an experienced professional who is well-respected. That respect can take your career down an amazing path you never thought possible, and such a path can only be a benefit lab professional everywhere.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Safety Checklists and High Reliability in the Lab

A High Reliability Organization (HRO) is one that works with complex and hazardous systems every day and yet retains a high level of safety and an error free environment. The first recognized HRO industries were the United States Navy nuclear aircraft carriers , the Federal Aviation Administration’s Air Traffic Control systems, and nuclear power plant operations. These industries operate using highly complicated and dangerous processes, yet they have the fewest safety incidents.

The use of checklists is an important part of keeping safety incidents to a minimum. They can help employees avoid safety issues, avert disasters, and even aid in incident response. In aviation, a pre-flight safety checklist is a list of tasks that must be performed by pilots and crew before a take-off. Pilots also use checklists for both normal and non-normal operations, for landings, take-offs, and also for malfunctions, and emergencies. Checklists are usually printed on a card, and one card may be divided into as many as a dozen of separate checklists, each of which will be read aloud depending on the phase of a flight. Nuclear power plant operations also involve the use of many safety checklists.

A functional safety checklist features specific characteristics that aid the user in avoiding safety mishaps. Checklists should have defined pause points so users can determine when the list should be used and when new tasks should begin. Checklists types are also important, and the style used may vary depending on the task and the experience of the user. For example, a “do-confirm” list is generally used when users are experienced with the process and have gone through the necessary steps on the list and simply run through it to ensure the process is complete. A “read-do” checklist means employees perform the tasks as they read through each list item.

Most checklists should not be lengthy as it may tempt experienced users to take shortcuts or to ‘pencil-whip’ responses. Make sure the list includes crucial and potentially overlooked steps. These may be the things that can cause the greatest harm if not checked. Use language that is simple, precise, and use terminology that is familiar to the lab staff using the list. Lastly. Test the checklist to see that it fits the criteria above, and that it accomplishes the task set for it. The real goal of using a safety checklist is to create a cultural change by enhancing teamwork, increasing safety communication and changing the understanding of responsibility for safety within the department.

There are quite a few published lab safety checklists available for use. Here are just a few:

  • CLSI’s Clinical Laboratory Safety (GP-17) – Lab Safety Checklist (Appendix C)
  • World Health Organization Biosafety Manual (2004)– Ch. 22 Safety Checklist
  • ISO 15190 Medical laboratories: Requirements for Safety (2019) – Annex B
  • EPA website: Waste Generator Inspection Checklists

Your lab may have its own specific needs, and these checklists may not cover them, or they may be too much for your current issues. If that is the case, create a checklist that focuses on an issue or issues you’d like changed. For example, if PPE compliance is on the rise, create a list that can be used daily or weekly. Walk around and look for proper footwear, lab coat use, and face protection for example. Home made checklists can be scored and used as a quality monitor in order to show improvement in lab safety over time. Make sure people are trained to use the checklists properly, and that people are consistent in how they answer individual items. It’s always a good idea to alter who uses the safety checklists as well. Make sure everyone can use them, and that will create a broader understanding of the safety needs of the department. That can go a long way toward improving the overall safety culture. A review of checklists is always key. If there is a problem with a response for a particular item, it should never be ignored. In fact, it should be addressed quickly.

Many labs today do not fall into the category of a High Reliability Organization. Complex and dangerous tasks do occur in the field, but safety incidents are not uncommon. It may be because lab employees are not educated enough about the consequences. There are definite hazards when working in the lab setting, but often they are not in the forefront of the lab techs’ minds, safety is not made a priority. It needs to be discussed more. Or maybe the reason is that many of the hazards in the lab do not always have more immediate consequences. Organisms involved with exposures have incubation periods, and disease states (like cancer) can take years to develop after a safety incident.

In the airline and nuclear industries, if a safety error is made, the consequence is usually immediate, and deadly for many. Is that it? Is that why people don’t have the same reaction to safety issues in the lab? What can we do as safety professionals to change that? I believe we can change it- and it will take checklists, training and safety awareness.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

From Panic to Pandemic: Laboratory Emergency Response Plans

In 2018, Hurricane Florence ripped through the Carolinas causing an immense amount of destruction and taking a record amount of lives in the area. Superstorm Sandy had a devastating impact on New York and New Jersey in October 2012. In Joplin, Missouri, an EF-5 tornado cut a damaging path through town in May 2011, directly hitting the hospital. Severe storms, flooding, and even blizzards are regular events throughout large areas of the United States every year, disrupting normal life and the delivery of services, including healthcare services.

