Hematology Case Study: Temporal Arteritis or COVID-19?

What is your least favorite test in hematology? The first things that come to my mind are those tests that are time consuming, tedious, and manual. I’ve worked in a hematology lab that did Kleihaur betke (KB) tests, and whenever I worked, I seemed to get one, or sometimes more, in a given shift. And when I worked in blood bank, we did KBs in blood bank, and I certainly did my share there, too. KBs seem to follow me around! Those, I must admit, are probably my least favorite, but I know that many techs dread parasite smears or % parasitemia, reviewing 150 or more fields or counting thousands of cells on a smear. Manual body fluid counts, manual reticulocyte counts, and manual platelet counts are likely some others on our lists of “not favorites.” Basically, anything that requires a lot of time, manual counting, and math!

One other test that probably doesn’t make many “favorites” list is the Erythrocyte Sedimentation Rate (ESR), or sed rate. Remember old fashioned Westergren Sed Rates that took an hour to do, while the ER doctor kept calling looking for their “STAT” results? There are still labs that set up manual sed rates that take an hour, and modified manual methods that take “only” 15 or 30 minutes. Some semi-automated methods can give us results in a couple minutes, but still require techs to fill a capillary tube and load the instrument. Fortunately, real help may have arrived, in the form of fully automated ESR instruments! There are instruments now that actually make ESRs almost fun. I’ve never seen techs so excited about a new instrument as they were when we got iSeds. This thing is amazing! It’s like a little Ferris wheel for sed rates. You pop the whole tube in, they go for a little ride around the Ferris wheel, then drop out, in less than 30 seconds. And you can keep loading tubes even while it’s running. A truly Stat ESR. Now that’s amazing!

Image 1. Alcor iSED Automated ESR Instrument

While these new instruments make ESR’s easier to run, with more reproducible results, and less hands-on time, they still don’t get much love, because, well…there are newer tests available for inflammation, and we know that the ESR is not a specific test for diagnosis. Across the years, some lab tests have become antiquated and obsolete…bleeding times come to mind, along with CK-MB. In 2010 an article was published that supported discontinuing laboratory tests that no longer have clinical utility in the lab. The ESR was on this list. Yet, many labs still perform ESRs. Should the ESR be phased out, or are there still valid reasons for ordering them?

Even though the test is considered non-specific, the ESR test is considered helpful in diagnosing two specific inflammatory diseasestemporal arteritis (TA) and polymyalgia rheumatica. A high ESR is one of the main test results used to confirm these diagnoses. It is also used to monitor disease activity and response to therapy in both these conditions. Almost all cases present with an elevated ESR, though a normal ESR should not be used to rule out these conditions.

Case 1: A 70 year old White female was admitted to the ER complaining of throbbing headache and blurry vision. She stated that the headache started 2 days ago, had been at her temples at first but in the past few hours was getting worse. She stated that she was prompted to come to the ER because now her whole scalp hurt, and her vision was blurry. A CBC, Basic panel, CRP and ESR were ordered. The CBC results were unremarkable, other than and increased platelet count of 480,000/µL. ESR was 110 mm/hr. Basic panel results were normal. CRP was 2.51 md/dL.

The patient was started on prednisone immediately, and a temporal artery biopsy was scheduled, with a suspicion of temporal arteritis (TA), also known as giant cell arteritis (GCA). TA is an autoimmune disease that causes inflammation of the temporal arteries. Under the microscope, the inflamed cells of these arteries look giant, which is how the disease got its name. The inflammation causes constriction of the arteries, can affect chewing and eating, and may cause blindness if not treated promptly. Treatment of choice are corticosteroids, often prescribed for at least a year. Symptoms are monitored frequently and lab results, including the ESR, can be used to monitor the condition and response to treatment.

If you are still wondering if the ESR should be discontinued as a useful test, we are now seeing patients with COVID infection and elevated ESRs. Over the past 2 years, several articles have been written about elevated ESRs in COVID-19 patients. One study aimed to evaluate the usefulness of ESR in distinguishing severe from non-severe COVID-19 cases. The study suggests that severe COVID-19 cases are associated with higher elevations of ESR, as compared to non-severe cases. A case report of a patient recovering from COVID described an increased ESR. The high ESR persisted for a long time even after the patient recovered from COVID-19, while no other inflammatory processes or other conditions known to raise ESRs were found.

Case 2: My second case is a case of a 58 year old woman who presented with an earache and a pulsing temporal headache. Ear infection was ruled out and the patient was referred to ophthalmology for possible TA. The patient’s CRP was elevated but her ESR and platelet counts were within normal reference range. The patient was COVID tested as part of a pre-op workup before temporal artery biopsy and the COVID-19 test came back positive. There have been cases in literature in the last year of this new set of symptoms in COVID-19 patients. The conclusion from these cases is that if a patient appears with symptoms consistent with TA with an elevated CRP but with a normal ESR and platelet counts, that the patients should be tested for COVID.

The ESR is one of the oldest laboratory tests still in use. The study of the sedimentation of blood was one of the principles on which ancient Greek medicine was based. In the 1700’s, physicians noticed that the rate of red blood cell sedimentation changed during illness. This theory was first introduced as a laboratory test over 100 years ago. Depending on the historic accounts and articles you read, it was first described by a Polish physician, Edmund Biernacki, in 1897, or by a Swedish physician, Robert Fahraeus, in 1915. Biernacki proved the connection between the rate of sedimentation and the amount of fibrinogen in the blood and suggested using the ESR in diagnostics. Alf Vilhelm Albertsson Westergren (a familiar name!) also presented a similar description of the ESR. In the early 1920’s. Dr Westergren went further to develop the blood drawing technique and defined standards for the ESR. To this day, the Westergren Erythrocyte Sedimentation Rate method is recognized as the gold standard reference method for ESR measurement.

Image 2. Manual Westergren ESRs

The sed rate measures the rate at which erythrocytes sediment by gravity, in mm/hour. RBCs usually repel each other due to zeta potential and aggregation is inhibited. In conditions with increased fibrinogen or immunoglobulins, these proteins coat the RBCs, promoting aggregation. The RBCs form rouleaux which settle faster than individual RBCs. In conditions such as anemia, the ESR will be high because with a lower hematocrit, the velocity of the upward flow of plasma is altered and red blood cell aggregates fall faster. In polycythemia the increased blood viscosity can cause a lower ESR. In sickle cell anemia, and other conditions such as spherocytosis, the RBCs are abnormally shaped and will not form rouleaux easily, thus decreasing the ESR.

The ESR is an easy, inexpensive, non-specific test that has been used for many years to help diagnose conditions associated with acute and chronic inflammation. An elevated ESR is not associated with a specific diagnosis; therefore, it must be used in conjunction with other tests. Conversely, a normal ESR cannot be used to exclude the presence of significant disease. The ESR should also not be used as a screening test in asymptomatic patients. Since fibrinogen is an acute-phase reactant, the ESR is increased in many inflammatory and neoplastic conditions that increase fibrinogen, including diabetes, infection, pelvic inflammatory disease, lupus. rheumatoid arthritis, acute coronary syndrome, and neoplasms. However, noninflammatory factors such as older age, female gender, and pregnancy can also cause elevation of the ESR. 

Historically, the ESR was used to indicate inflammatory conditions and monitor disease progression or response to treatment. More specific tests have been developed for many of these conditions, but the ESR still has its advantages. Interestingly enough, for a test that 12 years ago was on the ‘antiquated’ list, in the past 2 years there have been over 50 scientific journal articles written about the ESR. The ESR can eliminate unnecessary testing and help decrease medical costs. It has its advantages in small labs and in rural areas because it can provide quick results without expensive instrumentation. For labs that do not perform more sophisticated tests such as CRP and procalcitonin, the ESR can provide answers without waiting for results from reference laboratories. Even though an ESR may take 1 hour, it is much faster than send out testing. It can therefore expedite a diagnosis, or normal results can give the physician and patient timely reassurance.

What is your favorite or least favorite test in hematology? Let me know and I can highlight it in a future blog!

References

  1. Au, Benjamin Wai Yin MBBS, MMed (Ophth); Ku, Dominic J. BMed, MSurg; Sheth, Shivanand J. MBBS, MS (Ophthal) Thinking Beyond Giant Cell Arteritis in COVID-19 Times, Journal of Neuro-Ophthalmology: March 2022 – Volume 42 – Issue 1 – p e137-e139
  2. Brigden ML. Clinical utility of the erythrocyte sedimentation rate. Am Fam Physician. 1999 Oct 1;60(5):1443-50. PMID: 10524488.
  3. Hale AJ, Ricotta DN, Freed JA. Evaluating the Erythrocyte Sedimentation Rate. JAMA. 2019;321(14):1404–1405. doi:10.1001/jama.2019.1178
  4. Pu, Sheng-Lan et al. “Unexplained elevation of erythrocyte sedimentation rate in a patient recovering from COVID-19: A case report.” World journal of clinical cases vol. 9,6 (2021): 1394-1401. doi:10.12998/wjcc.v9.i6.1394
  5. Tishkowski K, Gupta V. Erythrocyte Sedimentation Rate. [Updated 2021 May 9]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557485/
  6. Alan H. B. Wu, PhDKent Lewandrowski, MD, et al. Antiquated Tests Within the Clinical Pathology Laboratory. The American Journal of Managed Care. September 2010, Volume 16, Issue 9
  7. https://emedicine.medscape.com/article/332483-workup
Socha-small

-Becky Socha, MS, MLS(ASCP)CMBBCM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 40 years and has taught as an adjunct faculty member at Merrimack College, UMass Lowell and Stevenson University for over 20 years.  She has worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. She currently works at Mercy Medical Center in Baltimore, Md. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Hematology Case Study: An Unusual case of Leukemic Reticuloendotheliosis (aka Hairy Cell Leukemia)

Leukemic Reticuloendotheliosis (LRE) is a term that was first used in 1923 but is a name that most of us would not recognize today. In 1958, Bournocle et al. published a paper that characterized LRE as a separate clinical disorder and described the clinical course, pathologic features, treatment options and prognosis. The study also described an unusual morphology of the malignant cells seen in this condition. The malignant cells were noted to be small mononuclear cells with projections around the circumference of the cytoplasm. Another decade went by before these cells were given the nickname “hairy cells”. At the time, though LRE was considered a fatal disease, splenectomy appeared to be a beneficial treatment, thus pointing to a lymphocytic disorder. Later, in 1976, an article was published that suggested that these hairy cells were monocytic rather than lymphocytic in origin. The true lineage of these hairy cells was unknown until the development of newer immunophenotypic methodologies in the mid to late 1970s. Today, hairy cell leukemia (HCL) is considered a rare, chronic B cell leukemia that comprises 2% of lymphoid leukemias and responds well to therapy.

