In 1962, Marvel Comics introduced a new super-hero in their comic book titled “Journey into Mystery!” That character would become famous both in the book and eventually on the big screen. He was the mighty Thor. Through the years this Norse god of thunder would have many adventures and travel into many strange and unusual places all to protect his home of Asgard and to save the people of his adopted home planet, Earth. While the character of Thor willingly chose to journey into those many unknown places, those who work in the laboratory with bloodborne pathogens should not.
Evan popped the tops off of the serum separator tubes and placed them into the analyzer rack. He used a counter-mounted shield to protect himself from a splash. He picked up the rack containing five specimens and walked over to the chemistry analyzer to run them, but as he neared the analyzer his grip loosened, and he dropped the rack. It fell about an inch onto the analyzer and serum splashed up into Evan’s eyes. He did not know from which tube or tubes was the source of his exposure.
Rose was running late when she started her shift in the histology grossing lab. She did not notice that the small sharps container for scalpel blades was over full at the bench. When it was time to change her blade, Rose reached up without looking to eject the blade into the sharps container. She felt a sharp pain and saw that she had cut herself on several used blades that were sticking up out of the container access hole. Her injury had to be treated as an unknown source exposure.
If a bloodborne pathogen exposure occurs in the lab, there are several regulations that should be in place to help protect the exposed employee. OSHA’s Exposure Control Plan includes hepatitis vaccinations for employees, and follow up source testing instructions to discover the HIV and hepatitis status of the known source patient. Prophylaxis for an HIV exposure in the lab must be administered quickly to be effective, usually within 2 hours of the exposure, so rapid testing is key.
There are, unfortunately, accidents that occur for which the bloodborne pathogen source cannot be determined. The incidents described above could have been prevented, and they should have been, because treatment for an unknown source exposure is a journey no ne should want to make. In some cases, like with the sharps exposure, it is impossible to determine the source. In other cases, as with a rack of tubes, it is too costly and there is no time to test all possible exposure sources.
In some facilities, after an unknown source exposure, the policies call for complete serological testing of the exposed victim for HIV and hepatitis. This does not provide useful information, however, it only provides the serological status before the exposure, it does not alter the necessary treatment.
Treatment for an unknown source exposure usually consists of the immediate administration of prophylactic drugs. While these drugs are designed to help prevent the post-exposure development of HIV or hepatitis, they are known to be toxic to the body and can have many ill effects. Personal consequences can occur as well after such an exposure. As a precaution, the exposed victim may be told to avoid intimate relationships for six months. Clearly, this is not a journey anyone would willingly want to take.
All exposure incidents in the laboratory setting should be prevented, and the majority of them can be prevented easily. Pay attention to the surroundings and look for potential sources of exposure. Consistently use proper PPE including face protection whenever handling open specimens or performing maintenance on an analyzer where tubing or reservoirs are involved. Empty sharps containers when ¾ full, and never allow anyone to open them or dig through them, even for a lost specimen. The risk is too high.
In many ways, the work of a laboratorian should be a journey into mystery. There are test results to produce, diagnoses to be made, and new techniques to discover. With the work in the lab environment, all exposure risks should be assessed, and they should be mitigated using engineering controls, safe work practices, and PPE so that this work can be performed safely. Let the scientific mysteries be those that prevail and not the scary alien consequences of an unknown source exposure.
–Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.
Jamie, the manager of a large metropolitan hospital lab, has many responsibilities. She must spend most of her time in the office, on the phone, or in meetings. She does find time to come out to speak with the employees, but only for a second to check on things or maybe make a request. During a recent safety audit, Jamie received feedback that several employees were seen working in the lab without using the proper PPE. One tech was working the bench without gloves, one individual had their lab coat on but not buttoned, and one auditor noticed that no one in the lab was wearing face or eye protection. This came as a shock to Jamie, she had never noticed this before. This doesn’t necessarily mean that Jamie is a bad manager, it could be that she was so focused on daily operation issues and she failed to notice other problems.
We have all heard the term “nose blind.” It’s when a person is around a bad smell so frequently that they become oblivious to its presence, and this can actually happen with vision as well. Have you ever heard the phrase, “you can’t see the forest for the trees,” or maybe the term “snow blind?” This phenomenon occurs when someone is concentrating so hard on one problem they may miss a more serious safety issue directly in front of them. Lucky for us, we have a tool to help those safety issues stand out. We have our “Safety Eyes!”
Ok, so what exactly are Safety Eyes? Are they some kind of new eye protection device that fit directly on your eyes? Are they indestructible eyes? Not exactly. Safety Eyes is a term used to describe the ability to spot current or potential safety issues more easily. It is the ability to walk into a room and immediately scan the environment for safety issues. This ability doesn’t just magically develop, it takes time and effort to master, and once you have it, you will begin to notice issues without even trying.
