The Latest Pox, Up Close and Personal

Against the backdrop of COVID-19, the world experienced a multicounty outbreak of Mpox (formally monkeypox) beginning in May of 2022. Prior to that time, the virus was primarily known to circulate within central and west African nations causing zoonotic disease. Clinical presentations of Mpox comprise signs and symptoms including rash on the hands, feet, face or mucous membranes and patients may experience fever or an influenza-like illness.1 Historically, transmission was associated with travel to an endemic region and contact with an infected animal. Importantly, the outbreak in 2022 was associated with broad changes in Mpox epidemiology, as most infections were acquired via sexual transmission.

Pox viruses and Mpox

Pox viruses are members of the family Poxviridae, which are double stranded DNA viruses that replicate entirely in the cytoplasm of host cells. They have worldwide distribution and cause disease in humans and other animals. Infection typically manifests as the formation of lesions, skin nodules or rash. Mpox belongs to the genus Orthopoxvirus which also includes other clinically important viruses including variola virus (smallpox), vaccinia virus, and cowpox. In the context of diagnosis, differentiation between the members of the Orthopox family becomes important.

The duration of illness with Mpox is usually between 2-4 weeks, with a variable incubation time most often between 6-13 days. The Mpox rash has historically been more focused on the face and extremities,2 and will cycle through stages including encrustation, scabbing, and eventually resolution. During the 2022 outbreak, an increasing number of presentations involved the anogenital and oral regions, further highlighting the change in epidemiology. The window for transmission is currently an area of active research as new data suggests transmission can begin prior to the appearance of symptomology.3

Diagnosis – Molecular

Mpox is generally diagnosed using PCR testing from a swabbed lesion. At the onset of this emerging infectious disease, the CDC shared its algorithm and testing for Mpox with public health laboratories. The first-generation algorithm largely reflected its potential use as a tool for screening for bioterrorism agents, which included using two-tiered testing. The first test was designed to demonstrate that Orthopox DNA was present and rule out variola virus by targeting the Orthopox DNA polymerase gene found not present in Variola (E9L-NVAR). The second step was to target an Mpox-specific gene encoding the envelope protein (B6R).4 It soon was readily apparent that the only Orthopox virus in circulation was Mpox, so the CDC updated its guidance in late June 2022 to confirming diagnosis of Mpox with the single Orthopox DNA-polymerase PCR assay.

However, despite this modification to improve expediency and like the situation faced at the onset of the COVID-19 pandemic, the need for testing greatly exceeded what public health infrastructure could support. Thus, laboratories designed and validated laboratory developed tests (LDTs) to expand access to testing, thus enabling physicians to interrogate the causes of a patient’s rash more thoroughly. This flexibility was essential given rising cases numbers and relatively non-specific symptomology of Mpox. By May 2023, over 80 laboratories registered Mpox LDTs with the Food and Drug Administration,5 and commercial device manufacturers are now including it in new and forthcoming assays still in development.

Diagnosis – Histopathology

Although PCR testing is the mainstay of diagnosis, histopathologic evaluation of biopsy material from a lesion can also provide insight into the viral etiology. Mpox infected skin biopsies demonstrate similar histopathologic features of infections caused by other pox viruses. As the rash continues to evolve over time, representative histopathological changes can also be observed. Early lesions may demonstrate ballooning degeneration, acanthosis and spongiosis. More mature lesions progress to near total keratinocyte necrosis with exocytosis comprised of mixed cellular inflammatory infiltrate.6 Eosinophilic bodies may be identifiable in the cytoplasm of infected cells, commonly known as Guarnieri bodies, represent the mature virions produced in the cytoplasm of infected cells.

Recently, the histopathological description of 20 outbreak-associated clinical cases of Mpox from Spain was reported. Epidermal necrosis and keratinocytic ballooning were commonly encountered microscopic features associated with Mpox lesions.7 Figure 1 is a skin biopsy from a patient who presented with a vesicular eruption in September with a history of mpox, syphilis and herpes simplex infection whose lesions were worsening. It similarly shows ballooning degeneration, epidermal necrosis, exocytosis of neutrophils into the epidermis, and intracytoplasmic eosinophilic inclusions (Guarnieri bodies) (Figures 2-3).

Figure 1. Histopathology of MPOX from a biopsied skin lesion (4x magnification, H&E). Intact epidermis with evidence of ballooning keratinocyte degeneration and infiltration of neutrophils.
Figure 2. Histopathology of Mpox (10x magnification, H&E). Epidermis with a cross-section of follicular infundibulum (hair follicle) is in the bottom left. The keratinocytes to the right demonstrate marked vacuolar change and small eosinophilic bodies can be observed in a background of neutrophils and necrotic keratinocytes.
Figure 3. Histopathologic findings of MPOX in a biopsy of a skin lesion (40x magnification, H&E).
High power magnification of viral inclusions, guarnieri bodies, (arrowheads) in a background of necrotic keratinocytes and neutrophilic infiltrate.