Natural disasters occur frequently, and labs must consider them in their Emergency Response plans. These disasters have consequences for hospitals and laboratories and their operations. Given the wide variety of possible disasters that can affect a laboratory, it may seem impossible to be prepared for every type of event that could occur. Some labs take a reactive approach and create individual plans for different disaster types. For example, a lab manager may decide to create a blizzard response plan after a major winter storm—a plan that is separate from any previously existing lab emergency response plan. That may not work well, and it many plans may become cumbersome for lab staff when the event occurs.

As 2020 has shown us, other types of disasters that are not normally considered can also affect laboratory operations. The COVID-19 pandemic situation has created issues like the reduction of the availability of staff, a need to quickly alter testing platforms, and even major supply acquisition issues. Clearly, pandemic issues need to be considered when looking at lab disaster responses.

The best type of laboratory emergency response plan is a single plan that will enable the laboratory to continue to provide services in a variety of disaster scenarios, including pandemics. The College of American Pathologists (CAP) requires labs to develop an emergency plan which is based on the overall facility’s Hazard Vulnerability Analysis (HVA). The HVA is a risk assessment tool that lists types of disasters that can affect the facility, and it ranks which disaster types are most likely. If you work in an independent lab, you must perform your own HVA and update it every year. In 2020, it would be prudent to quickly add “pandemic” to the list.

There is no need to panic, however. In your plan which has been designed to have an “all hazards” approach, you may find some aspects of pandemic response are already addressed. Fluctuating staffing levels should already be addressed. Be sure the plan discusses how to best utilize staff when fewer people are available. That process may include a reduction in testing or utilizing a reference lab if necessary. In some instances during the pandemic, labs were left with too many staff members once an overall reduction in lab volumes occurred. How can extra staff be used? Can they go to other departments or facilities where needs may exist? There should be a section in the response plan regarding how to handle supply issues. If it is known there is going to be a problem obtaining PPE, reagents, and other supplies, decide what procedures will occur. Stockpiling, finding alternative vendors, and changing the type of supplies purchased are some options.

Once all of the pieces of the updated lab emergency operations procedure is complete, it is important to test the plan for flaws or needed improvements. One thorough method of testing includes the use of a table-top drill or exercise. Present a step-wise disaster scenario to key lab stakeholders and discuss possible responses as the imagined situation unfolds. Be sure to discuss important aspects such as staffing, supplies, communications, and relocation of testing. If the COVID-19 pandemic has led your lab to utilize its emergency response plan, be sure to take the opportunity to review how it is working for your department. Ask lab leaders and staff members if the current plan works- what went well and what needs improvement? This current disaster can help us all to improve our current procedures and keep us ready for the next event.

Is your laboratory emergency operations plan up to date? Does your staff know how to use it or will they panic when a disaster occurs? Has the plan been tested? Now is the time to review what you have and make sure it works for pandemics as well as a wide variety of disaster scenarios.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Unwritten Safety Rules Every Lab Professional Should Know

Many years ago a woman purchased a cup of coffee in a restaurant drive-through. Not having a cup holder available in her car, she placed the cup between her legs to hold the coffee while she reached for money to pay for it. She burned her legs, sued the restaurant, and actually won her court case. Now such restaurants are required to warn customers with signs stating the obvious; “coffee served hot.” Before this regulation came to be, however, many people were aware of the possible danger of placing a hot cup near their skin. Does having a posted sign make customers safer? What about the lab environment? There isn’t an explicit safety regulation written for every action that could create an unsafe situation. So what are a few of the hidden and maybe no-so-obvious things might your staff need to know in order to keep safe?

You can’t chew gum in the laboratory. It’s true, but sadly, it’s not written down anywhere as a regulation. OSHA’s Bloodborne Pathogen standard says that “eating, drinking, smoking, applying cosmetics or lip balm, and handling contact lenses are prohibited (in the lab).” It says nothing abut gum, throat lozenges, hard candy, or even chewing tobacco. The unwritten rule is that OSHA is trying to prevent hand-to-face contact while working in an area where infections can be acquired easily this way. There are multiple routes of entry via mucous membranes- a major source of pathogen exposure- your mouth, nose, and eyes. Laboratorians should always keep their hands away from their face when working in the department. These activities are just another opportunity for hand- to-mouth contact. While you might be able to show the safety officer you are putting these things in your mouth outside of the lab, you would not be able to prove that to an inspector, and they will rightly cite you for it. If you need help enforcing this, be on the lookout- by the end of the year there will most likely be a regulatory body that addresses gum chewing directly.

How long should staff wear PPE? During the COVID-19 pandemic, many have asked about the effectiveness of various PPE and have looked for written guidance discussing how long it should be worn. In general, studies show that gloves lose barrier effectiveness in about two hours. Wear them that long if they are not visibly soiled while in use in the lab. Lab coats- disposable or reusable- can be worn for one week in the general lab setting unless something is spilled on them. Once a new coat is worn, the outside is considered contaminated, but that does not mean it cannot be re-used. It is wasteful to change coats every day unless there is a reason to do that (i.e. in a specialty lab where cross-contamination will be an issue). Face shields worn by staff can be reused as well, and they can be cleaned with alcohol-based products for disinfection. Rarely should a wearable face shield or goggles be used only once before disposal.