Patients may be entirely asymptomatic at diagnosis, and the finding of hairy cells on the peripheral smear from a routine CBC prompts further investigation. Patients do not usually require treatment at diagnosis, and many patients live a normal lifespan. Originally, diagnosis was based on clinical and laboratory result correlation: CBC results, observation of the characteristic hairy cells, and splenomegaly. One of the first tests used for  diagnosis of HCL was tartrate-resistant acid phosphatase activity (TRAP stain). Today, standard practice is immunophenotyping by flow cytometry. HCL is characterized by the expression of B-cell antigens CD19, CD20, and CD22 in addition to bright CD11c expression with CD103, CD25, CD123 and Annexin A1 (ANXA1) co-expression. Annexin A1 is the most specific immunohistochemical marker for HCL. In 2011, the BRAF-V600E mutation was identified as the genetic causal event of HCL, allowing even more advances in the diagnosis and therapy for HCL.

As the disease progresses, most patients experience increasing cytopenia, including monocytopenia, and persistent splenomegaly. Treatment is usually started when a patient meets certain guidelines, which include a severe cytopenia or pancytopenia, malignant lymphocytosis, increased susceptibility to infection or symptomatic splenomegaly. Historically, the only available treatment was splenectomy. In the 1980’s, interferon therapy was introduced and was able to induce partial responses in some patients. In the 1990’s the purine analogs, cladribine or pentostatin, became available as the preferred first line treatment for HCL. Treatment response is good and offers prolonged remission rates. For patients who experience relapse, rituximab may be used in combination with a purine analog. Most recently, anti-CD22 immunotoxins and molecular targeted therapy with BRAF inhibitors have been introduced for cases that do not respond to other therapies.

Additional discoveries into the biology of the disease have identified new subtypes of HCL. It is important to distinguish between classic HCL and Hairy Cell leukemia variant (HCLv) because they are treated differently. HCLv may be more aggressive and does not respond well to purine analogs alone. HCLv is often diagnosed at older age than classic HCL In HCLv the WBC is often elevated, with lymphocytosis, and there is a lack of monocytopenia. The hairy cells seen on a peripheral blood smear may be more abundant than in classic HCL. These HCLv cells also often have a distinct nucleolus not seen in HCL cells. As well, these cells can have a morphology that appears to be somewhere between prolymphocytes and hairy cells. Unlike HCL, HCLv cells are negative for CD25 and BRAF-V600E. HCLv represents only about 10% of HCL cases. Because of its rarity, and the gray areas surrounding differential diagnosis between HCL and HCLv, studying these rare cases can help lead to a better understanding and management of both HCL and HCLv patients.

About 1200 new cases of HCL are diagnosed each year in the US. HCL is 4-5 times more common in males, with a median age at diagnosis of 55-60. This is an unusual case because the patient is female, was older at diagnosis, with no cytopenia or splenomegaly noted. This patient is a 79-year-old female who, one year ago, was referred to a Hematology Oncology practice with a several year history of a mildly elevated WBC with increased lymphocytes, without absolute lymphocytosis. She was referred after a peripheral smear exhibited prolymphocytes and the “hairy’ appearing lymphocytes shown below in Image 1.

Image 1. Hairy Cells seen on peripheral blood smear.

Peripheral blood was sent for myeloid/lymphoid disorders and acute leukemia analysis by flow cytometry. Remarkable in this case were the results of the flow cytometry studies. Flow cytometry performed on the peripheral blood revealed 2 distinct morphological populations of lymphocytes. The majority of lymphs appeared to be small, with scant cytoplasm, round nucleus, clumped chromatin, and inconspicuous nucleoli. These cells were identified as a monoclonal kappa restricted B cell population exhibiting co-expression of CD23 and CD5, consistent with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). A second population of lymphs were larger, with more abundant granular cytoplasm and hairy projections, large nuclei, condensed chromatin, and inconspicuous nucleoli. This second population displayed CD20 expression and was positive for CD11c, CD103 and FMC-7. CD25, CD5 and CD23 were negative.

The immunophenotyping of this second population of cells suggests a diagnosis HCL; or is it suggestive of HCLv? The patient was older at diagnosis, leukocytosis and lymphocytosis are present, and monocytopenia is absent. Hairy cells were over 8% of the differential, though lacking the distinct nucleoli of HCLv. Prolymphocytes were noted. CD25 was negative in this patient and is usually exhibited in HCL.

An immunological scoring system for HCL has been proposed with one point given to each of markers for CD11c, CD103, CD123 and CD25. One point is given if the marker is expressed and no point when it is not expressed. A score of 3 or 4 is observed in 98% of cases of HCL and is usually 0-1 in other HCL-like disorders. This patient’s cells showed expression of CD11c and CD103, was CD25 negative and CD123 was not evaluated so would score at least a 2, which puts her somewhere in an inconclusive score. Additionally, a bone marrow biopsy has not been done and there therefore results for TRAP or annexin A1 immunostaining, or BRAF-V600E mutations are not available.

With a diagnosis of a B-lymphocytosis consistent with CLL/SLL and a simultaneous HCL, or HCLv, this patient is an interesting case. Several articles and reviews in literature of other patients with CLL and HCL give further insight into the biology of HCL. Literature suggests that concurrent HCL and CLL may indicate a common origin. Patients with HCL may subsequently develop CLL, which can mimic a relapse of HCL. Therapy requires treating each case individually and watchful waiting in asymptomatic cases. Rituximab with or without purine analogs have been useful to treat both disorders simultaneously.

Table 1. CBC results from a patient in 2022 and 2022.

This patient at 1 year following diagnoses has developed a mildly increasing lymphocytosis and is being monitored. Both her CLL/SLL and HCL still appear to be in the indolent, “wait and see” stage. The patient has declined further workups at this time.

References

  1. Bain, Barbara J. Blood Cells: A Practical Guide. 5th ed. Wiley Blackwell, 2015. Print.
  2. Chang-Hun Park, Hyun-Young Kim, M.D.et al. Efficacy of Annexin A1 Immunostaining in Bone Marrow for the Diagnosis of Hairy Cell Leukemia. Laboratory Medicine Online 2019; 9(4): 236-241
  3. Falini B, Tiacci E. New treatment options in hairy cell leukemia with focus on BRAF inhibitors. Hematol Oncol. 2019; 37(Suppl. 1): 30– 7..Maitre, E.; Cornet, E.; Troussard, X. Hairy cell leukemia: 2020 update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 2019, 94, 1413–1422.
  4. Obiorah IE, Francischetti IMB, Wang HW, Ahn IE, Wang W, Raffeld M, Kreitman RJ, Wiestner A, Calvo KR. Concurrent chronic lymphocytic leukemia/small lymphocytic lymphoma and hairy cell leukemia: clinical, pathologic and molecular features. Leuk Lymphoma. 2020 Dec;61(13):3177-3187.
  5. Scheinberg M, Brenner AI, Sullivan AL, Cathcart ES, Katayama I. The heterogeneity of leukemic reticuloendotheliosis, “hairy cell leukemia”. Evidence for its monocytic origin. Cancer. 1976 Mar;37(3):1302-7
  6. Shao, Haipeng et al. “Distinguishing hairy cell leukemia variant from hairy cell leukemia: development and validation of diagnostic criteria.” Leukemia research vol. 37,4 (2013)
  7. Verma V, Giri S, Bhatt VR, Amador-Ortiz C, Armitage JO. Synchronous or Metachronous Hairy Cell Leukemia and Chronic Lymphocytic Leukemia: A Case Series and Literature Review. Front Oncol. 2017 Jan 9;6:270.
  8. X. Troussard, M.R. Grever. The revised guidelines for the diagnosis and management of hairy cell leukaemia and the hairy cell leukaemia variant. r J Haematol, 193 (1) (2021), pp. 11-14
Socha-small

-Becky Socha, MS, MLS(ASCP)CMBBCM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 40 years and has taught as an adjunct faculty member at Merrimack College, UMass Lowell and Stevenson University for over 20 years.  She has worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. She currently works at Mercy Medical Center in Baltimore, Md. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Validations/Verifications of Alternative Anticoagulants for Platelet Clumping

Platelet clumping can cause a falsely lowered platelet count on hematology instruments and can be difficult to resolve. With thrombocytopenia, physicians need an accurate count to diagnose, treat, or monitor patients. Clumping can be due to pre-analytic issues with specimen handling, can be caused by medications, or may be an in vitro phenomenon caused by anticoagulants. The clumping makes precise counting impossible and even estimates can be very tricky. If there are clumps, and recollection of the sample still yields platelet clumping, then many labs will have an alternate tube drawn or an alternative method to help resolve clumping.

Many of us have heard of using sodium citrate tubes for patients who have clumped platelets in EDTA. So, if you are having platelet clumping headaches, you can just order some sodium citrate tubes and start using those on your hematology analyzers, right? Not so fast. There are many published references of the use of sodium citrate tubes to resolve EDTA induced thrombocytopenia but we still see samples in which the clumping is not resolved with the sodium citrate tube. Published studies have shown that several other alternate methods have been helpful in resolving platelet clumping issues. These include drawing specimens in CTAD, ACD, or ‘ThromboExact’1 tubes, or adding amikacin or kanamycin to the EDTA after the specimen is drawn.