There are methods you can use to develop your safety eyes. Like any other sense, it is important to practice using it frequently so that its use becomes second nature to you. Think about this in terms of a wine sommelier. A sommelier may train for several years to acclimate their nose and palate in order to detect various nuances in different types of wine. It is through experience and exposure to many different types of wine that they are able to pick up on the slightest hint of a flavor or scent. This same repeated exposure works for sharpening your Safety Eyes as well. It is probably unlikely that you have a Safety Unicorn in your lab who can pick up on potential safety issues on their first day on the job. To become better at seeing safety issues, perform periodic rounding in the department and look for specific safety issues. Start by covering one specific safety area such as PPE use, waste management or fire safety. Your ability to quickly notice issues in these areas will sharpen, and you will be able to expand your newly honed power to other areas.
By developing your Safety Eyes, you will become more aware of various types of safety issues and where they are most likely to be encountered. It is easy to become “nose blind” to safety issues in a lab where you work every day. Start by simply using a checklist to focus specifically on one new safety area and soon the issues that may have been there all along will be more easily detected. Now that you can see the forest, you can make those important changes which will improve your overall lab safety culture!
-Jason P. Nagy, PhD, MLS(ASCP)CM is a Lab Safety Coordinator for Sentara Healthcare, a hospital system with laboratories throughout Virginia and North Carolina. He is an experienced Technical Specialist with a background in biotechnology, molecular biology, clinical labs, and most recently, a focus in laboratory safety.
When we enter the laboratory, we know of the dangers that can be encountered. Our training tells us there could be microbes and other potential pathogens in the samples we are about to analyze. We also learned how to protect ourselves; how our behavior while in the lab has consequences. We even know how to dress properly and what engineering controls we have at our disposal to keep us safe. We put on our personal protective equipment (PPE) before we start to work and remove it before leaving the lab. For some, these behaviors are automatic, actions that are done almost without even thinking. But is this the same for all who enter the lab? Do visitors who comes into the department know what they are really walking into or how to keep themselves safe in an environment that may be foreign to them? One common question asked by lab staff regarding visitors is “do they have to adhere to the lab safety policies and if so, why?”.
On a recent safety audit, I visited a lab that happened to be getting a new chemistry analyzer installed. I noticed the vendor team, which consisted of 5 individuals, were not wearing any PPE. There were backpacks, open water bottles, and cell phones sitting on the counters and floors. The new instrument was not hidden in a back corner of the lab far away from the daily work. It was close to the area where the lab process, spins, and runs patient samples. Members of the vendor team were lying on the floor and crawling around. How does that scene make you feel?
Vendors and service representatives are regular visitors in your lab. A laboratory can have a representative on site a dozen times before you even begin to use that piece of equipment. Once it is installed, you can bet you will see them multiple times for preventative maintenance and service calls. How does your lab welcome these guests? Do you let them in and have them get right to work? If they are there to repair an analyzer you are likely eager to have them get started, but do you ask them to wear a lab coat? Did they bring one of their own that was kept in their backpack? If so, do you think that coat is clean or was it used in a different lab, packed up, and brought to your lab? Vendor compliance is a safety issue for many labs because these visitors are not lab employees, yet they are in your department and may be putting themselves and your team at risk. Often vendors are seen with drinks in labs, using cell phones or touching instruments without gloves – behaviors lab folk are told not to follow. So why is it tolerated? It shouldn’t be, and you have the right to speak up and ask them to adhere to your lab policies.
What about other potential laboratory visitors? Do pathologists come in to look at a patient slide in Hematology? Do they just sit down at your bench and look at the slide without gloves or a lab coat? Is lab staff allowed to scan a smear without PPE? Probably not, and no one else should be allowed too either. The microscope has most likely been touched with dirty gloves, and no one else should touch the same scope without gloves. Even lab doorknobs are a consideration. Staff should wash hands before leaving the department. That means no one should use contaminated gloves to open the door.
Speaking up about these safety issues to lab visitors can feel uncomfortable. A conversation with a physician about safe practices in the lab can be daunting, but the cost of not speaking up can be high. Take the opportunity to show you care about visitors and want to keep them protected. Sometimes you know who is coming to the lab, and you feel confident they have been trained and will use the best safety practices. At other times, though, those guests may be unexpected and lacking in safety knowledge. Make sure to treat them with respect, give them the safety training and tools they need so they can leave both happy and healthy.
-Jason P. Nagy, PhD, MLS(ASCP)CM is a Lab Safety Coordinator for Sentara Healthcare, a hospital system with laboratories throughout Virginia and North Carolina. He is an experienced Technical Specialist with a background in biotechnology, molecular biology, clinical labs, and most recently, a focus in laboratory safety.