Treatment

Mpox is much milder than smallpox despite similar rash manifestations. In cases of severe Mpox infection, therapies used for smallpox have been compassionately utilized, but supportive measures are the mainstay of management of uncomplicated cases. Vaccination is now available as both a pre-exposure prophylaxis and post-exposure prophylaxis. It is important to note that the clinical effectiveness of the currently used vaccine in the United States is not known; however, early data across 32 US jurisdictions showed that among males 18-49, those who were unvaccinated had an Mpox incidence 14 times higher than similarly aged males who received at least one dose of vaccine at least 2 weeks prior.8

Conclusion

The Mpox outbreak, declared a global health emergency in July of 2022, has reinforced the need for flexibility within laboratories and industry to respond to emerging infectious diseases. The global health emergency for Mpox was declared over on May 11, 2023, but cases are still going to sporadically occur and minor outbreaks will result. The rapid development of numerous LDTs was essential to support the overwhelmed public health infrastructure, and this continued flexibility is needed to appropriately respond to future public health emergencies.

References

  1. https://www.cdc.gov/poxvirus/mpox/symptoms/index.html. Accessed April 19th, 2023.
  2. Saxena et al. J. Med. Virol. 2022;95:e27902.  DOI: 10.1002/jmv.27902
  3. https://www.cdc.gov/poxvirus/mpox/about/science-behind-transmission.html Accessed May 19th, 2023
  4. Li Y, Olson VA, Laue T, Laker MT, Damon IK. Detection of monkeypox virus with real-time PCR assays. J Clin Virol. 2006 Jul;36(3):194-203. doi: 10.1016/j.jcv.2006.03.012. Epub 2006 May 30. PMID: 16731033; PMCID: PMC9628957.
  5. https://www.fda.gov/medical-devices/emergency-situations-medical-devices/monkeypox-mpox-and-medical-devices#Laboratories. Accessed May 3, 2023.
  6. Bayer-Garner IB. Monkeypox virus: histologic, immunohistochemical and electron-microscopic findings. J Cutan Pathol. 2005 Jan;32(1):28-34. doi: 10.1111/j.0303-6987.2005.00254.x. PMID: 15660652.
  7. Rodríguez-Cuadrado FJ, Nájera L, Suárez D, Silvestre G, García-Fresnadillo D, Roustan G, Sánchez-Vázquez L, Jo M, Santonja C, Garrido-Ruiz MC, Vicente-Montaña AM, Rodríguez-Peralto JL, Requena L. Clinical, histopathologic, immunohistochemical, and electron microscopic findings in cutaneous monkeypox: A multicenter retrospective case series in Spain. J Am Acad Dermatol. 2023 Apr;88(4):856-863. doi: 10.1016/j.jaad.2022.12.027. Epub 2022 Dec 26. PMID: 36581043; PMCID: PMC9794029.
  8. https://www.cdc.gov/poxvirus/mpox/clinicians/vaccines/vaccine-considerations.html. Accessed May 3, 2023.

-Clare McCormick-Baw, MD, PhD is an Assistant Professor of Clinical Microbiology at UT Southwestern in Dallas, Texas. She has a passion for teaching about laboratory medicine in general and the best uses of the microbiology lab in particular.

-Travis Vandergriff, MD is an Associate Professor and Board-Certified Dermatopathologist and practicing Dermatologist at UT Southwestern Medical Center.

-Andrew Clark, PhD, D(ABMM) is an Assistant Professor at UT Southwestern Medical Center in the Department of Pathology, and Associate Director of the Clements University Hospital microbiology laboratory. He completed a CPEP-accredited postdoctoral fellowship in Medical and Public Health Microbiology at National Institutes of Health, and is interested in antimicrobial susceptibility and anaerobe pathophysiology.

Toxicology and Forensic Pathology: More Than a Numbers Game

I was recently reviewing new toxicology reports from my pending autopsies, and came across a report with the following results: 

Looking at this in isolation, it would be easy to assume this person died from an overdose. Even low levels of fentanyl can be dangerous to an opioid-naive individual – a level this high is rare. Then there’s the added presence of fluoro fentanyl, a fentanyl analog, which would seem to support the notion of an overdose. The problem with this assumption? This person died from blunt force trauma as a pedestrian struck by a car. He was, according to witness accounts, walking and talking right until the moment of impact. Autopsy had shown multiple blunt force injuries incompatible with life.