So, why can’t we just order one of these other tubes and start reporting results? Hematology analyzers are only FDA approved for EDTA tubes. Before you can use any modified method, and before you can report any patient results, your laboratory must do validation or verification studies to prove that the method produces valid results.

A validation provides objective evidence that a test performs as intended. A validation uses a defined process and is used when setting up and implementing a new test. One example is a laboratory developed test (LDT), which is a test performed by the clinical laboratory in which the test was developed. A LDT can be one that is neither FDA-cleared nor FDA-approved or can be one that is FDA cleared/approved but has been modified by the performing laboratory. The use of sample types or the use of collection devices not listed in manufacturer instructions constitute modifications, by this definition. In a validation, accuracy should be tested with at least 40 samples across the analytical measurement range (AMR). Correlations are then performed. Precision should be tested over approximately 20 days. A verification, on the other hand, uses an abbreviated process and is used when setting up and implementing new tests that are cleared or approved by FDA. Before reporting patient results, the laboratory must demonstrate that a test performs in agreement with prior claims and must demonstrate performance specifications are comparable to the manufacturer’s specifications. Verification therefore is a confirmation that a test method meets specified requirements and would be applied to a method which has already been validated. For a verification, a smaller sample size may be used, and precisions tested over 5 or more days.

Table 1. Validations vs. Verifications

So, which would you do if you wanted to use an alternate method for reporting platelet counts? Hematology analyzers are only FDA approved for platelet counts on EDTA, but the by which the sample is analyzed does not change with an alternate tube, so it may be possible to do a limited validation or verification with a smaller sample size. A laboratory needs to prove correlation, accuracy, and precision. Follow your laboratory SOPs for validation/verification and consult with your accrediting agencies, if necessary. A plan needs to be written and signed off by laboratory director. Choose the alternative method you wish to investigate and run correlations for platelet counts on EDTA and the alternate anticoagulant. If your instrument has more than one platelet mode, it is important to run samples in the mode which you would normally use for thrombocytopenia or flagged platelet counts. Apply any dilutional factors and calculate correlations. This data will be Included in your report, which, along with a procedure needs to be signed by the laboratory director.

The most important thing is to write a plan and a follow-up report according to your SOPs and to make sure any requirements of accrediting agencies are included. There can be some differences in interpretation of standards, so it is the laboratory’s responsibility to make sure what you have done meets the standards that apply to your lab.

The use of alternate tubes for platelet counts has been well reviewed in literature. Sodium citrate tubes are the most common, likely because they are the easiest to use and the most cost effective. Remember though that sodium citrate and other methods cannot resolve all case s of pseudothrombocytopenia. There are several special notes to consider. Counts from sodium citrate tubes are known to be stable for approximately 3 hours, after which counts decrease. As well, it has been shown in literature that sodium citrate tubes do show a negative bias. It has been reported that the 10% dilutional factor may be too low. Some studies have been done to determine dilution factors that correlate more closely with EDTA tubes, and researchers have suggested factor of 17%-25%. If your laboratory wishes to determine its own dilutional factor for sodium citrate or other tubes, this will also have to be included in your platelet studies. Lastly, CBCs are calibrated for EDTA, so only the platelet count should be reported from an alternative anticoagulant.

The end of another busy and challenging year is upon us, and at this time of year we can find ourselves rushed to finish ‘end of year’ tasks such as competencies and continuing education requirements. and a response to Sysmex’s recent webinar “Those Sticky, Tricky Platelets – Solving the Puzzle of Platelet Clumping” (Oct.20,2021). After the webinar I had many questions from techs asking, “Do we need to validate our alternative method?” and “How do we go about doing that?” The webinar discusses pseudothrombocytopenia and its causes in more detail than my earlier blog from Oct 2019, “Hematology Case Study: The Story of the Platelet Clump: EDTA-Induced Thrombocytopenia”. The webinar can be found at https://webinars.sysmex.com/webinars/11ae743e-ac99-47e7-acb7-2b24cedc1a1a and is available for CEU, free of charge.

References

  1. Baccini V, Geneviève F, Jacqmin H, et al. Platelet Counting: Ugly Traps and Good Advice. Proposals from the French-Speaking Cellular Hematology Group (GFHC). J Clin Med. 2020;9(3):808. Published 2020 Mar 16. doi:10.3390/jcm9030808
  2. Bizzaro N. (2013): Pseudothrombocytopenia. In: Platelets, Vol. 3, ed Bizzaro N, Elsevier, Amsterdam, pp. 989–997 
  3. Chae H, Kim M, Lim J, Oh EJ, Kim Y, Han K: Novel method to dissociate platelet clumps in EDTA-dependent pseudothrombocytopenia based on the pathophysiological mechanism. Clin Chem Lab Med 50, 1387–1391 (2012)
  4. Socha, Becky. Calibration and Calibration Verification: Who, What, Where, When, Why, How & Did I Pass or Fail?. AMT 81st Educational Program and annual meeting, 2019
  5. Zhou X, Wu X, Deng W, Li J, Luo W: Amikacin can be added to blood to reduce the fall in platelet count. Am J Clin Pathol 136, 646–652 (2011)
  6. https://www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/downloads/6065bk.pdf
  7. https://www.cap.org/laboratory-improvement/proficiency-testing/calibration-verification-linearity
  8. https://www.westgard.com/cal-verification-criteria.htm
  9. https://labmedicineblog.com/2019/10/29/ hematology-case-study-the-story-of-the-platelet- clump-edta-induced-thrombocytopenia/
Socha-small

-Becky Socha, MS, MLS(ASCP)CMBBCM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 40 years and has taught as an adjunct faculty member at Merrimack College, UMass Lowell and Stevenson University for over 20 years.  She has worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. She currently works at Mercy Medical Center in Baltimore, Md. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Hematology Case Study: Too Many Platelets?

Too many platelets? We know that low platelet counts can pose problems for hematology analyzers and that reporting accurate results is vital for good patient care. We learn and read a lot about thrombocytopenia and its various symptoms, causes, and treatments. But, what about thrombocytosis? What happens when there are too many platelets?

In my last blog I compared 2 cases of newly diagnosed CML. Lately I have seen so many new leukemia cases and myeloproliferative diseases that I have become fascinated with them. When I was in college and grad school (many moons ago), nomenclature, diagnoses and knowledge of these disorders were very different, so it’s been fun learning about them all over again!

Today’s case is of a 55 year old woman who was referred for a hematology consult because of a finding of increased RBC and platelet counts. White blood cells appeared normal with few reactive lymphocytes noted. The peripheral smear showed mild anisocytosis and dacrocytes. Platelets were markedly increased with large forms present. No giant platelets were noted. A bone marrow biopsy was ordered. Pre-Op diagnosis: Thrombocytosis.

Bone marrow results reported increased myeloid forms with full spectrum of maturation, erythroid elements normal in number with normoblastic maturation, and markedly increased megakaryocytes with numerous large hyperlobated forms. M:E ratio was increased. No iron was seen on iron stain. A reticulin stain showed mildly increased reticulum fibrosis (1+). Next generation sequencing studies demonstrated a JAK2 V617F mutation. BCR-ABL mutation was not detected. Diagnosis: Myeloproliferative neoplasm most consistent with Essential Thrombocythemia (ET).

Myeloproliferative neoplasms (MPN) are a group of disorders characterized by the over proliferation of WBCs, RBCs, or platelets. These can be separated into the Philadelphia chromosome (Ph) positive Chronic Myelogenous Leukemia (CML) and Ph negative neoplasms. The BCR-ABL oncogene is formed on the Ph and is responsible for the unregulated proliferation of cells seen in CML. At diagnosis over 90% of CML cases are BCR-ABL positive. (See Case Studies in Hematology: Presenting a double feature starring Chronic Myelogenous Leukemia). On the other hand, Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF) are the three classic Ph negative neoplasms.

Many ET patients have no symptoms at diagnosis but are found to have a high platelet count on a routine CBC. Diagnosis is based on ruling out other disease and testing for genetic mutations, which can be done from a peripheral blood sample or bone marrow. In addition to any blood tests, a bone marrow biopsy is typically recommended for differential diagnosis of MPNs. The most common mutation found in PV, ET or PMF, is in the JAK2 gene. The JAK2 V617F mutation is found in nearly all PV patients, and about 50-60% of ET and PMF patients.Othermutations found in the classic MPN group include CALR, the second most common genetic abnormality after JAK2 mutations,and MPL W515L.Normally, blood cells are only produced when the body has a need for the cells, but these genetic mutations turn a gene ‘on’, causing the unregulated production of the affected blood cell line. Until recently it was believed that a patient with PV, ET or PMF will have a mutation in only one of these genes. However, in 2018, a French group reported that CALR or MPL mutations may co-exist in a small percentage of patients with a low burden of JAK2 V617F mutation. (Accurso) Some patients are triple-negative for the JAK2MPL and CALR mutations and always have a poor prognosis.

The identification of a genetic marker in MPNs is valuable because a JAK2 mutation distinguishes PV from other disorders that may cause polycythemia. As well, a JAK2 or other mutation can distinguish ET from other causes of reactive thrombocytosis and PMF from secondary causes of myelofibrosis. In addition, most CML cases are diagnosed with a very high WBC, but occasionally patients with CML have a normal or only slightly elevated WBC with a high platelet count. Therefore, patients with suspected ET are also evaluated for CML with a test for the Philadelphia chromosome. Our patient was found to have a JAK2 V617F mutation, BCR-ABL negative and was diagnosed with ET.

ET was first recognized in the 1950’s and was termed a myeloproliferative disorder. At this time, it was not known what was causing the over proliferation of platelets. Theories were broad and ranged from ‘something environmental’ to ‘an internal defect’. Over the decades, it became more apparent that the myeloproliferative disorders were caused by internal defects in stem cells, and they were renamed MPN. In 2005, four separate research groups, using different methods, all identified the JAK2 V617F allele, which led to further understanding of PV, ET and MPN. The MPL mutation was discovered in 2006 and CALR mutations were discovered in 2013.

