Validations/Verifications of Alternative Anticoagulants for Platelet Clumping

Platelet clumping can cause a falsely lowered platelet count on hematology instruments and can be difficult to resolve. With thrombocytopenia, physicians need an accurate count to diagnose, treat, or monitor patients. Clumping can be due to pre-analytic issues with specimen handling, can be caused by medications, or may be an in vitro phenomenon caused by anticoagulants. The clumping makes precise counting impossible and even estimates can be very tricky. If there are clumps, and recollection of the sample still yields platelet clumping, then many labs will have an alternate tube drawn or an alternative method to help resolve clumping.

Many of us have heard of using sodium citrate tubes for patients who have clumped platelets in EDTA. So, if you are having platelet clumping headaches, you can just order some sodium citrate tubes and start using those on your hematology analyzers, right? Not so fast. There are many published references of the use of sodium citrate tubes to resolve EDTA induced thrombocytopenia but we still see samples in which the clumping is not resolved with the sodium citrate tube. Published studies have shown that several other alternate methods have been helpful in resolving platelet clumping issues. These include drawing specimens in CTAD, ACD, or ‘ThromboExact’1 tubes, or adding amikacin or kanamycin to the EDTA after the specimen is drawn.

So, why can’t we just order one of these other tubes and start reporting results? Hematology analyzers are only FDA approved for EDTA tubes. Before you can use any modified method, and before you can report any patient results, your laboratory must do validation or verification studies to prove that the method produces valid results.

A validation provides objective evidence that a test performs as intended. A validation uses a defined process and is used when setting up and implementing a new test. One example is a laboratory developed test (LDT), which is a test performed by the clinical laboratory in which the test was developed. A LDT can be one that is neither FDA-cleared nor FDA-approved or can be one that is FDA cleared/approved but has been modified by the performing laboratory. The use of sample types or the use of collection devices not listed in manufacturer instructions constitute modifications, by this definition. In a validation, accuracy should be tested with at least 40 samples across the analytical measurement range (AMR). Correlations are then performed. Precision should be tested over approximately 20 days. A verification, on the other hand, uses an abbreviated process and is used when setting up and implementing new tests that are cleared or approved by FDA. Before reporting patient results, the laboratory must demonstrate that a test performs in agreement with prior claims and must demonstrate performance specifications are comparable to the manufacturer’s specifications. Verification therefore is a confirmation that a test method meets specified requirements and would be applied to a method which has already been validated. For a verification, a smaller sample size may be used, and precisions tested over 5 or more days.

Table 1. Validations vs. Verifications

So, which would you do if you wanted to use an alternate method for reporting platelet counts? Hematology analyzers are only FDA approved for platelet counts on EDTA, but the by which the sample is analyzed does not change with an alternate tube, so it may be possible to do a limited validation or verification with a smaller sample size. A laboratory needs to prove correlation, accuracy, and precision. Follow your laboratory SOPs for validation/verification and consult with your accrediting agencies, if necessary. A plan needs to be written and signed off by laboratory director. Choose the alternative method you wish to investigate and run correlations for platelet counts on EDTA and the alternate anticoagulant. If your instrument has more than one platelet mode, it is important to run samples in the mode which you would normally use for thrombocytopenia or flagged platelet counts. Apply any dilutional factors and calculate correlations. This data will be Included in your report, which, along with a procedure needs to be signed by the laboratory director.

The most important thing is to write a plan and a follow-up report according to your SOPs and to make sure any requirements of accrediting agencies are included. There can be some differences in interpretation of standards, so it is the laboratory’s responsibility to make sure what you have done meets the standards that apply to your lab.

The use of alternate tubes for platelet counts has been well reviewed in literature. Sodium citrate tubes are the most common, likely because they are the easiest to use and the most cost effective. Remember though that sodium citrate and other methods cannot resolve all case s of pseudothrombocytopenia. There are several special notes to consider. Counts from sodium citrate tubes are known to be stable for approximately 3 hours, after which counts decrease. As well, it has been shown in literature that sodium citrate tubes do show a negative bias. It has been reported that the 10% dilutional factor may be too low. Some studies have been done to determine dilution factors that correlate more closely with EDTA tubes, and researchers have suggested factor of 17%-25%. If your laboratory wishes to determine its own dilutional factor for sodium citrate or other tubes, this will also have to be included in your platelet studies. Lastly, CBCs are calibrated for EDTA, so only the platelet count should be reported from an alternative anticoagulant.