Len began his shift in the hematology department. He liked to use the counter-mounted safety shield when opening specimens because he did not like to wear goggles over his eyeglasses. When it was time to read differential slides, he knew he could not look into the microscope with his glasses on, so he reached up with his gloved hands, grabbed his frames and set them on the dirty hematology workbench next to the scope.
OSHA’s Bloodborne Pathogens Standard was promulgated (put into effect as law) in 1991. Its purpose was to prevent employee exposures to infectious organisms that may be present in blood or body fluids. For those employers covered, that meant creating an Exposure Control Plan, providing certain vaccinations, educating staff about exposure follow-up, and providing personal protective equipment (PPE).
Much has changed in healthcare since 1991, but the standard remains unchanged. Changing an OSHA standard does not happen often, and it does not happen quickly. In many ways, for the Bloodborne Pathogens Standard, that’s a good thing. The same protective measures must be in place in workplaces like laboratories, and despite the appearance of novel pathogens over the last 30 or so years, the basic required risk assessments and mitigation steps still apply.
Some people, however, complain that the standard doesn’t speak clearly enough about issues that have changed over time and that now need to be addressed. Do the regulations speak to personal electronic devices in the lab like smart phones, smart watches, and ear buds? There is mention of not having food or drink in the department, but what about chewing gum or candy? Sometimes you need to dig a bit deeper to discover that those issues are also addressed, even though some of those issues did not exist when the standard was written.
If you read the line, “Eating, drinking, smoking, applying cosmetics or lip balm, and handling contact lenses are prohibited in work areas where there is a reasonable likelihood of occupational exposure,” it seems very clear that OSHA is trying to prevent hand to face contact. While they did not cover every possible action, this likely includes gum chewing and touching cell phones which are then brought to the face (or worse, used at home by a toddler wanting to play). It can be argued that lab employees use telephones often on the job, and that gloved hands are near the face because of that.
So what other actions occur in your lab that could potentially create bloodborne pathogen exposure – actions that may occur every day or so quickly you don’t notice? Have you thought about wireless headsets or speaker phones in the lab? Do you look in cabinets and drawers for food or drink (especially during off-shifts)? Is gum chewing allowed in your lab (hint: if you’re in a CAP-accredited lab this is strictly forbidden)?
And what about poor Len with his glasses? Has anyone trained him to remove his gloves, wash his hands, and place his spectacles on a clean surface before using the microscope? There might be other things you did not notice. If you have an employee with hearing aids, do they remove them to answer the phone? Do some staff wear gloves when opening the lab exit door and others use bare hands? Are computer keyboards used with and without gloves? Is PPE worn into lab rest rooms? These are all instances where a lab-acquired infection could begin, and they happen in a flash. Perform risk assessments to not only locate the risks, but to implement ways to mitigate them. Magicians claim that their hands can move faster than the eye can see in order to work their tricks. Employees will perform “tricks” as well, but the outcomes may not be as entertaining. Providing safety education and observing people at work to see where other risks exist are important steps toward complying with the Bloodborne Pathogens Standard. The regulations are not new, but with updated lab policies and safety measures, they can be powerful tools to protect you and your staff from the new pathogenic threats headed our way.
–Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.
Ergonomics is a safety topic that gets little respect in the laboratory, but it can become very important over time. The effects of poor ergonomics are cumulative, and they can appear suddenly. When they arise, the pain and treatment are often difficult, and as people age, healing is slower as well. Because the consequences of repetitive motion injuries are slow to appear, it can be a challenge to raise concerns and create solutions regarding ergonomics. Education and action today can prevent a great deal of future injuries and staff shortages.
There are several areas in the lab where a focus on ergonomics can create benefits, and creating healthy movement and comfort does not need to be expensive or difficult. Laboratory workstations have a primary and secondary work zone. Keep the most frequently used objects in the primary zone (within 18 inches of reach) and less frequently used in the secondary zone (within three feet). Every employee is a different size. Teach staff to take a minute before beginning work to adjust the chair and other work items to make the workstation more comfortable. Eliminate clutter beneath the workstation to allows room to stand or sit allowing for foot and leg comfort.
Chairs should have 4-way and preferably 6-way adjustability and come in a variety of sizes to fit the employees who work in the lab. Chairs should have five legs with casters that are appropriate for the surface being used (e.g.: hard casters on carpet and soft casters on tile). The backrest should flex between 90 and 113 degrees with arm rests removed on chairs in the technical area to allow the chair to get closer to the benchtop.
The tops of computer monitors should be at eye level. Since many employees may use the same monitor, having it on a movable arm will help each user move the monitor to an acceptable level. Any glare on the monitor screen can be reduced with a glare screen or by reducing the light in the department. Keyboards should lay flat to allow the hands and wrist to work in a neutral position and the arms to work at a 90 degree level for comfort.