ET is a type of chronic leukemia and patients with ET generally have a normal life expectancy. Of the 3 BCR-ABL negative MPN, ET has the best prognosis. Treatment is often not needed, other than aspirin for prevention of blood clots. Patients are placed in risk factor groups based on risk of clots or bleeding. A patient <60 years with no JAK 2 mutation and no prior thrombosis is considered very low risk and would be simply observed or prescribed low dose aspirin. Patients <60, JAK2 V617F +, with no prior thrombosis have low risk and would be treated with aspirin, dosage dependent on any cardiac risk factors. Older patients over 60 with JAK2 wild type and no history of thrombosis may be treated with aspirin alone or with cytoreductive therapy. Lastly, the highest risk patients are those over 60, JAK2 V617F + or with prior thrombosis, and would be treated with cytoreductive therapy, such as hydroxyurea. With very high platelet counts, there is a risk of both blood clots and hemorrhage. Blood clots that develop in thrombocythemia can use up the body’s platelets and result in bleeding. For this reason, cytoreductive therapy such as hydroxyurea is recommended to reduce hemorrhage in high-risk patients with very high platelet counts over 1,000 x 103/ μL. Hydroxyurea can also be used as treatment in patients who have a mixed population of PV and ET. CALR mutated patients with ET tend to be young with a much lower thrombotic risk and do not generally require therapy. Aspirin in this group is considered overtreatment because CALR+ patients suffer more risk of bleeding with aspirin.

While there is some risk of a MPN transforming to another type, ET is the MPN least likely to transform or to progress to acute myeloid leukemia. ET also has a better prognosis than the other MPN. Even so, there is often not one clear cut entity. There can be overlap between the disorders, causing some difficulty in diagnosis and treatment decisions. For instance, a physician may have a patient, as our patient does, with a high RBC and Hgb, with thrombocytosis, and with a JAK2 mutation. Bone marrow biopsy may detect hyperlobated megakaryocytes which would indicate a diagnosis of ET; however, the physician may choose to monitor and possibly treat as PV due to the RBC counts and symptoms.

Many advances in the understanding of ET and molecular techniques for diagnosis have been made in the last 10 years. Unfortunately, many times, diagnosis is not made until after a thrombotic event. In addition, many patients with thrombocytosis are not referred for hematology consults in a timely fashion or until they too experience a thrombotic event. In 2016 WHO published a new diagnostic criterion for PV, ET and PMF. There is an effort amongst research and physician groups to ‘spread the news’ throughout the medical community to promote early detection of ET, minimize the risk of thrombotic events and improve prognosis.

References

  1. Accurso V, Santoro M, Mancuso S, et al. The Essential Thrombocythemia in 2020: What We Know and Where We Still Have to Dig Deep. Clin Med Insights Blood Disord. 2020;13:2634853520978210. Published 2020 Dec 28. doi:10.1177/2634853520978210
  2. Bose P, Verstovsek S. Updates in the management of polycythemia vera and essential thrombocythemia. Ther Adv Hematol. 2019;10:2040620719870052. Published 2019 Aug 30. doi:10.1177/2040620719870052
  3. Kilpivaara, O., Levine, R. JAK2 and MPL mutations in myeloproliferative neoplasms: discovery and science. Leukemia 22, 1813–1817 (2008). https://doi.org/10.1038/leu.2008.229
  4. Panjwani,Laura. Management of ET, PV Requires 2 Distinct Approaches. Special Reports, Hematologic Malignancies: Polycythemia Vera, Volume 3, Issue 3. September 28, 2016
  5. https://rarediseases.org/rare-diseases/essential-thrombocythemia/
  6. https://www.mpnconnect.com/pdf/who-diagnostic-criteria-mf-pv-et.pdf
Socha-small

-Becky Socha, MS, MLS(ASCP)CMBBCM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 40 years and has taught as an adjunct faculty member at Merrimack College, UMass Lowell and Stevenson University for over 20 years.  She has worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. She currently works at Mercy Medical Center in Baltimore, Md. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Hematology Case Study: Presenting a Double Feature Starring Chronic Myelogenous Leukemia

One of the reasons I love working in Hematology is because when we have unexpected results they are often accompanied by visuals… and a picture is worth a thousand words! Unusual or critical results in Chemistry can be interesting, sometimes there are dilutions to perform, results to compare or puzzles to solve, I have always loved working up a good antibody or complicated multiple antibodies in Blood Bank or calculating how many units I may need to screen to find compatible ones, gram stains of unusual organisms in Microbiology can be exciting, but nothing beats some of the cells we see in Hematology! It’s always fascinating when we find unusual cells and follow up with smear reviews with our pathologists. And, being able to save these visuals in CellaVision or saving the slides for teaching, is a plus. These cases are a gift that keeps on giving! Lately I’ve had my share of “exciting” specimens, usually on a Saturday or Sunday afternoon! It never fails to get the adrenaline going when you are the first one to see a CBC with a WBC of 400,000, a differential that is over 90% blasts, rare lymphoma cells, malarial parasites, or a body fluid smear full of malignant cells. The following 2 cases are a very remarkable looking smear and a not so remarkable one, from 2 different patients with the same diagnosis.

The first patient is a 71 year old male who had a routine CBC done by his primary care physician. The blood was collected as an outpatient on a Saturday morning, and brought to our lab by a routine courier that afternoon (of course, right before change of shift!). We had one previous CBC result on this gentleman, from several years earlier, which was essentially normal. CBC result shown below:

Table 1. Case 1, CBC results. [Editor’s note: a previous version of this table noted a Hct of 231.8. The correct result is 31.8.]
Table 2. Case 1, Manual Differential results.
Image 1. Peripheral smear, Case 1, WBC 363.14.

As soon as I saw the results, I called the provider with the WBC and alerted them that I would be contacting the pathologist on call and calling back with the differential. Our pathologist confirmed blasts on the peripheral smear and requested that the sample be sent out for flow cytometry. The pathology report stated “Marked leukocytosis with left shift and <5% blasts. The presentation is suspicious for a myeloproliferative neoplasm (e.g. chronic myelogenous leukemia (CML)). Immunophenotypic studies have been ordered and will be reported separately. Clinical correlation and Hematology consult recommended.” Flow cytometry results showed left shifted maturation and FISH studies demonstrated t(9;22) BCR-ABL with 98% of positive nuclei in bone marrow. No other mutations were detected. Diagnosis: chronic myelogenous leukemia. Five days later, we had a bone marrow scheduled on a 50 year old male. A CBC done 2 weeks earlier showed a mild leukocytosis and thrombocythemia. (WBC 12.4, Hgb 17.8, Hct 52%, PLT 539). Diagnoses under consideration were possible CML, polycythemia or a myeloproliferative neoplasm (MPN). The patient’s CBC the day of the procedure is shown below.

Table 3. Case 2, CBC results.
Table 4. Case 2, Manual Differential results.

Cytogenetic analysis showed an abnormal clone characterized by the Philadelphia chromosome translocation, t(9;22). The BCR/ABL gene rearrangement was detected by FISH, with 78% of positive nuclei in bone marrow. The bone marrow was negative for other mutations. Flow cytometry analysis reported no evidence of abnormal myeloid maturation or increased blast production. There was no evidence for a lymphoproliferative disorder. Diagnosis: chronic myelogenous leukemia.

In 1959, at a time when techniques for preparing chromosomes for visualizing under the microscope were still very unsophisticated, 2 researchers in Philadelphia detected a tiny abnormality in the chromosomes of patients with CML. They noticed that part of chromosome 22 appeared to be missing. It was not until 1970, when techniques for chromosome banding became available, that this discovery was shown to be a translocation between chromosomes 22 and 9. The shortened chromosome 22 was named the Philadelphia (Ph) chromosome after the city where it was discovered.

Image 2. The Philadelphia chromosome. A piece of chromosome 9 and a piece of chromosome 22 break off and trade places (cancer.gov).

At diagnosis, over 90% of CML cases have the t(9;22) translocation which has become a hallmark for a diagnosis of CML. However, the Ph chromosome is also detected in about 30% of adult acute B cell lymphoblastic leukemia (B-ALL), and a very small number of acute myeloid leukemias (AML) and childhood B-ALL so testing must be done for differentiation. t(9;22) is a translocation of the proto-oncogene tyrosine-protein kinase ABL1 gene on chromosome 9 and the breakpoint cluster region BCR gene on chromosome 22. The newly formed chromosome 22 with the attached piece of chromosome 9 is called the Philadelphia chromosome. The BCR-ABL oncogene is formed on the Philadelphia chromosome and the product of the Ph translocation is an abnormal fusion protein, p210, which has increased tyrosine kinase activity. This, in turn, is responsible for the unregulated proliferation of cells seen in CML. Tyrosine kinase inhibitors (TKIs) have been developed as targeted therapy for Ph+ CML.1

So, how can these 2 patients with very different CBC results both be diagnosed with CML? CML can be classified into phases of CML-chronic phase (CML-CP), accelerated phase (CML-AP), and blast crisis (CML-BP). The WHO Classification of 2017 proposed a system of cutoffs to define each phase. The phases are based mainly on the number of blasts in the blood or bone marrow. Progression from CML-CP to CML-AP is also generally recognized to correlate with an increase in BCR-ABL1 levels. Several studies have been done that discuss another phase, pre-leukemic (pre-clinical) CML. These pre-leukemic patients have the Philadelphia chromosome, the genetic hallmark of CML, without other abnormalities. They have a normal to mildly elevated WBC and are asymptomatic. In these cases, progression to CML-CP can be several months to several years. One interesting factor common in this phase, which can help in diagnosis, is the presence of an absolute basophilia (ABC) >200/mm3. This basophilia is also seen in CML-CP and often progresses with the disease.2

Results from both patients are compared below. While we may more readily recognize a new CML that presents with very high WBC, left shift, and blasts, FISH, flow and cytogenetics of both these patients indicated a diagnosis of CML. This second patient may be one that could be classified as a pre-CML. The patient is certainly fortunate to have physicians who suggested further workup so he can benefit from his early diagnosis.