The end of another busy and challenging year is upon us, and at this time of year we can find ourselves rushed to finish ‘end of year’ tasks such as competencies and continuing education requirements. and a response to Sysmex’s recent webinar “Those Sticky, Tricky Platelets – Solving the Puzzle of Platelet Clumping” (Oct.20,2021). After the webinar I had many questions from techs asking, “Do we need to validate our alternative method?” and “How do we go about doing that?” The webinar discusses pseudothrombocytopenia and its causes in more detail than my earlier blog from Oct 2019, “Hematology Case Study: The Story of the Platelet Clump: EDTA-Induced Thrombocytopenia”. The webinar can be found at and is available for CEU, free of charge.


  1. Baccini V, Geneviève F, Jacqmin H, et al. Platelet Counting: Ugly Traps and Good Advice. Proposals from the French-Speaking Cellular Hematology Group (GFHC). J Clin Med. 2020;9(3):808. Published 2020 Mar 16. doi:10.3390/jcm9030808
  2. Bizzaro N. (2013): Pseudothrombocytopenia. In: Platelets, Vol. 3, ed Bizzaro N, Elsevier, Amsterdam, pp. 989–997 
  3. Chae H, Kim M, Lim J, Oh EJ, Kim Y, Han K: Novel method to dissociate platelet clumps in EDTA-dependent pseudothrombocytopenia based on the pathophysiological mechanism. Clin Chem Lab Med 50, 1387–1391 (2012)
  4. Socha, Becky. Calibration and Calibration Verification: Who, What, Where, When, Why, How & Did I Pass or Fail?. AMT 81st Educational Program and annual meeting, 2019
  5. Zhou X, Wu X, Deng W, Li J, Luo W: Amikacin can be added to blood to reduce the fall in platelet count. Am J Clin Pathol 136, 646–652 (2011)
  9. hematology-case-study-the-story-of-the-platelet- clump-edta-induced-thrombocytopenia/

-Becky Socha, MS, MLS(ASCP)CMBBCM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 40 years and has taught as an adjunct faculty member at Merrimack College, UMass Lowell and Stevenson University for over 20 years.  She has worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. She currently works at Mercy Medical Center in Baltimore, Md. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Hematology Case Study: The Story of the Platelet Clump: EDTA-Induced Thrombocytopenia

I belong to a Hematology Interest Group and always enjoy seeing the case studies and questions that other techs post. This group is multinational so I see posts from techs all over the world. It’s interesting to see the similarities and differences in standard operating practices and the roles techs play in different areas and different countries. It’s also interesting to see that we all come across the same types of problems and difficult specimens! In the last few months in this Hematology Interest Group, I have seen many questions and comments about resolving clumped platelets, and am therefore using this opportunity to shed some light on these tricky specimens. The case I am presenting, and the photos, are courtesy of Abu Jad Caesar, who is a Lab manager at Medicare Laboratories – Tulkarm branch, in Palestine.

The patient had a CBC performed on a Nihon Kohden 6410. WBC was 12.7 x 103μL, impedance platelet count was 20,000/μL on initial run, other parameters appeared within normal limits. The sample was warmed and a Na Citrate tube was requested to rule out pseudothrombocytopenia. After warming, the EDTA was rerun with a platelet count of 0/μL. The Na Citrate tube was run, and platelet count from the instrument was 189,000/μL. (Figure 1) Because of the blood:anticoagulant ratio in the Na Citrate tube, a multiplier of 1.1 was applied, thus making the Na Citrate platelet count 207,900/μL. Slides were made, stained and examined. Image 1 shows the clumping in the EDTA tube. Image 2 shows the smear from the Na Citrate tube, with no visual clumping.

The CBC was reported with the following comments: Platelet clumping observed, 2 samples drawn to rule out thrombocytopenia. EDTA whole blood smear had many platelet clumps noted (EDTA induced thrombocytopenia). Conclusion: Platelets are adequate and estimated to be about 200,000/μL.

Figure 1. Results from warmed EDTA tube (left) and Na Citrate tube (right).
Image 1. Clumped platelets seen with EDTA.
Image 2. Normal platelet count with no clumping seen with Na Citrate.