When using a centrifuge, stand directly in front and work over the top when loading and unloading, and use two hands to close the lid. Centrifuges should be placed low enough so that employees can see into the body of the machine easily. Place antifatigue mats in front of laboratory equipment that requires standing for long periods of time. These mats relieve lower back and leg discomfort. When bending and lifting, employees should lift using their thighs and not the back. Teach staff to hold objects close to the body when lifting. Never lift more than 50 pounds without assistance from other employees or an assistive device such as a hand truck.
Capping and uncapping tubes for an extended period, phlebotomy, and transcription are laboratory tasks that require the use of the same muscle groups in the hands. When working in these areas, it is important to vary the tasks every 2-3 hours per day and take mini-breaks to stretch fingers and arms in order to prevent carpal tunnel issues.
Breaks are an important part of overall ergonomic health. It is better to take a five minute break every hour than to take a 15 minute break every four hours. It is especially important if you are using a microscope or a computer for an extended period of time. Remember the 20-20-20 rule: Every 20 minutes look up to focus on something 20 feet away and blink your eyes 20 times. This will allow you to moisturize your eyes and give them a short rest. This can help to prevent ergonomics issues such as Computer Vision Syndrome which can result in neck pain, vision problems, and headaches.
Ergonomics safety is important on all areas of the laboratory, and the best way to ensure good work practices is to perform an ergonomics assessment. An ergonomic assessment should include identifying physical work activities or conditions of the job that are associated with work-related musculoskeletal disorders (MSDs) and how to eliminate these hazards. For additional information, review the Occupational Safety and Health (OSHA) laboratory ergonomics fact sheet (https://www.osha.gov/sites/default/files/publications/OSHAfactsheet-laboratory-safety-ergonomics.pdf).
Over one third of all U.S. worker injuries are related to MSDs caused by poor ergonomics. Laboratory employees are valuable resources, now more than ever, and preventing time away from work, surgeries and medical bills for laboratorians should be a priority. The results of poor ergonomic practices in the lab do not show up today, but they will have effects tomorrow if we don’t pay attention to them. Those effects can be career-altering, career-ending, and they can interfere with the happy and healthy retirement that we all want to enjoy. Take steps today to prevent that future- provide training, raise awareness, and perform ergonomics assessments to make sure staff remains comfortable and healthy for all of their tomorrows.
–Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.
The lab technologist approached the Lab Safety Officer to ask what should be done with a collection of liquid wastes that were collected from the chemistry analyzers. The LSO had worked with multiple labs for years helping to determine how to dispose of their liquid chemical wastes according to the regulations. He thought he was pretty well aware of the hazardous chemical wastes coming from the labs, but he had no idea this chemistry analyzer waste existed. He dug a bit deeper. As he called around to the different labs in the system, he learned not all sites were handling the waste the same way. Some sites saved the excess waste and poured it into other containers to use on the analyzers. Some labs threw the containers in the trash with liquid inside, and other sites simply poured the excess chemicals down the sink drain.
Some laboratories and lab systems are very large, and there are probably many practices, some newer, some older, that have developed over time, because “someone said so,” or because a vendor said it was acceptable. The LSO may not always be able to know about every practice in each lab. Staff should always escalate questions about waste processes when there is a concern.
Managing hazardous (chemical) wastes is a complicated process, and training and education is needed in all laboratories. The regulations surrounding waste are numerous and complicated, and it would be unlikely that every lab employee would aware of all of them. Here are some basics that are true for all laboratories:
Pouring Bulk Wastes Down the Drain is (Usually) Incorrect and Possibly Illegal
In general, manually pouring bulk amounts of chemical waste down the drain is not permitted by the EPA. What is a bulk waste? It is defined as 200 mL or more. That means if you have >200 mL of a reagent left over in a container, you cannot pour it down a drain for disposal. That chemical is now waste and must be properly collected, labeled, and stored until a waste contractor can pick it up.
There are, of course, exceptions to every rule. If a waste drain line is connected to a drain, for example, that is not considered “pouring,” and it is acceptable provided a lab has informed the local wastewater treatment center about what is going down the drain. Performing a gram stain in microbiology and letting the residual chemicals go down the drain is allowed also. That is considered part of the gram stain process, and it is not viewed as “pouring” chemicals down the drain. Also, the wastewater facility is aware that these chemicals are going down the drain.
Another exception exists in some laboratories that have an external “chemical pit” which is tied to certain sinks and drains in the lab. That means that all wastes poured down these drains go straight to a collection tank which neutralizes the chemicals. The tank is emptied periodically by a contracted vendor. Since there is no waste going to the local wastewater system, the local authority does not need to be contacted about what goes down the lab drains.