Table 5. Comparison of results from 2 cases.

References

  1. Huma Amin*, Suhaib Ahmed. Characteristics of BCR–ABL gene variants in patients of chronic myeloid leukemia. Open Medicine, 2021.16:904-912.
  2. Aye, Le Le; Loghavi, Sanam; Young, Ken H et al. Preleukemic phase of chronic myelogenous leukemia: 2. morphologic and immunohistochemical characterization of 7 cases Annals of Diagnostic Pathology. April 2016 21:53-58 Language: English. DOI: 10.1016/j.anndiagpath.2015.12.004.
  3. Kuan JW, Su AT, Leong CF, Osato M, Sashida G. Systematic review of pre-clinical chronic myeloid leukaemia. Int J Hematol. 2018 Nov;108(5):465-484. doi: 10.1007/s12185-018-2528-x. Epub 2018 Sep 14. Erratum in: Int J Hematol. 2018 Nov 7;: PMID: 30218276.
  4. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/philadelphia-chromosome
Socha-small

-Becky Socha, MS, MLS(ASCP)CMBBCM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 40 years and has taught as an adjunct faculty member at Merrimack College, UMass Lowell and Stevenson University for over 20 years.  She has worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. She currently works at Mercy Medical Center in Baltimore, Md. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Hematology Case Study: Unusual Lymphocytes Seen in an Apparently Healthy Young Adult

A healthy 30 year old woman visited her primary care physician concerned about a rash with questionable infection on her hands. The physician prescribed an antibiotic for infection and ordered a CBC. From the results below, it can be seen that the patient had a pancytopenia and a relative lymphocytosis.

Table 1. CBC results.
Table 2. Automated differential results

A manual differential was performed on CellaVision and the presence of large, clefted lymphocytes with immature features was noted. A request for pathology review was sent to the pathologist. The pathologist’s review stated “ Atypical lymphocytosis, specimen to be submitted for flow cytometry. Report to follow. Occasional atypical lymphocytes with immature features also noted. Lymphocyte population is predominantly mature”

The peripheral blood sample was sent out for immunophenotyping by flow cytometry and FISH studies. Flow cytology reported “precursor B-cell population expressing CD19, CD10, HLA-DR, and CD34 is identified. Percent of abnormal cells, 30%. These findings are consistent with precursor B-lymphoblastic leukemia.” While we tend to associate a leukemia diagnosis with a high white blood cell count, and the presence of blasts, this patient was unusual in that she did not have a high WBC or blasts seen on the peripheral smear. Pancytopenia in ALL has been noted in literature. A study of new onset pancytopenia in adults showed that the majority of cases were acute myeloid leukemia, but ALL and other lymphomas also caused pancytopenia3. Another study noted that “pancytopenia followed by a period of spontaneous recovery may precede the diagnosis of acute lymphoblastic leukemia.”1 While the pathologist did not identify blasts on this differential, and cells were predominately mature, WBC was very low, and our analyzer did flag “?blasts/abnormal lymphs” and reflexed the manual differential.

Image 1. Clefted lymphocytes seen on peripheral smear.
Image 2. Clefted lymphocytes on CellaVision.
Table 3. FISH report.

Leukemia is a broad term that includes a number of different chronic and acute diagnoses. Chronic and acute forms are further broken down into myeloid and lymphoid and then into subtypes. The French-American-British (FAB) classification of acute leukemias was devised in the 1970’s and 1980’s and was based on cytochemical staining and morphology of cells. These tests were performed manually and relied on what the cells look like under the microscope. The series of stains were used to differentiate myeloblasts from lymphoblasts. I’m old enough that I remember learning about these stains when they were being developed and thinking how amazing they were!

We’ve come a long way since the early 1980’s! Although the FAB diagnostic criteria are not entirely forgotten, the World Health Association (WHO) classification, first published in 2001, has largely replaced the FAB classification. The newest guidelines for Acute Lymphoblastic Leukemias (ALL) were published by WHO in 2016. These new guidelines supplement morphology and cytochemical staining with newer testing which can now identify and distinguish B cell and T cell ALL. In making a diagnosis, peripheral blood and/or bone marrow aspirate samples are subject to flow cytometry immunophenotyping and chromosome testing such as cytogenics or fluorescence in situ hybridization(FISH). Molecular tests can also be done to look for specific gene changes in the leukemia cells. The WHO classification has become preferred because these new tests can give more information that is important for treatment. Prognosis for ALL depends on patient age, WBC counts at diagnosis and these specific test results which tell us which subtype of ALL is present. The presence and identification of chromosomal alterations is important for diagnosis and therapy decisions. Identifying chromosomal alterations can also lead to better risk classification which is significant because of the knowledge that, while rearrangements tend to have poorer outcomes, some rearrangements actually offer a better prognosis. With the future era of individualized, targeted therapy for leukemia, combining conventional cytogenics with molecular and FISH methods will greatly enhance the accuracy of information and provide patients with more specific and customized treatment options.

While ALL is the most common childhood leukemia, it is not as commonly seen in adults. B cell ALL is more common than T cell ALL in all ages, and accounts for about 90% of ALL cases in children and about 75% of ALL cases in adults. Cure rates in children exceed 90% but in adults varies with age and depending on chromosomal alterations. Most B cell ALL subtypes with chromosome translocations tend to have a poorer outcome than those without translocations. As well, younger adults, <50 years old, have better prognosis than older adults.

This patient did not have a BCR/ABL rearrangement or MLL gene locus 11q23 translocation, which both carry poorer prognoses, but she also did not have a translocation between chromosome 12 and 21 or more than 50 chromosomes, both of which offer more favorable prognoses. This young woman therefore would be in an average risk category and appears to have been diagnosed very early in the course of her disease. We have not seen any further workup, as the patient is being treated at another facility. We wish her well in her leukemia treatments.

References

  1. Hasle H, Heim S, Schroeder H, et al. Transient pancytopenia preceding acute lymphoblastic leukemia (pre-ALL). Leukemia. 1995 Apr;9(4):605-608.
  2. Iacobucci I, Mullighan CG. Genetic Basis of Acute Lymphoblastic Leukemia. J Clin Oncol. 2017 Mar 20;35(9):975-983. doi: 10.1200/JCO.2016.70.7836. Epub 2017 Feb 13. PMID: 28297628; PMCID: PMC5455679
  3. Bone Marrow evaluation in new onset pancytopenia. Human Pathology. Vol 44, Issue 6. June 2013
  4. Hematology: Basic Principles and Practice, 7th Edition. Ronald Hoffman, Edward J. Benz, et al. 2018 Elsevier
Socha-small

-Becky Socha, MS, MLS(ASCP)CMBBCM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 40 years and has taught as an adjunct faculty member at Merrimack College, UMass Lowell and Stevenson University for over 20 years.  She has worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. She currently works at Mercy Medical Center in Baltimore, Md. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Follow the Indicies. It’s Not Always Cold!

One of my favorite things about working in Hematology is handling those “difficult” samples. You know the ones. The one that some techs put aside to work on “later,” or they might decide it’s time to take a break when they see them coming. I love investigating and working on these interesting but perhaps uncooperative samples. At times this involves running samples in different modes, making new slides or albumin smears, and diluting samples. At other times, we investigate a delta or unusual results by checking patient diagnosis and previous results or by calling the care provider for more information and clues to help us resolve the problem.

I’m sure you’ve all seen the sayings “Without the Lab, you’re only guessing” and “Laboratory Professionals get results.” Physicians rely on the lab every day for information used to help diagnose and treat patients. Therefore, our goal is to deliver to the care provider the best possible results in a timely manner. Which means that we don’t just report results because that’s the answer the instrument gave us. With today’s instruments and middleware, we get very accurate and precise results, and about 85% or more of hematology specimens autovalidate. This is important because it leaves us time to work on those specimens with flags, and discrepancies; the ones that need a little more time and attention.

When faced with unusual or conflicting results, we first need to ask ourselves if we are dealing with a spurious sample, interfering substances or true abnormal results. Many labs today use middleware that will give the operator alerts when a sample needs to be investigated. These alerts give us suggestions as to how to handle the specimen but are usually short phrases triggered by certain values or flags and cannot be all encompassing. Operator alerts cannot tell us all the steps we may need to follow to resolve, for example, deltas, platelet clumps, abnormal scattergrams or a possible cold agglutinin. The alerts are great guidelines but it is often necessary to do more. We may need to refer to procedure manuals for SOPS or check instrument manuals or technical bulletins to decide how to handle these specimens. Sometimes we need to be detectives to report the most accurate results. We must review results with a critical eye, use all that “stuff” we learned in school, and be able to make educated decisions based on this investigation.

In my experience, one of the most common troublesome and perhaps misunderstood specimens I see is the one with a “hemoglobin (Hgb) interference” flag. An instrument flag “suspect, turbidity /Hgb interference?” is generally initiated when the MCHC is above a certain value. In our hematology lab, we see this flag when the MCHC is above 37.5 g/dL. What this is telling us is that turbidity may be present in the diluted and lysed sample. This turbidity can interfere with the Hgb detection light path and falsely increase the Hgb. Because the MCH and MCHC are calculated using the Hgb, these parameters are also affected. BUT, an MCHC >37.5 g/dL is not always something that can be or that needs to be corrected. With any parameter 95% of normal values will fall within 2SD of the mean. This means that 5% of normal healthy individuals have MCHC results <32 g/dL or >36 g/dL, and a few may have an MCHC over 37.5 g/dL. An MCHC >37.5 g/dL therefore can indicate a normal specimen, such as in a healthy young male with a Hgb at the high end of the reference range. High MCHCs can also be seen routinely in specimens from patients with spherocytosis or hemoglobinopathies such as Hgb SS, Hgb SC or Hgb C disease. In these conditions the RBCs are hyperdense due to altered surface volume and this leads to a high MCHC.