Mesh shoes are not allowed to be worn by lab personnel. Again, other than in CLSI guidelines, it will be difficult to find that written clearly in lab safety regulations. Laboratory footwear should “be comfortable and cover the entire foot, including the instep and the heel. Because canvas shoes will absorb chemicals or infectious fluids, they are not recommended. Leather or a synthetic, fluid-impermeable material is suggested. OSHA’s PPE standard does insist that employers take measures to protect the feet of employees. In the lab and specimen collection setting, that means footwear needs to protect from biohazard materials, chemicals, and even sharps. Mesh or canvas shoes do not fit the bill, and neither do clog-style shoes (even if they have a heel strap). If you need to, set your lab’s footwear policy through the dress code or maybe the Chemical Hygiene Plan. If staff tells you they can’t find this type of footwear, tell them to look harder. All across this country, hundreds of laboratory employees are wearing the appropriate shoes, and they are available at several different stores.

Often, because these safety rules are “unwritten,” staff will challenge you on them. It can be difficult to try to enforce these important safety measures if you can’t properly educate the staff about why they exist. Be sure to know your regulatory resources, and don’t be afraid to dig deeply into the references to find the answers you seek. Lab leaders can write their own policy, and it can go above and beyond what the regulations state if needed. The safety standard may not be clear and direct, but it these are still important measures to take. Just like that lady may have needed a sign to prevent her from putting hot coffee in her lap, your staff needs clear safety guidance to keep them safe from a lab-acquired injury or exposure. Provide the tools they need to remain happy and healthy members of your lab team.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Laboratory Safety and COVID-19: References You Need to Know

Three months ago, life in the laboratories in these United States carried on as usual, and no one could probably have predicted where we stand today. The COVID-19 pandemic has changed the way laboratorians work everywhere. Some staff have had hours cut because of decreased workloads, other labs worked around the clock to bring new testing on board, and others dealt with staffing shortages due to illness. It has been a wild ride, and through it all, a great many safety issues have arisen. Common lab practices are now viewed through a new lens- is it acceptable to bring hematology slides for review into a clean pathologist’s office? Can we wear surgical masks worn in the lab into the break room? There are many good questions, but some of the answers can be found using references offered from reliable sources. Not everything you read online can be believed, but here are some references that may be necessary and that provide important information.

The pandemic has created a world-wide shortage of PPE, and some have wondered what can be done as resources diminish. The CDC has some good information about calculating how long PPE can be used and how long it can last. There are good guidelines about re-use and extended use of PPE.

PPE Burn Rate Calculator:

https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/burn-calculator.html

Strategies to Optimize the Supply of PPE and Equipment:

https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/index.html

There are specific references regarding respirators and how they should be used.

Respiratory Protection During Outbreaks: Respirators versus Surgical Masks

Understanding the Use of Imported Non-NIOSH-Approved Respirators

Proper N95 Respirator Use for Respiratory Protection Preparedness

Some laboratory disinfectants have become more difficult to purchase. The gold standard for disinfection remains a 10% bleach solution, but there are many other options that can be used as well.

Disinfectants for Use Against SARS-CoV-2 (EPA List N):

https://www.epa.gov/pesticide-registration/list-n-disinfectants-use-against-sars-cov-2

EPA’s Registered Antimicrobial Products Effective Against Human HIV-1 and Hepatitis B Virus:

https://www.epa.gov/pesticide-registration/list-d-epas-registered-antimicrobial-products-effective-against-human-hiv-1

The CDC also offers laboratories a set of COVID-19 guidelines for performing testing, biosafety issues, waste management, and protection against aerosols. These guidelines are thorough, and they can be very helpful should safety challenges arise.

Interim Laboratory Biosafety Guidelines for Handling and Processing Specimens Associated with Coronavirus Disease 2019 (COVID-19):

https://www.cdc.gov/coronavirus/2019-nCoV/lab/lab-biosafety-guidelines.html

Many of these references are updated regularly, so be sure you go to go to the source when making safety policy about COVID-19 tasks.

Laboratorians are now literally on the front lines during this novel coronavirus pandemic. While many public and commercial services have been scaled back, restaurants are closing, and many people are staying or working at home, lab staff are doing their level best to keep coming to work despite the extremely unusual circumstances and hardships.

I am here to serve as well. If you have questions about how to safely navigate this national (and global) emergency while working in the lab, ask me (info@danthelabsafetyman.com). I will do my best to provide any lab safety resources you may need. Make sure the decisions you make during these days are safe, sound, and based on the most recent resources available to you.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.