Hazardous Waste Must be Properly Stored
Anytime a lab collects chemical waste, it must be properly stored. There are two types of waste storage areas, Satellite Accumulation Areas (SAA) and Central Accumulation Areas (CAA). A Satellite Accumulation Area is a storage area near to where the waste is generated. The SAA must be within the line of sight of where the waste is made, it cannot be in another room or around the corner. You must store the waste where it can be seen from where it was generated. You cannot move waste from one SAA to another SAA. You can. However, move waste from a SAA to a Central Accumulation Area (like a hazardous waste shed outside, for example).
SAAs can store up to 55 gallons of waste. Waste must be stored inside of a flammable cabinet if it is flammable, and acid wastes cannot be stored next to bases. SAAs and CAAs must have a specific emergency contact poster hung nearby which indicates the location of the nearest fire extinguisher as well as an emergency contact in case of a spill or accident. CAAs must be checked weekly for proper labeling, open containers, and leaking, and these checks must be documented.
Hazardous Waste Must be Properly Labeled
Anytime a lab collects chemical waste, it must be properly labeled per EPA regulations. All waste containers must be labeled with the identity of the contents and the words “Hazardous Waste.” There must also be an indication of the waste hazard(s), such as a pictogram or an NFPA diamond. If waste is collected into an empty reagent jug, you may not use the wording or warning label from the original jug.
Dates should never be placed on chemical waste labels when stored in a Satellite Accumulation Area, but dates always need to be on containers once moved to the Central Accumulation Area. If the waste vendor picks up containers directly from your SAA, you never need to place dates on the containers.
Again, the proper management of the laboratory hazardous wastes is complicated. There is a great deal to learn and to put in practice. Many regulations have exceptions, and some of them depend on the facility’s waste generator status. If you have questions, reach out to your EPA (or state branch) representative, or ask an available safety expert. Make sure your lab is handling chemical wastes appropriately and safely.
–Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.
In many laboratories, managing safety is rarely a full- time job. Many have to oversee the safety program while also managing day-to-day operations, and overseeing the quality or point of care programs. Some are lucky enough to be able to spend all of their time on the lab safety program. Either way, the role can include managing safety policies and procedures, performing audits, providing education and training, and consistently working to improve the overall culture.
But what happens when the lab safety officer has a job change, a promotion or is ready for retirement? What happens to all of that safety knowledge and experience? Wouldn’t a gap like that be a detriment to the lab’s safety program? Yes, and laboratories should always be preparing for such an event.
One way to get prepared for a transition of lab safety duties is to identify a potential replacement while you are still working in your role. Look for someone who has shown interest in your work or has asked good questions about safety issues. Ask them to shadow you as you perform your safety tasks. Ask them to review safety procedures that are due to be revised. Have them watch a lab safety audit and describe how it should be performed. Ask them to create and possibly present safety education for the staff.
This may seem more difficult if you are the lab manager with safety responsibilities. However, there can be a benefit to identifying someone among the staff to perform some of the safety tasks as they can eventually come off of your plate. Leaders should also always have an active succession plan, so if safety must remain under your purview, make sure it is part of your discussions with your potential leadership replacement(s).
If, as a safety leader you run a laboratory safety committee, look for potential future safety leaders in that group. There may be one or more good candidates for future lab safety leadership. You can assess their readiness by delegating projects and tasks. Again, things like creating safety education, working on policies, and performing audits are great “auditions” for a future job. You can also ask the committee to create a safety fair, or to develop a safety poster contest or other projects which help to raise safety awareness in the department.
Provide resources for potential leaders such as safety documents and regulations. Involve them in lab safety inspections. If the EPA, the local fire department, or even the wastewater authority arrives for an audit, allow those staff members to be involved in the process. Getting a taste of these typical lab safety events can help people discern whether or not they want a future in the field. Preparing the lab for an upcoming accreditation inspection is also great experience.
Another way to help someone on their path if they are interested in safety is to help them get certified. ASCP offers a Qualification in Lab Safety (QLS). Preparing for the certification will help someone learn more about specific safety topics like Bloodborne Pathogens, Chemical Hygiene, and Waste Management among others. The suggested study resources and references will remain important in the hands of a future lab safety leader.
Given the growing shortage of laboratorians, it is clear that it will become more difficult to fill job openings as the years pass. Labs cannot operate without specific people, however. Leaders are vital, bench staff are key, and safety professionals will always be necessary. Planning for succession is something that should be inherent in the department for most positions. The organizational chart should be designed with succession in mind and a staffing plan that goes beyond today. Lab Safety should always be a key piece in the lab’s overall succession process.
–Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.
Often I am asked how one who is responsible for laboratory safety (yet has other duties as well) can get the job done well. In today’s labs there is tight staffing, tight budgeting, and a score of regulatory duties that must be accomplished, and not all of these things revolve around safety. Many who oversee the lab safety program also must run the point of care program, the lab quality program, or even manage all of the day to day operations of the department. It’s a great deal to juggle, but there are methods you can use to make sure that laboratory safety doesn’t take a back seat.