On our instrument, an MCHC >37.5 g/dL will cause a Hgb/Turbidity flag. An asterisk (*) will appear next to the Hgb, MCH and MCHC. The middleware triggers an operator alert that says “MCHC >37.5. Incubate at 37C for 30 mins. Evaluate for lipemia, icterus, hemolysis, Plasma replacement if indicated, rerun”. So, what’s the first thing to do?? Incubate? Hold on…not so fast. This is one of those instances where hematology is not just black and white. This operator alert is giving us suggestions of how to handle a specimen, but techs need to evaluate the specimen before jumping on the ‘cold’ wagon. Incubating will usually help resolve a cold agglutinin, but won’t help with a sickle cell specimen, or resolve one that’s icteric or lipemic. A grossly hemolyzed sample can give a spurious high MCHC result and, if so, needs to be recollected, not warmed. Putting a specimen that’s hemolyzed or lipemic or icteric in the heating block for 30 or more minutes would only delay reporting of results. My first case example involves a 45 year old female. The MCHC on initial run was 38.1 and the specimen gave a Hgb turbidity flag. The sample was incubated and rerun several times. After 1 hour of incubation, the MCHC was reported as 37.1 with a comment “repeated after warming for 1 hour at 37C”. In this case the patient was a known sickle cell patient. Previous results show that this patient’s MCHC is typically high and previously reported results ranged from 36.1- 37.8 g/dL. When evaluating a specimen with a high MCHC it is important to check the pattern of results. In this case the MCHC was high but the MCV was low. This does not fit the pattern for a cold agglutinin. As noted above, super dense RBCs in sickle cell patients may cause a high MCHC. This specimen was warmed, and even though the MCHC was a bit lower after warming, it would have been acceptable to report the original run MCHC. Checking patient history and previous results, and reviewing the smear for morphology would have allowed these results to be reported in a timely fashion. The operator alert does say “incubate the specimen” but it also says to evaluate. Be sure to check the MCV and MCHC along with patient history before warming specimens that don’t fit the pattern of a cold agglutinin.

Table 1. Case 1 CBC. The patient is a 45 year old known sickle cell patient.

The second example is from a 75 year old male. The CBC flagged Hgb turbidity with an MCHC of 45.8 g/dL. The MCHC >37.5 operator alert triggered Checking the pattern of results for the indicies, the MCHC was very high and the MCV was low. In a specimen with a low or normal MCV and a high MCHC, lipemia, icterus, abnormal proteins or severe leukocytosis can be affecting the Hgb. On evaluation, this sample’s Hgb and Hct did not meet the ‘rule of 3’. The rules of 3 are now generally recognized to be valid only for samples when the RBCs are normal, but the * here is telling us that there is an interference affecting the Hgb. In these cases it is valuable to know what the interference is so we know how to handle the specimen. By spinning down a small aliquot, (or asking chemistry!) we can investigate for lipemia or icterus. The specimen was found to be grossly lipemic. Flagging guidelines for lipemic specimens suggest diluting the specimen 1:5 and rerunning. Alternately, with severely lipemic or icteric samples, plasma replacement procedure may be necessary to correct the results. In this case, a plasma replacement was performed. After a plasma replacement, the WBC, RBC, Hct, MCV and platelet count are reported from the original run. The Hgb interference is what was causing the problem. Thus, when you correct the Hgb you must always correct any indicies that are calculated with the Hgb. The Hgb from the plasma replacement sample is used and the MCH and MCHC are recalculated. Notice that the new lower Hgb value now matches the Hct.

Table 2. Case 2, a 75 year old male with lipemic specimen. Plasma replacement performed. WBC, RBC, Hct, MCV, and Plt were reported from original run. Hgb was reported from plasma replacement sample. MCH and MCHC were recalculated.

Case 3 is a sample from an 80 year old woman. This was an interesting sample because there were multiple things going on here. This patient had an initial result with a high MCHC and MCH, with decreased RBC and Hct. In this patient the initial WBC was 0.64 and the RBC was 0.31. The Hgb of 9.1 /dL was less than the Hct of 3.1 %. MCV was 116 fl and the MCHC was 293.5 g/dL! In specimens with a high MCV and high MCHC we can suspect a cold agglutinin. When the MCV is very high it is because the RBCs are going through the aperture as one big bunch and this is measured as the size of one RBC. Often the Hct is less than the Hgb. Sometimes the RBC and Hct are so low that it causes the MCV to be appear within normal range. On our instrument, a RBC count of <0.5 x106/μL will give a flag “abnormal RBC scattergram” but no other indicies related flags are generated, so we didn’t even get an operator alert to evaluate the MCHC. But, it’s clear there is something very wrong with these results. Warming the sample is used to loosen clumping of RBCs, which lowers the MCV and allows the RBCs to be counted. Make a smear to examine for RBC clumping and look at the sample tube. Many cold agglutinin samples will appear to be ‘grainy’ or have agglutination along the side of the tube. This is the time when we want to incubate the sample. To resolve a cold agglutinin, warming the sample is necessary. Sometime 30 minutes is enough, sometime they need to be incubated longer. Some cold agglutinins are so strong that after incubation a dilution or plasma replacement still needs to be done. Warming this sample did not lower the MCHC. After incubating, I diluted this sample, and also did a plasma replacement to see how results would compare. The new results matched. This sample took a bit more time than others but the cold agglutinin was resolved and we were able to report valid results.

Table 3. CBC results from 80 year old woman with cold agglutinin.
Image 1. Tube from cold agglutinin specimen. Note agglutination in sample along sides of tube.

There are other factors that can affect the Hct or Hgb and cause a high MCHC. Icteric specimens act much like lipemic ones and the Hgb can be corrected with dilution or a plasma replacement. An electrolyte balance can affect the Hct. Abnormal proteins and severe leukocytosis can affect the Hgb. Grossly hemolyzed samples can have a high MCHC. It is important to evaluate the indicies in these samples and correlate the values with previous results and patient history. What concerns me is that I have seen samples being warmed that do not match the indicies patterns for cold agglutinins. I have seen samples from sickle cell patients signed out with a comment “warmed at 37C. Possible cold agglutinin.” I have seen lipemic or icteric samples that are reported out with high MCHCs, erroneously high Hgb or parameters that are not reported at all. While warming these samples may actually lower the MCHC a bit, it still usually remains on the high side and does not give us the clean results that dilution or plasma replacement will. A little extra time looking at the indicies can give us important clues as to how to handle these samples. Doctors use our results every day to make patient care decisions. We need to make sure that we are making decisions every day to give them the best possible results so that patients can get the best care possible.

Table 4. Evaluating high MCHC specimens.

References

  1. Costa, B. M. B., Vellés, M. C., Viana, M. M. F. B., & Rebelo, C. I. M. (2018). Interference of cold agglutinin autoantibodies in erythrogram interpretation: a case report and literature review. Jornal Brasileiro De Patologia e MedicinaLaboratorial54(4). doi: 10.5935/1676-2444.20180043
  2. Sysmex USA. XN-Series Flagging Interpretation Guide. Document Number: 1166-LSS, Rev. 6, March 2021
  3. It’s not Black and White: Unraveling the puzzles of Hematology. Becky Socha MS, BB, MLS(ASCP) Mercy Medical Center, Baltimore, MD
Socha-small

-Becky Socha, MS, MLS(ASCP)CMBBCM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 40 years and has taught as an adjunct faculty member at Merrimack College, UMass Lowell and Stevenson University for over 20 years.  She has worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. She currently works at Mercy Medical Center in Baltimore, Md. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Coagulation Case Study: 14 Year Old Female With a History of Bleeding Episodes

Case Study

A 14 year old female arrived at the emergency room with her mother and grandmother complaining of extremely heavy menstrual bleeding. Patient history reported by her mother included a history of “a bleeding problem” for which she had been treated a few times since age 4. Petechiae were noted on the girl’s abdomen, arms and thighs. There was no history of aspirin or other NSAID use. Blood work was ordered.

Patient results are shown in Table 1 below.

The mother called home to ask her husband for details and reported that her daughter had been diagnosed with Immune Thrombocytopenic Purpura (ITP) 10 years earlier but was not very clear on the treatments. She stated that other than frequent nose bleeds, some petechiae, and occasional bruising that the girl had seemed ok until she started menstruating. They had not seen the specialists in a number of years. Further questioning of the mother revealed that the parents had both immigrated from Iran with their families as infants. The patient was an only child. The grandmother reminisced about the village “in the old country” and mentioned that her daughter and son in law were related, the families being from the same village. When asked about any other family with bleeding disorders, the mother reported that neither she nor her husband had ever met any other relatives in Iran and were unaware of any bleeding tendencies in the family. The grandmother interjected that she did remember that several of her cousins and an uncle experienced frequent epistaxis.

The ER physician noted the normal PT/INR, APTT and slightly decreased platelet count but felt the extensive petechiae and hypermenorrhagia were out of proportion to these results. A manual differential was ordered. Differential results were within normal ranges, RBC morphology reported sight polychromasia and anisocytosis. Platelet estimate was slightly decreased with giant platelets noted. The physician suspected an inherited platelet disorder and the patient was referred to a hematologist for further workup.

Image 1. Giant platelets on peripheral blood smear.
Image 2. Giant platelets.

Discussion

I have written a few blogs about different thrombocytopenias. This case interested me because the patient was first diagnosed with ITP. ITP is an autoimmune bleeding disorder in which the immune system makes anti-platelet antibodies which bind to platelets and cause destruction. Even though the exact cause of ITP remains unknown, it is recognized that it can follow a viral infection or live vaccinations. In children this tends to be an acute disease which is self-limiting and self resolves in several weeks. However, in a small number of children, ITP may progress to a chronic ITP, as was thought to be the case in this patient.