Platelet counts in the normal range don’t usually give us too much trouble in reporting, even if some clumping is present, mainly because they are normal. Adequate platelet counts fall within a typical reference range of about 150- 450 x 103/μL. If there are instrument flags for a platelet abnormal scattergram or platelet clumps, it is recommended to repeat testing by another method. If the initial count is performed by impedance counting, many analyzers can also report optical or fluorescent platelet counts. With impedance counting, very small RBCs or fragments may be counted as platelets, thus giving a falsely increased platelet count. With optical counting, large platelets can be counted as RBCs, thus giving a falsely decreased count. Some Sysmex hematology analyzers use impedance and optical counts and also feature fluorescent platelet counts which use a platelet specific dye and give accurate platelet counts without the interferences of other methods. A normal platelet count, even with clumping seen on a smear, is still usually estimated to be normal (or may occasionally be increased.)

Thrombocytopenia, on the other hand, can be a challenge in the hematology laboratory. With thrombocytopenia, physicians need an accurate count to diagnose, treat or monitor patients. Even a small increase or decrease can be significant when there is a severe thrombocytopenia. With fewer platelets, every platelet counts!

One of the first questions we must ask with an apparent thrombocytopenia is if this is a true thrombocytopenia or if it is pseudothrombocytopenia (PTCP). A true thrombocytopenia represents a patient with a low platelet count who may need monitoring or medical intervention. It can be dangerous to miss true thrombocytopenia but is also dangerous to report a low platelet count in a patient with a spurious thrombocytopenia who is not actually thrombocytopenic. Pseudothrombocytopenia, or spurious thrombocytopenia, is defined as an artificially or erroneously low platelet count. In PTCP, the low platelet count is due to clumps that are counted as 1 platelet. (These large clumps can also be counted as WBCs, thus giving a falsely increased WBC count.)

We can divide PTCP into 2 categories Platelet clumping is most commonly caused by pre-analytic errors such as over-filled or under-filled EDTA tubes, clotted specimens, or a time delay between sample collection and testing. Techs should check the tube for clots and sample volume and do a delta check to help differentiate thrombocytopenia and PTCP. But, with an apparent ‘good’ sample, the next step would be a smear review. If there are clumps seen on the smear, then we need to decide what caused the clumps. Is it the first category, one of these common pre-analytical issues, or is it the 2nd category of PTCP, an in vitro agglutination of platelets? Conditions that can cause this in vitro agglutination of platelets include cold agglutinins, multiple myeloma, infections, anticardiolipin antibodies, high immunoglobulin levels, abciximab therapy and EDTA induced pseudothrombocytopenia. (EDTA-PTCP) Of these, EDTA induced pseudothrombocytopenia is the most common cause. (Nakashima, 2016).

When techs talk about platelet clump issues, it is usually because we are looking for ways to resolve or to accurately estimate the platelet count in these samples, and there doesn’t seem to be one easy answer. The clumping makes precise counting impossible and even estimates can be very tricky. How can we estimate these counts? Do we simply report the presence of clumping with “appear normal”, “decreased” or “increased”? Or, should we break our estimates into more ranges to give physicians more valuable information? And, what if the provider wants an actual count in order to give the patient the best care possible and we can’t resolve the clumping? What can we do to provide a count? Some of the first steps recommended include vortexing the sample for 2 minutes to break up platelet clumps, then re-analyzing. Warming samples may also help to resolve platelet clumps, particularly in samples with cold agglutinins or that have had a delay in testing and have been transported or stored at room temperature or below. If clumps persist and recollecting the sample still yields platelet clumping, then pre-analytical error can be ruled out an EDTA induced pseudothrombocytopenia may be suspected. Many labs will have an alternate tube drawn or use another method to help resolve the clumping.

So, what is EDTA induced thrombocytopenia (EDTA-PTCP)? This is not representative of a particular clinical picture, and is not diagnostic for any disorder or drug therapy, but is a laboratory phenomenon due to presence of EDTA dependent IgM/IgG autoantibodies. These antibodies bind to platelet membrane glycoproteins in presence of EDTA. EDTA induces and enhances this binding by exposing these glycoproteins to the antibodies. (Geok Chin Tan, 2016) Though it is an in vitro phenomenon, patients with certain conditions, such as malignant neoplasms, chronic liver disease, infection, pregnancy, and autoimmune diseases, do have increased risk of EDTA-PTCP. However, EDTA-PTCP has also been observed in patients who are disease free. (Zhang, 2018)