One way to incorporate safety into your multiple roles each day is to start every meeting or huddle with a safety moment or story. Ask for a team member to discuss a safety story they witnessed or in which they were involved. Placing safety first lets the team members know it has priority, and relating an issue or incident has benefits as well. The safety moment may be as brief as reporting on how an employee provided PPE to a vendor that came into the department. That is a safety success worth mentioning, and there are doubtless others that can be mentioned. These safety stories may also be those that do not necessarily illustrate a success. Telling people about an incident and asking how it could have been avoided is a fast yet educational plus for your safety culture. Reviewing safety incidents is also beneficial so that others know what happened and they can be thinking of how to avoid the same thing from happening to others or themselves. Talking about safety in these ways takes little time, but if safety is incorporated into the language of the department, the culture will remain improved, and it is easy to fit this habit into your schedule.
Acting as a consistent role model is another way to incorporate safety into your multiple roles. Make sure you wear the correct clothing and shoes. If you walk in and out of the department, you should dress the part. Open-toed shoes or mesh sneakers should not be worn. Wear PPE when performing any work in the lab, including huddles or team meetings. It doesn’t take any extra time to model the safety behaviors you expect from the staff, and doing this shows the staff where safety stands in the department.
A third way to insert safety into your busy day is to make sure you are able to quickly spot safety issues and address them immediately. Developing your “Safety Eyes” is a vital tool – learn how to notice safety problems as you work in the lab. Train yourself to be able to do this by looking for one thing each week. For instance, look for PPE and dress code issues on week one. Purposely notice what people are wearing on their feet, look for proper PPR like lab coats and gloves. Check to see that they are worn properly. If you do this for one week, you will become much better at noticing issues with just a glance. The next week look for proper chemical labels, then fire safety issues, etc. Once your Safety Eyes are enabled, you will be able to easily see issues and manage to rectify them while performing your other lab duties.
No matter your role in the laboratory, part of the job involves talking to other people. Make safety a part of those conversations when the opportunity arises. You might speak to your lead technologist about an instrument installation. Ask about new reagents that might need to be added to the chemical inventory. Find out if there will be new waste streams generated. Was a risk assessment performed to look for other possible dangers?
Incorporating safety into your already busy day might seem like an impossibility, but it can be done. It is important that it is done. You are managing different parts of the lab, but if people are getting injured and exposed because there is no focus on safety, there won’t be much left to manage! Try these few ways to blend safety into your schedule- add one at a time and see how it works. In time you will notice that these small tasks make a big improvement on your lab safety culture.
–Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.
Electronic media is replete with articles and editorials of employers lamenting the shortage of workers. Signs offering hiring bonuses hang outside of restaurants, stores, and other retail outlets all across the country.
The inability to find workers has forced employers to take another look at their business model and reevaluate whether the model is still viable in its current form. The power balance in the employer/ employee dynamic has shifted. Employers accustomed to having their choice of applicants now find themselves scrambling to find workers.
No schools, No students
The healthcare industry, including the medical laboratory, is not exempt from the shortage despite healthcare experts and administrators knowing that the trending laboratory employee shortage was inevitable years ago.
Laboratory school administrators and managers have been sounding the alarm about the lack of community college and university medical technology program applications. Many academic medical technology programs are shuttered due to a lack of students. The decrease in the number of students going into the laboratory field and the normal attrition rate of older workers retiring or moving on to higher-paying occupations has led to a high vacancy rate and a loss of expertise.
Burnout
The pandemic has added more pressure on a cohort of employees experiencing the stress of a new and unknown danger. These allied health professionals were (and are) the front-line response to a disease threatening everyone, regardless of economic or social demographics. Lab worker burnout has become a documented phenomenon
We call them heroes, but in reality, these are the same people working every day (pandemic or not), serving patients and delivering quality test results. Labs across the nation are filled with these everyday people. But just like everyone, laboratory workers have families, feelings, and needs they are trying to meet while being asked to give a little more. Many have little left to give and are now leaving the field to pursue other less stressful occupations or to simply enjoy the life they have worked so hard to build.
Start recruiting early
How can healthcare organizations stem the tide of those choosing to leave the lab and simultaneously attract young fresh minds to the unglamorous and less financially rewarding but necessary field of laboratory testing?
Presentations to elementary school children are a great way to introduce the next generation to the laboratory field. What child doesn’t like looking into a microscope to see their own red and white blood cells? Roadshows put on in junior high and high schools are a great way to kindle interest in healthcare just when students are beginning to ponder the question of what they want as a career.