A new hematologist saw the patient and reviewed the medical history. In this patient, the diagnosis of ITP had been followed for a short period of time in which the platelet count did not increase. She was treated with immunoglobulin. When her platelet count dropped below 30 x 103/μL, the patient was transfused several times. Early platelet transfusions increased her counts, but the patient became refractory and was then given HLA matched platelets, with some improvement. After a period of time, the patient did not return to the specialist and the parents described her condition as improved. However, as reported to the ER physician, she still experienced frequent epistaxis and other bleeding symptoms unrelated to accidental injury. The mild thrombocytopenia and giant platelets on the blood smear with normal PT and APTT in a patient with abnormal bruising or bleeding alerted the physician to the possibility of the diagnosis of Bernard Soulier Syndrome (BSS). The family history also suggested BSS.

The hematologist ordered further testing. Noted in the patients chart from 10 years ago was a prolonged bleeding time. This test was not repeated at this time because it has largely been replaced by platelet function analyzers (PFAs.) The PFA test analyzes platelet function by aspirating citrated blood through membranes to induce platelet adhesion and platelet plug formation. The test is first performed with a collogen and epinephrine membrane (Col/Epi). If the closure time is normal, platelet function can be considered normal. If the closure time with Col/Epi is increased, then the test is repeated with a collogen and ADP membrane (Col/ADP). A prolonged closure time with Col/Epi with normal Col/ADP closure time may indicate an aspirin induced platelet disorder, whereas an increased closure time with both membranes may indicate a platelet defect that is not aspirin related.3 The PFA closure times were increased in both the Epinephrine and ADP cartridges.

Platelet aggregation was normal with all agents except ristocetin. BSS can be differentiated from von Willebrand disease(vWD) by the addition of normal plasma to the ristocetin agglutination test. The addition of normal plasma adds vWF to the suspension, and in vWD the ristocetin agglutination is corrected. Agglutination with ristocetin requires vWF and GPIb/IX. Since GPIb/IX is absent or reduced in BSS, he ristocetin agglutination is not corrected in BSS, as seen in this patient.3 Flow cytometric analysis of platelet glycoproteins demonstrated reductions in CD42a (GpIX) and CD42b (Gp1bα).

Bernard Soulier syndrome (BSS), also known as Hemorrhagiparous thrombocytic dystrophy, was first described in 1948 as a bleeding disorder characterized by a prolonged bleeding time and giant platelets seen on a peripheral smear. It is an inherited platelet adhesion disorder caused by platelet glycoprotein (GP) deficiencies. The disorder is rare, affecting only about 1 in 1,000,000, though it is more common in families where parents are related. BSS is typically autosomal recessive, though a small number of cases have been found that are autosomal dominant. Most cases are diagnosed at a young age, with the autosomal dominant type often less severe and diagnosed later in life.1

Platelets are involved in primary hemostasis, the initial arrest of bleeding that occurs with vascular injury. As we know, platelets’ functions include adhesion and aggregation. Platelets first stick to the blood vessel wall (adhesion), followed by binding to each other (aggregation). In primary hemostasis, platelets first adhere to von Willebrand factor (vWF) which is bound to the subendothelial collogen fibers. This is followed by aggregation, a complex process that results in the formation of the platelet plug and the initial arrest of bleeding.. In BSS, platelet membrane GPs Ib, V and IX are missing, resulting from an inherited mutation in one of the genes that code for proteins in the complex. This affects the binding of the platelets to vWF, which subsequently interferes with primary hemostatic plug formation.4 If the platelets don’t adhere, aggregation is also affected.

Patient Results

In order to make a differential diagnosis of platelet function disorders, laboratory testing is necessary:

  • Tests of secondary hemostasis, PT and APTT, are normal in this patient so a disorder of primary hemostasis would be suspected.
  • In this patient, the platelet count was slightly decreased. In BSS, the platelet count is variable, from normal is moderately decreased, and can vary from time to time in the same patient.
  • Platelet adhesion tests (PFA) performed with both Col/Epi and Col/ADP were abnormal.
  • Light transmission aggregometry revealed platelet aggregation was normal with ADP, collogen and epinephrine. Aggregation with ristocetin was abnormal.
  • Giant platelets observed on peripheral smear
  • Flow cytometric analysis of platelet glycoproteins demonstrated reductions in CD42a (GpIX) and CD42b (Gp1bα).

Diagnosis: Bernard Soulier syndrome.

Conclusion

BSS is rare and is commonly mistaken for ITP. Reports have been published that analyze cases of BSS patients long treated as ITP. These misdiagnosed cases have been treated with immunoglobulins, steroids, IV anti-D, and other drugs used to treat refractory ITP. Splenectomies have even been reported in some cases. Platelet aggregation to ristocetin and flow cytometry have provided the correct diagnoses. Molecular studies can also be done to identify the abnormal genotype.2 Clues that can lead to a correct diagnosis are childhood ITP that does not spontaneously resolve and does not respond to treatments, other family members with bleeding problems or low platelet counts, platelet counts that are not low enough to explain bleeding or prolonged bleeding times, increased MPV and the presence of giant platelets on the peripheral smear.

This patient was diagnosed with ITP as a child, but treatments did not improve her platelets counts. She continued to have bleeding episodes which increased with the onset of menses. Her grandmother reports a history of bleeding tendencies in other family members. In addition, her parents are related. Her peripheral smears noted giant platelets. Laboratory tests confirmed a diagnosis of BSS.

Bernard Soulier syndrome (BSS) is a rare but important long-term bleeding disorder.

Patients do not require routine prophylactic treatment, so the management of BSS focuses on prophylactic treatment before certain procedures or after injuries. Patients should be advised not to take NSAIDS. The patient should be advised that treatment may be necessary prior to procedures or in response to common bleeding events such as bleeding gums, epistaxis, and menorrhagia. Antifibrinolytic therapy can be used in bleeding episodes. Platelet transfusions are considered for patients before surgery or if anti-fibrinolytics have failed. For severe cases, stem cell transplants have provided a cure. BSS may also be a candidate disorder for gene therapy in the future.1

References

  1. Grainger JD, Thachil J, Will AM. How we treat the platelet glycoprotein defects; Glanzmann thrombasthenia and Bernard Soulier syndrome in children and adults. Br J Haematol. 2018 Sep;182(5):621-632. doi: 10.1111/bjh.15409. Epub 2018 Aug 17. PMID: 30117143.
  2. Reisi N. Bernard-Soulier syndrome or idiopathic thrombocytopenic purpura: A case series. Caspian J Intern Med. 2020;11(1):105-109. doi:10.22088/cjim.11.1.105
  3. Perumal Thiagarajan, MD; Chief Editor: Srikanth Nagalla, MBBS, MS, FACP. https://www.medscape.com/answers/201722-90211/what-is-the-platelet-function-analyzer-100-pfa-100-and-how-is-it-used-in-the-workup-of-platelet-disorders
  4. Turgeon, Mary Louise. Clinical Hematology, Theory and Procedures. Fifth ed. 2012. Lippincott Williams and Wilkens. Baltimore.
Socha-small

-Becky Socha, MS, MLS(ASCP)CMBBCM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 40 years and has taught as an adjunct faculty member at Merrimack College, UMass Lowell and Stevenson University for over 20 years.  She has worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. She currently works at Mercy Medical Center in Baltimore, Md. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Hematology Case Study: CBC with >80% Blasts

The patient is a 67 year old male who first visited his dentist at the end of December complaining of pain in the jaw that he had been experiencing since early Dec. He had put off making an appointment because he didn’t want to have to go to the doctor with COVID precautions, but the pain was now radiating to his teeth, so he made a dentist appointment. The dentist found no evidence of abscess or other infection but ‘adjusted his bite’. The patient was advised to take over the counter NSAIDs as needed or pain but no prescriptions was needed. Three weeks later the patient visited an urgent care because he had no improvement of the jaw pain. At this time he relayed symptoms of cough, fever, chills, night sweats and chronic fatigue. Patient history included an active lifestyle with vigorous aerobic exercise several times a week, but the he stated that he had been feeling too fatigued to exercise for over a month. On exam the patient was found to be tachycardic with bilateral tonsillar lymphadenopathy and oropharyngeal exudate. The patient was tested for COVID, influenza and Group A Strep. The COVID-19 was negative, as was the influenza A and B, but the Group A Strep was positive. The patient was sent home with a prescription for antibiotics.

One week later, the patient called his PCP because he still had cough, fever and chills and now was experiencing shortness of breath. The office directed the patient to go to the ER but the patient was reluctant to go to the hospital and stated he would rather be seen at the office. On review of the patients chart, the PCP agreed to see him in the office because he had had a negative COVID test in the past week. Two days later the doctor examined the patient in his office and still suspected COVID-19. He ordered a PCR COVID-19 test along with CBC/differential and erythrocyte sedimentation rate (ESR). We received a routine CBC on the patient. Results are shown below.

The patient had no previous hematology or oncology history and no previous CBC received at our lab. The critical WBC was called to the physician. Based on the WBC and flags on the auto differential, a slide was made and sent to our CellaVision (CV). On opening the slide in CV, we immediately called our pathologist for a pathology review. A rare neutrophil was seen on the peripheral smear, with immature appearing monocytes, few lymphocytes and many blasts.

Image 1. Images from CellaVision.

The pathologist reviewed the slide and the sample was sent for flow cytology studies and FISH. The pathologist’s comment ”Numerous blasts (>60%) consistent with Acute Myeloid Leukemia(AML). Specimen to be submitted for flow cytometry. Hematology consult recommended” was added to the report.

Image 2. Image from CellaVision. Predominately blasts with one neutrophil seen in field of unremarkable RBCs.
Image 3. Image from CellaVision.

The myeloid/lymphoid disorders and acute leukemia analysis by flow cytometry reported myeloblasts positive for CD117,CD33, and CD13. Final interpretation was Acute Myeloid leukemia (non-M3 type).