What are some alternate methods to help resolve EDTA induced platelet clumping challenges? Probably the most common is to redraw the sample in a Na Citrate tube. Both EDTA and Na Citrate tubes should be drawn. In a true EDTA-PTCP, as seen in our case study, you should see clumps on the smear made from the EDTA tube and no clumps on the smear made from the Na Citrate tube. Because of the volume of the anticoagulant in the Na Citrate tube you must also apply the dilution factor of 1.1 to the count from the Na Citrate tube to get an accurate platelet count. Note, however, that hematology analyzers are FDA approved and validated for use with EDTA tubes. If you wish to use a different anticoagulant, the method must be validated in your laboratory. Note also that alternate methods will generally only resolve EDTA -PTCP, and not clumping due to other cold agglutinins, medication or disorders. In addition, anticoagulant induced thrombocytopenia is not limited to EDTA. It can also occur with citrate and heparin. In a study, it was found that up to 17% of patients with an EDTA -PTCP also exhibited this phenomenon with citrate. In fact, researchers have found, and we have found in our own validations, that some samples that do not clump in EDTA actually DO clump in Na Citrate. Thus, alternate tubes may not resolve all platelet clumping. (Geok Chin Tan, 2016)

Some labs have validated ACD (Citric acid, trisodium citrate, dextrose) anticoagulant tubes for EDTA-PTCP. Using this method, the EDTA tube and ACD must be run in parallel and a conversion factor applied, reflecting the difference in sample dilution in the 2 tubes. A parameter such as the RBC must be chosen to make this comparison. Using a formula that divides the RBC in EDTA by the RBC in ACD gives a ratio that reflects the dilutional differences between anticoagulants. This ratio can then be multiplied by the ACD platelet count to obtain the ACD corrected platelet count. (CAP Today, 2014). Some sources have recommended ACD tubes because the incidence of clumping with Na Citrate can be frustratingly high. It is theorized that the more acidic ACD tube may prevent platelet clumping better than Na Citrate. (Manthorpe, 1981)

Less commonly used tubes are CTAD (trisodium citrate, theophylline, adenosine, dipyridamole) and heparin. CTAD acts directly on platelets and inhibits platelet factor 4 thus minimizing platelet activation. Downsides to CTAD tubes are that they are light sensitive and must be stored in the dark, and can be costly. They also alter the blood/additive dilution ratio so calculations must be used, as seen with Na Citrate and ACD. Heparin tubes are less commonly found to be beneficial in resolving platelet clumping issues because heparin can active platelets. Heparin tubes are also more expensive, so have not generally been a first choice for EDTA-PTCP.

I have heard from techs that their labs have very good results using amikacin added to EDTA tubes to prevent spuriously low platelet counts in patients with EDTA-PTCP. Amikacin should be added to the EDTA tube within 1 hour after draw and testing is stable for up to 4 hours at room temperature. Results of a study done in 2011 showed that the addition of amikacin to the EDTA tube produced rapid dissociation of the platelet clumps with little or no effect on morphology or indicies. This method has proved very promising for reporting accurate platelet counts in patients with multianticoagulant induced PTCP. (Zhou, 2011)

The last anticoagulant tube that I have seen mentioned by many techs in the hematology interest group are Sarstedt ThromboExact tubes. I have seen many posts from techs who use these and they seem to have a very good success rate. ThromboExact tubes contain magnesium salts and are specifically designed to determine platelet counts in cases of PTCP. They are currently validated only for platelet counts and samples are stable for 12 hours after collection. Interestingly, before automated hematology analyzers, magnesium was the anticoagulant of choice for manual platelet counts. EDTA-PTCP has been recognized since EDTA automated platelet counts were introduce in the 1970s. A 2013 study in Germany used ThromboExact tubes with excellent results for resolving multianticoagulant induced PTCP. These tubes became commercially available during the study, in 2013. (Schuff-Werner, 2013) Unfortunately for us in the United States, these tubes are not available in the US. I was recently at a conference and went up to the Sarstedt representatives and asked about these tubes. I was told that they are available in parts of Europe and Asia but are not FDA approved in the US. I asked very hopefully if they were looking at getting FDA approval and was unfortunately told that “they didn’t think they had the market for them to pursue approval.”