Educational Aid
The cost of college continues to rise. Scholarships are often garnered by high-performing “A” students. But there is a pool of “B” students that could also benefit from financial assistance and would be just as welcomed into clinical laboratories. Broadening and diversifying the qualifications to receive a scholarship and financial aid could conceivably add to the pool of potential laboratory workers. Another unique idea is to allow laboratory workers’ dependents access to unused employee educational benefits.
Wellness in the Lab
Resources should also be dedicated to retaining technicians and technologists who are considering leaving the laboratory field. The level of compensation is meaningful, but studies have shown that employees often leave the job for more esoteric reasons. Reducing stress, supporting a culture of wellness, inclusiveness, and belonging can differentiate one workplace from another. The theme of workplace wellness was extensively discussed at this year’s ASCP 2021 annual meeting in Boston.
The Need is Real
The pandemic has highlighted the importance of the laboratory to the health of the nation. The medical laboratory should use this moment in the spotlight to advocate for more resources and emphasize the necessity for more laboratory programs and students to meet the future testing needs of the nation.
Of course, many lab managers are wondering what to do today to stem the slow leak of personnel. Providing mental health support and financial incentives do work to keep these knowledgeable workers in the lab. Managers realize that laboratory science is a demanding high acuity job with little or no margin for error. To maintain quality, the healthcare industry will need to change its perceptions about the laboratory and address the lack of technicians and technologists with the same interest and retention resources given to nurses and doctors.
-Darryl Elzie, PsyD, MHA, MT(ASCP), CQA(ASQ), has been an ASCP Medical Technologist for over 30 years and has been performing CAP inspections for 15+ years. Dr. Elzie provides laboratory quality oversight for four hospitals, one ambulatory care center, and supports laboratory quality initiatives throughout the Sentara Healthcare system.
On October 6th, 2021, the Lancet Commission on Diagnostics launched the “Transforming access to diagnostics” commission report with a virtual program and release of several publications. One of the publications included a study led by Dr. Sue Horton on access to diagnostics using data from 14 countries, mostly in Africa, from 2004 to 2018 with single timepoint data used to evaluate the relationship of access to diagnosis with a variety of factors. The diagnostics that were evaluated did not include histopathology, crucial for the diagnosis of cancer; however, the study did show importantly that income and population density had demonstrable relationships with access to diagnostics at the primary care level. For hospital-based access, there was no relationship which led the authors to conclude, among many other and relevant points, that access to diagnostics in “primary health care is the diagnostic so-called last mile and particularly affects poor, rural, and marginali[z]ed communities globally; appropriate access is essential for equity and social justice.” In the Commission report, the authors describe a tiered system with three levels that countries should incorporate into a national laboratory strategy and suggest that the burden of affording this system should fall on the governments. Moreover, they demonstrate the extremely important data around use of global markets to show that while the top four countries supply nearly 50% of all diagnostics, those same four countries only supply 24% of pharmaceuticals. In the opening statements to the Lancet Commission launch, Dr. John Nkengasong espoused very strongly the importance of manufacture of diagnostics WITHIN LMICs as one much needed solution.
For example, I was assisting a colleague with access to immunohistochemistry antibodies for which they were currently paying $700 USD for one vial of CD20. I traced the manufacture back to the US supplier (where the antibody was produced) and attempted to buy a vial as a private citizen with a credit card and was surprised to see that I could do so for $220 USD. This is the exact same vial of CD20 antibody. Why was my colleague paying a 218% markup? When I inquired with the company of manufacture, they reported that they had existing contracts to supply 2nd, 3rd, and 4th party vendors that they could not violate (i.e., they could not sell directly to a purchaser on the continent of Africa). The local supplier charging the $700 USD suppled a very large number and breadth of medical supplies including other diagnostic tests and reagents. Those reagents were reasonably priced, and several were on sustained government contracts. However, the CD20 antibody was not. Why is that the case? Let’s assume you are a supplier of widgets and wobbles. Your demand for widgets is huge and you sell more than 100,000 widgets per month to 20 different consumers. For wobbles, one person orders one wobble once per year. Your widgets ship room temperature but your wobbles require a cold chain, lest they be destroyed. What would you do? You could choose not to sell wobbles. You could choose to charge a ridiculous price for wobbles so that the excess time, energy, and expense of getting one wobble to your consumer is worth the effort. But you would not sell the wobbles for a similar profit margin as your widgets. It just wouldn’t make business since. Now imagine that the wobbles are manufactured in a country other than your own and to get them, you buy them from a country supplier who buys them from a regional supplier. So, wobbles already come with additional markups. You do have a third choice which is to manufacture wobbles locally, cut out the middle people, and charge much less but still make more profit. This is a great model if wobbles can be easily manufactured; however, when wobbles require an enormous capital investment, is it worth it to sell a couple of wobbles a year? Of course not. This business-based example is one of the drivers for a $700 USD vial of CD20. If a local manufacturer, in country or in a neighboring country, could manufacture and sell, this reagent would be more affordable and feasible as an available diagnostic. Specifically, patients with lymphoma would have access to rituximab for CD20.