AML is the most common form of leukemia found in adults. AML was traditionally classified into subtypes M0 through M7, based on the cell line and maturity of the cells. This was determined by how the cells looked under the microscope after a series of special staining techniques, but did not take into account prognosis. It is now known that the subtype of AML is important in helping to determine a patient’s prognosis. In 2016 World Health Organization (WHO) updated the classification system to better address prognostic factors. They divided AML into several broad groups, including AML with certain chromosomal translocations, AML related to previous cancer or cancer therapy, AML with involvement of more than one cell type, and other AML that don’t fall into the first three groups.2 Once a case has been placed in one of these broad groups, the AML can be further classified as poor risk, intermediate risk and better risk based on other test results. Better risk is associated with better response to treatments and longer survival.3 The European LeukemiaNET (ELN) first recommended integrating molecular and cytogenic data into classification to create such a risk classification system for AML in 2010 (ELN-2010). In 2017, this was again revised (ELN-2017) to further improve risk stratification. The ELN-2017 can be used to more accurately predict prognosis in newly diagnosed AML.1

What this means is that AML is now classified by abnormal cell type as well as by the cytogenetic, or chromosome, changes found in the leukemia cells. Certain chromosomal changes can be matched with the morphology of the abnormal cells. These chromosomal changes can help doctors determine the best treatment options for patients because these changes can predict how well treatment will work.

Examples of risk classification include the knowledge that some chromosome rearrangements actually offer a better prognosis. For example, a translocation between chromosomes 15 and 17 [t(15;17)] is associated with acute promyelocytic leukemia (APL or M3). APL is treated differently than other subtypes and has the best prognosis of all the AML subtypes. Other favorable chromosomal changes include [t(8;21)] and [inversion (16) or translocation t(16;16)]. Examples of intermediate risk prognosis are ones associated with normal chromosomes and [t(9;11)]. Poor prognosis is associated with findings such as deletions or extra copies of certain chromosomes or complex changes in many chromosomes.3

The patient was diagnosed with AML, non M3 type. AML prognosis is based on CBC results, markers on the leukemia cells (flow cytometry), chromosome (cytogenic) abnormalities found and gene mutations (molecular abnormalities). In this patient the FISH studies did not demonstrate any chromosome rearrangements, which alone would place him in an intermediate risk group. In addition, our patient was over age 60 and had a WBC over 100,000/mm3 which have both been linked to worse outcomes.

Here’s one more photo for your enjoyment! It’s not often that we see so many blasts in a patient with no previous history. As a side note, I was contemplating titling this blog “Fatigue and Shortness of Breath in the Time of COVID.” I can’t help but wonder if this patient would have been diagnosed 6-8 weeks earlier if this was another year and he had been seen when he first experienced symptoms. This year, emergency rooms and physicians have reported a decrease in numbers of patients being seen for chest pain, ketoacidosis, shortness of breath, strokes and other serious conditions. Many patients are reluctant or afraid of sitting in crowded waiting rooms, fearful they will catch COVID. And many doctors are only offering virtual visits or have reduced the number of patients being seen so it is harder to get appointments. This patient expressed his reluctance to seek medical help because of fears of COVID. He did not want to go out in public and waited almost a month for symptoms to go away on their own before first being seen. After going to the walk in center, he called his PCP a week later and was still averse to going to the ER as suggested by the doctor. Then he waited another 2 days for an office appointment. The doctor still suspected COVID, but fortunately for the patient, ordered a CBC. The flow cytometry and FISH studies were available the following day. The patient was referred for hematology consult but has not been seen again at our hospital.

Image 4. More images from CellaVision.

References

  1. Boddu, P.C., Kadia, T.M., Garcia‐Manero, G., Cortes, J., Alfayez, M., Borthakur, G., Konopleva, M., Jabbour, E.J., Daver, N.G., DiNardo, C.D., Naqvi, K., Yilmaz, M., Short, N.J., Pierce, S., Kantarjian, H.M. and Ravandi, F. (2019), Validation of the 2017 European LeukemiaNet classification for acute myeloid leukemia with NPM1 and FLT3‐internal tandem duplication genotypes. Cancer, 125: 1091-1100. https://doi.org/10.1002/cncr.31885
  2. Mandel, Ananya. Acute Myeloid Leukemia Classification. Medical Life Sciences. https://www.news-medical.net/health/Acute-Myeloid-Leukemia-Classification.aspx
  3. Ari VanderWalde, MD, MPH, MA, FACP; Chief Editor: Karl S Roth, MD. Genetics of Acute Myeloid Leukemia. Medscape. Updated: Dec 17, 2018 
Socha-small

-Becky Socha, MS, MLS(ASCP)CMBBCM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 40 years and has taught as an adjunct faculty member at Merrimack College, UMass Lowell and Stevenson University for over 20 years.  She has worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. She currently works at Mercy Medical Center in Baltimore, Md. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Case Study: Newborn with Thrombocytopenia and Bruising

A newborn, healthy, full term, male child, was born with bruising on his left thigh and developed petechiae and purpuric hemorrhages several hours after birth. The baby was moved to the NICU for observation and a CBC was ordered by the NICU provider.

  • WBC, RBC, Hgb, Hct and indicies were normal
  • Platelet count 58 x103/μL
  • Baby exhibited no symptoms of sepsis
  • Smear reviewed with no platelet clumping observed

The mother is a 28 year old, gravida 1, para 1 with normal CBC and platelet count. Her prenatal history was unremarkable. She has no history of immune thrombocytopenia (ITP) and no history of being prescribed drugs known to be associated with drug induced thrombocytopenia

Thrombocytopenia is not an uncommon finding in neonates, particularly in the neonatal intensive care unit (NICU). In preterm infants, the most common causes of thrombocytopenia are complications of pregnancy, including pregnancy-induced hypertension (PIH), intrauterine growth retardation, preeclampsia ,and HELLP syndrome (hemolytic anemia, elevated liver enzymes, low platelet count). Examination of a peripheral smear in these patients will typically reveal neutropenia with densely packed red cells, increased nucleated RBCs and deceased platelet estimate. These placental insufficiency cases typically occur within the first 72 hours of life, platelet counts are >50 x 103/μL, resolve without treatment and require no further investigation. On the other hand, thrombocytopenia in preterm infants that develops after 72 hours is most likely due to sepsis or necrotizing enterocolitis and requires investigation and treatment.2

In an otherwise healthy appearing full term infant, the most common cause of thrombocytopenia in the first 72 hours of life is neonatal alloimmune thrombocytopenia (NAIT). When a platelet count drops below 150 x 103/L in these newborns, it is important to investigate the thrombocytopenia. The first step is to always check a peripheral smear for clumping to rule out spurious thrombocytopenia. With a low platelet count and the absence of spurious thrombocytopenia, NAIT can be suspected. This condition is similar in pathogenesis to hemolytic disease of the fetus and newborn (HDFN), and is caused by an incompatibility in human platelet antigens between mother and baby. In about 80% of cases, the mother is found to be HPA-1b and the father and baby are HPA-1a.1 The mother forms anti-HPA-1a which crosses the placenta and destroys the fetus’ platelets. Most cases of NAIT are asymptomatic, or cause only mild bleeding, and resolve in 1-2 weeks.1

Although many cases of NAIT are mild, it is important to recognize because it can be a life-threatening disorder. With more severe thrombocytopenia, in both premature and full term infants, NAIT can result in intracranial bleeding either before birth or shortly after birth. NAIT can also cause long term neurologic complications. Therefore, when a neonate is suspected to have NAIT, he should be screened for intracranial hemorrhage. Since mothers are most often found to have anti- HPA-1a, and the second most commonly found antibody is anti-HPA-5b, neonates with platelet counts <30 x 103/L should be transfused with antigen matched or HPA-1a and HPA-5b negative, CMV negative, single donor apheresis platelets.

It is important to note that NAIT can occur in a first pregnancy but subsequent pregnancies are usually more severely affected. In confirming NAIT after a first delivery or monitoring a subsequent pregnancy, serological testing should be done on both parents to determine the risk of having an infant born with NAIT. If the father is homozygous for the antigen which the mother lacks, 100% of infants would be at risk. If the father is heterozygous, an infant would have a 50% chance of inheriting the antigen from the father.

NAIT in a first pregnancy is typically unrecognized until after birth. Some groups have advocated for routine prenatal screening for NAIT in all pregnant women, but this is costly and still debated. It is agreed that after an affected first child, subsequent pregnancies should be monitored closely. In at risk pregnancies, weekly antenatal IVIg infusions should be used during pregnancy to help prevent fetal bleeding.3

The mother in this case was tested and found to be HPA-1a negative with anti-HPA-1a. The father was also tested and found to be HPA-1a positive. The infant’s platelet counts began to increase at 7 days, with no further bleeding. The mother was referred to a NAIT specialty team for future pregnancies.

Diagnosis: Neonatal Immune Thrombocytopenia (NAIT)

  • Similar in pathogenesis to hemolytic disease of the fetus and newborn (HDFN)
  • Incompatibility in human platelet antigens between mother and baby.
  • Can affect first born
  • In majority of cases, the mother is HPA-1b and the father and baby are HPA-1a
  • Second most common is anti-HPA-5b

References

  1. http://naitbabies.org/wp-content/uploads/141208_NAIT_Registry_poster.pdf
  2. Subarna Chakravorty and Irene Roberts. How I manage neonatal thrombocytopenia . Blackwell Publishing Ltd, British Journal of Haematology. 2011; 156, 155–162
  3. T.W. de Vos, D. Winkelhorst, M. de Haas, E. Lopriore, D. Oepkes. Epidemiology and management of fetal and neonatal alloimmune thrombocytopenia. Transfusion and Apheresis Science. 2020
  4. Shamudheen Rafiyath, Immune Thrombocytopenia and Pregnancy Treatment & Management Updated: Sept. 2020 https://emedicine.medscape.com/article/208697-treatment

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.