Whichever alternative method your lab chooses to use, it is recommended to draw an EDTA and the alternate tube together. This way the 2 counts and the presence or absence of clumping in the tubes can be compared. We have many patients who had one incidence of clumping, yet when the provider orders a Na Citrate platelet count, we get a new draw of both EDTA and Na Citrate tubes together, and there is no flagging or clumping seen with EDTA. In these cases it is appropriate to result the EDTA results as there is no evidence of EDTA-PTCP.

When a patient has a low PLT count without any hematologic disease, family history, and/or bleeding-tendency identified, and pre-analytical errors have been ruled out, PTCP should be considered. This does not mean that a patient with PTCP will have a normal platelet count after the clumping is resolved. As stated above, many patients with EDTA-PTCP have hematological or other disorders and may be truly thrombocytopenic. Resolving the clumping in these patients allows us to give the provider an accurate platelet count, which is very important in thrombocytopenic patients.

The flow chart below (Figure 4) shows some things to consider when dealing with platelet clumping. It is our goal to resolve clumping so that we can report an accurate platelet count in a timely fashion. In the laboratory where I work, I have validated Na citrate tubes, but these seem to resolve clumping in less than 50% of patients. As a last resort, to get an accurate platelet count, some articles have suggested collecting a fingerstick and performing manual counts. I did include this in the chart as an option for multianticoagulant PTCP, however, due to the difficulty in collecting a good specimen and the subjectivity of counts, along with problems associated with necessary calculations, our pathologists have decided that we will not do manual platelet counts. For this reason, I am currently involved in platelet clumping monitoring and will be conducting a small internal study to compare ACD, CTAD and Na Citrate tubes in parallel. Depending on those results we may also then test amikacin. If we come to any enlightened conclusions I’ll write another short blog with our results!

Thanks again to Abu Jad Caesar, lab manager at Medicare Laboratories – Tulkarm branch, in Palestine, who provided me with this textbook perfect case of PCTP, which was easily resolved by collecting in Na Citrate. We wish they all read the textbooks and were as cooperative!

Figure 2. Flowchart for resolving and reporting of thrombocytopenia.


  1. CAP Today, January 2014. accessed online http://www.captodayonline/qa-column-0114
  2. Manthorpe R, Kofod B, et al. Pseudothrombocytopenia, In vitro studies on the underlying mechanisms. Scand J Haematol 1981; 26:385-92
  3. Nakashima MO, Kottke-Marchant K. Platelet Testing: In: Kottke-Marhchant K, ed. An Algorithmic Approach to Hemostasis Testing, 2nd ed. CAP Press; 2016:101
  4. Schuff-Werner,Peter, et al. Effective estimation of correct platelet counts in pseudothrombocytopenia using an alternative anticoagulant based on magnesium salt. Brit J of Haematol Vol 162, Issue 5. June 29, 2013
  5. Tan, Geok Chin et al. Pseudothrombocytopenia due to platelet clumping: A Case Report and Brief Review of the Literature. Case Reports in Hematology. Volume 2016
  6. Lixia Zhang, MMed,* Jian Xu, MD,* Li Gao, MMed, Shiyang Pan, MD, PhD. Spurious Thrombocytopenia in Automated Platelet Count. Laboratory Medicine 49:2:130-133. 2018
  7. Zhou,Xiamian, et al. Amikacin can be added to blood to reduce the fall in platelet count. Am Journal of Clinical pathology, Vol 136, Issue 4, Oct 2011.

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Hematology Case Study: A 12 Year Old Female with Thrombocytopenia.

Case History

A 12 year old female presented with thrombocytopenia. Previous platelet count performed at a different facility showed a platelet count of <100K.  Patient signs show history of bruising, no history of trauma, intermittent epistaxis.

Family history shows no history of anemia or hypothyroidism from either parent. Incidental finding of hypothyroidism was revealed for this patient when laboratory testing was performed.

Light staining, “gray” platelets.

Laboratory results

DAT: Negative

PT 11.7/INR 1.1

PTT 38.3

Platelet aggregation studies: Decreased response to ADP-Collagen-Epinephrine and Arachidonic Acid. Results of which are consistent with platelet dysfunction due to storage pool defect.

vonWillberand panel shows within range results for Factor 8, vW antigen and vW Ristocetin.

Peripheral blood smear shows light staining (gray) appearance of platelets.

Diagnosis: Gray Platelet Syndrome



Gray platelet syndrome (GPS) is an inherited platelet disorder that presents with thrombocytopenia and characteristic pale/gray appearance of platelets under light microscopy. This gray appearance of platelets is due to the absence of alpha granules and their constituents.