But note the Commissions finding that almost 50% of diagnostics are made in the top 4 countries. This means, naturally, that the pricing for these reagents and supplies will be based on that economy and/or GDP, not on the economy or GDP of every country down to the lowest on any given scale. Consider the Big Mac Index, which looks at buying power relative to the US dollar. The only African country used in the Big Mac Index is South Africa and it is third from the bottom. To be clearer, if you have 100 South African Rand, you could get about $6.69 USD if you exchanged it directly (ignoring fees). If you want to buy a Big Mac in the USA, the average consumer price is $5.65; however, in South Africa, it’s 33.50 Rand. Based on the Dollar:Rand exchange rate, we are paying only $2.24 USD in South Africa for the same sandwich that would cost us $5.65 in the US. So, the Rand is undervalued. Now, let’s look at our vial of CD20 (not revealing the country to protect identities). According to the current exchange rate, you get $4.34 USD for every 10,000 units of this countries currency. Based on this model, if the CD20 was being EVENLY exchanged with cash (as opposed to being undervalued or discounted as we saw with South Africa), it should cost 450,586 units of this country’s currency. Instead, it is costing them 1,612,053 units. If we assume that this country could/should achieve a Big Mac Index equivalent discounted of the CD20 as we see with the Big Mac itself in South Africa, it should cost them 307,057 units or $133 USD. The difference? The Big Mac is manufactured and locally distributed directly to the customer in South Africa. The CD20 is not. So, one step to achieving an equitable pricing structure in healthcare for LMICs, especially in Africa, needs either direct discounted by US- and European-based manufacturers—unlikely to occur because of fear of alternative market access—or these products need to be manufactured and supplied locally.
What I have trouble agreeing with completely and, in some cases, even it part, is the concept of all healthcare costs falling on the government of a population with the expectation that they deploy a “one size fits all” approach to any aspect of healthcare. When we consider the US and Europe (again, the top four producers of diagnostics), we find one as a largely private commercial system driven by government pricing for elder care and the other a socialist system with universal healthcare enhanced by private care. For both systems, there is a huge economic base which either drives capitalism across the system from raw materials to final product or an enormous tax base that can cover the bulk of the costs of the systems. As we move from these four down the GDP ladder to LMICs, we don’t see, despite that we would like to nicely categorize countries into clear groups, a solution that would work “globally” because major pieces of economic development are needed as pre-requisites for a capitalist open market or one payer system. Each country has a unique set of circumstances (e.g., history, genetic diversity, geography, natural resources, tourism, disease burden, language, population size, etc.) that cannot be reduced to simply a GDP value or Big Mac Index factor. Moreover, it is wholly within the realm of colonialism, which we supposedly abandoned 70 to 80 years ago, to think that we can propose a system for “all countries” that would even remotely approach the solving the problems of these countries. Although it is an excellent mental exercise to idealize a healthcare system as having something as simple as three tiers and trying to allocate what tools and resources are needed at each level to accommodate the population, the reality is that such a framework is only a starting point with a lot of work needed to fully realize what type of system would be best for a given country. Very small islands and small nations may have only one hospital to serve its entire population and insufficient patients of a given type to justify the expense of certain tools. Extremely large countries with large populations will need a myriad of systems with their own tiers that support patients based on location, socioeconomic status, language, etc. and these systems likely overlap in geography. And the expertise to best determine that system is the health and government leadership of that country, not an external set of non-specific instructions. The external set of instructions, however, are extremely important, as noted, as a starting point, but each country that identifies a gap in their diagnostics, for example, has to assess their specific situation. At the heart of this problem is the need to stop talking about the challenges of global healthcare and start (or continue) directly working on fixing them.
At ASCP, we approach our global outreach through assessment, gap identification, implementation planning, and execution (AGIE). Through that approach, we have deployed and/or support 19 sites in 15 countries with telepathology; however, in an additional 10 countries, we have active programs that have not yet reached a point of telepathology deployment. Had we said, from the beginning, “We are going to give everyone telepathology”, we would have wasted an enormous amount of time and money. By following an AGIE approach, we have navigated to the specific problems of each site with whom we collaborate and attempted to solve them. And we do so with more than 80 collaborative partners. The Lancet Commissions on Diagnostics most recent launch is an excellent first alert for those who have not been engaged in global health for the last 20 years that there are still major challenges and problems in global healthcare and diagnostics. Our hope is that funders, governments, industry, health system members, patients, and advocates will view this as a rallying cry to direct resources and energy to join those of us who have been engaged in this work to move the needle even further. Access to diagnostics for every patient everywhere. It is ASCP’s simple mantra, and we hope, together, we can achieve that goal.
-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.