According to Gunay-Aygun et al., the diagnosis of GPS requires demonstration of the absence or marked reduction of α-granules in platelets observed by electron microscopy (EM). Megakaryocytes also show decreased α-granules. Platelet dense bodies and lysosomes are unaffected. Alpha granules, the most abundant vesicles in platelets, store proteins that promote platelet adhesiveness and wound healing when secreted during platelet activation. Some α-granule proteins (eg, platelet factor 4 and β-thromboglobulin) are synthesized in megakaryocytes and packed into the vesicles, whereas others are either passively (eg, immunoglobulins and albumin) or actively (eg, fibrinogen) taken up from the plasma by receptor-mediated endocytosis. Proteins synthesized in megakaryocytes are markedly reduced in GPS, whereas other α-granule constituents are less affected. Studies of granule membrane-specific proteins have shown that platelets and megakaryocytes of GPS patients have rudimentary α-granule precursors. Therefore, the basic defect in GPS is thought to be the inability of megakaryocytes to pack endogeneously synthesized secretory proteins into developing α-granules. (Gunay-Aygun et al, 2010).

Most patients who present with GPS are characteristically macrothrombocytopenic and the number of megakaryocytes in the bone marrow appears normal. However platelet survival is reduced. This inability of megakaryocytes to survive is due to the alpha granule deficiency of this disorder therefore leading to thrombocytopenia. Myelofibrosis and splenomegaly is also apparent on patients with GPS but severe hemorrhage is unlikely, bleeding tendencies tend to be mild to moderate for GPS.

Most patients had bleeding symptoms from infancy with the average onset of 2 years of age. Average age of diagnosis is 10-14 years of age; some patients who have Gray Platelet Syndrome have presented with initial diagnosis of ITP (idiopathic thrombocytopenic purpura).


Gunay-Aygun, M., Zivony-Elboum, Y., Gumruk, F., Geiger, D., Cetin, M., Khayat, M., . . . Falik-Zaccai, T. (2010). Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p. Blood, 116(23), 4990-5001. doi:10.1182/blood-2010-05-286534


-Written in collaboration with Stephanie Foster, BS MLS


-Carlo Ledesma, MS, SH(ASCP)CM MT(ASCPi) MT(AMT) is the program director for the Medical Laboratory Technology and Phlebotomy at Rose State College in Midwest City, Oklahoma as well as a technical consultant for Royal Laboratory Services. Carlo has worked in several areas of the laboratory including microbiology and hematology before becoming a laboratory manager and program director.

A Brief Overview of 7-day Platelets

The transfusion community has targeted platelets as the primary culprit in transfusion-associated clinical sepsis and fatal microbial infection. Platelets (PLTs) are associated with a higher risk of sepsis and related fatality than any other transfusable blood component. Concerns over bacterial contamination in PLT concentrates prompted the US Food and Drug Administration (FDA) in 1986 to issue a memorandum limiting the storage time of platelet products to 5 days. Only recently did the FDA issue draft guidance describing bacterial testing to improve the safety and availability of PLTs, and outlined the steps necessary for transfusion services to extend apheresis PLTs to 7 days.

Microbial infections were the 4th leading cause of transfusion-related mortality, accounting for 8% of them between 2010 and 2014. PLT storage at ambient room temperature supports high titer bacterial proliferation. Skin flora are the most common source of contamination, occurring at the time of collection. Despite the introduction of improved pre-collection arm preparation and analytically sensitive culture-based bacterial detection methods, the risk of fatal and non-fatal clinical sepsis has persisted.

Most recently, the 2016 AABB standards stated that PLTs may be stored for 7 days only if: 1) storage containers are cleared or approved by FDA for 7-day PLT storage and 2) labeled with the requirement to test every product stored beyond 5 days with a bacteria detection device cleared by FDA and labeled as a “safety measure.” The Verax PGD test is a rapid, single use, lateral flow immunoassay, and the only rapid, day of transfusion test the FDA has cleared as a “safety measure.” The proprietary test detects surface bacterial antigens, namely lipotechoic acid found on gram positive organisms and lipopolysaccharide found on gram negatives. The PGD test as a “safety measure” is to be used in concert with culture, not replace it.

Verax PGD test

Approximately 2.2 million PLT transfusions are administered yearly in the United States, of which more than 90% consist of apheresis PLTs. If the available data were generalized to the entire US apheresis PLT supply, approximately 650 contaminated apheresis PLTs would be caught with the PGD test, preventing septic transfusion reactions and potential fatalities each year. The FDA approval of this test allows non-culture based testing to extend dating from 5 to 7 days and further closes the safety gap that exists in apheresis PLTs.



-Thomas S. Rogers, DO is a third-year resident at the University of Vermont Medical Center, a clinical instructor at the University of Vermont College of Medicine, and the assistant medical director of the Blood Bank and Transfusion Medicine service.

The author declares that he has no disclosures.

Platelet-Rich Plasma: My View from the Transfusion Service

Platelets play a significant role in primary hemostasis, however they also serve as a reservoir of a number of important growth factors, including but not limited to platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF). Thus, autologous platelets applied topically or injected into areas of recent surgical reconstruction or to wounds are thought to stimulate angiogenesis and aid in tissue repair/regeneration. Several instruments are available to harvest platelets, (re-suspended in plasma a.k.a. platelet-rich plasma, PRP), and this provides a vehicle for delivery as a topical or injectable product.

There is no doubt that basic science and in vitro studies substantiate the release of platelet-derived growth factors and their potential role in healing, however robust trials and in vivo studies are lacking and often show conflicting results. The lack of strong clinical evidence is due to the marked heterogeneity of PRP preparations, platelet counts, and growth factor yields or activity. Differences in the site of use, type of injury and tissue, and patient comorbidities likewise contribute to the broad range of study results. Dosing regimens for optimal use are also unknown. There are no evidence-based studies of head-to-head comparisons of these products or their relative efficacies on patient outcomes.  Current literature maintains that there is insufficient evidence to support the routine use of PRP in clinical practice. In spite of this, there continues to be extensive utilization of this product.

And I purposefully highlight the word product.

In my view, when allowing the use of instruments to acquire PRP, this represents manufacture of a blood product and constitutes a transfusion activity for which the Transfusion Service and specifically, the Transfusion Service Medical Director are ultimately responsible. All relevant transfusion activities fall under the auspice of the Transfusion Service and applicable standards would demand oversight of policies, processes and procedures. The AABB Standards for Blood Banks and Transfusion Services(1) clearly identify elements to be included such as equipment, suppliers, informed consent, document and record control, along with relevant quality and patient safety activities.

There are limited standards applicable to PRP specifically, such as storage temperature, expiration and conditions of use listed in the AABB Standards for Perioperative Autologous Blood Collection and Administration.(2) To this end, the International Cellular Medical Society(3), in 2011, noted a serious lack of guidelines surrounding the use of PRP and submitted a draft document which outlined elements for training, indications/contra-indications, informed consent processes, preparation, injection/application, safety issues and patient follow-up. A 2014 Cochrane Review called for standardization of PRP methods.(4)

Overall, I would venture to say that few hospital Transfusion Services are aware of the scope of use of PRP within their facility(ies). Regardless of one’s opinion of the current literature, I would urge all of us involved in transfusion practice to be informed of the use of PRP and to be vigilant in oversight of this activity. It is not merely a regulatory and accreditation issue, but our duty as laboratory physicians and clinical scientists to provide quality, safe and effective transfusion therapies to all patients. Often this requires educating our clinical colleagues and enabling them to understand our role in this critical process.


  1. AABB Standards for Blood Banks and Transfusion Services, 29th edition, 2014
  2. AABB Standards for Perioperative Autologous Blood Collection and Administration, 5th edition, 2013
  4. Morae VY et al. Platelet-rich therapies for musculoskeletal soft tissue injuries. The Cochrane Library 2014
  5. Griffin XL et al. Platelet-rich therapies for long bone healing in adults. The Cochrane Library 2012
  6. Leitner GC et al. Platelet content and growth factor release in platelet-rich plasma: A comparison of four different systems. Vox Sang 2006; 91: 135-138
  7. Everts PA et al. Platelet-rich plasma and platelet gel: A review. J Extra Corpor Technol 2006; 38: 174-187


-Dr. Burns was a private practice pathologist, and Medical Director for the Jewish Hospital Healthcare System in Louisville, KY. for 20 years. She has practiced both surgical and clinical pathology and has been an Assistant Clinical Professor at the University of Louisville. She is currently available for consulting in Patient Blood Management and Transfusion Medicine. You can reach her at