This situation illustrates some of the complexity of postmortem forensic toxicology. Despite methodology being nearly the same, toxicology in a forensic setting differs in many important ways from that performed in a clinical setting.

The first major difference occurs in the pre-analytical phase. The results of clinical testing may be used to alter therapy or make a diagnosis. However, forensic toxicology results are meant to be used in a court of law, meaning the chain of custody needs to be maintained. If there is no documentation of who touched the sample and when, the integrity of the specimen can be called into question and results may be impermissible.

Not all forensic toxicology is performed on deceased patients. Specimens may be taken from the living during evaluation of an alleged assault, driving under the influence, or for workplace monitoring. In autopsy specimens though, postmortem redistribution (PMR) is another pre-analytical factor to consider. After death the stomach, intestines, and liver can serve as a drug reservoir and passively transfer the drug to surrounding vasculature. Other organs can also act as reservoirs, depending on where the drug is concentrated in life. Drugs which are highly lipid-soluble and/or have a high volume of distribution will diffuse down their gradient from adipose tissue into the bloodstream – antidepressants are notorious for this, and elevated postmortem levels need to be interpreted with caution.

Autopsy specimens are also more varied in type and quality than typical clinical specimens. Vitreous fluid, bile, and liver tissue are commonly collected at autopsy, in addition to central (heart) and peripheral (femoral or subclavian) blood. Femoral blood vessels, being relatively isolated from PMR-causing drug reservoirs, are a preferred source of specimens. Decomposition or trauma can limit the types or quantity of specimens and may even alter results. After death, bacteria from the GI tract proliferate and can produce measurable levels of ethanol in the blood. Decomposition also produces beta-phenethylamine, which can trigger a ‘positive’ result for methamphetamine on ELISA-based tests.

The post-analytical phase of autopsy toxicology also poses unique challenges. Lawyers and law enforcement will sometimes ask what the ‘lethal level’ of a drug is, and they’re invariably disappointed by my response. While there are published ranges of toxicity and lethality for most drugs, these are only general guidelines. There is no absolute lethal blood level for prescription or illicit drugs. Opioid users develop tolerance, making them relatively immune to a dose which would kill an opioid-naive person. In the example of the pedestrian described above, he had a long history of heroin abuse and could therefore tolerate much higher levels than most. For stimulants like cocaine and methamphetamine, there are no documented ‘safe’ levels as any amount could act as an arrhythmic agent. To add to the complexity, most overdose deaths involve multiple substances which may have synergistic effects and interactions that are difficult to parse.

Because of the reasons given above, the National Association of Medical Examiners still recommends full autopsy for possible overdoses. Deciding if a death was due to overdose is more complex than just reading a toxicology report – it requires interpretation and correlation with the autopsy findings and overall investigation.   

References

D’Anna T, et al. The chain of custody in the era of modern forensics: from the classic procedures for gathering evidence for the new challenges related to digital data. Healthcare. 2023 Mar;11(5):634.

Davis GG, et al. National Association of Medical Examiners Position Paper: Recommendations for the Investigation, Diagnosis, and Certification of Deaths Related to Opioid Drugs. Acad Forensic Pathol 2013 3(1):77-81.

Pelissier-Alicot AL, et al. Mechanisms underlying postmortem redistribution of drugs: A review. J Anal Toxicol. 2003 Nov-Dec;27(8):533-44.

Thoracic Aortic Disease at Autopsy: An Opportunity for Intervention

When I perform an autopsy, I know that anything I find will be discovered too late to save my patient’s life. I generally hope the autopsy report helps explain why and how someone died to family members, law enforcement, lawyers, and potential jurors.  It’s less common that an autopsy finding can have immediate impact on the healthcare of the decedent’s family, but this is the case with thoracic aortic disease.

Thoracic aortic aneurysms and/or dissections (TAAD) are relatively common mechanisms of sudden, unexpected, and natural death we encounter in forensic pathology. The classic teaching is that TAAD are caused by hypertension, bicuspid aortic valves, pregnancy, and cocaine use. Genetic disease1,2,3 is included late in the list, almost as an afterthought, with Marfan syndrome given as the prototype. However, the evidence for a genetic underpinning of TAAD has been steadily expanding. Family pedigrees in the late 1990s revealed up to 20% of patients with TAAD had an affected first-degree relative.4,5 If extended to 2nd degree relatives, up to 43% of patients with TAAD had at least one affected family member.6 There are also now more than 15 types of defined connective tissue diseases, and more than 29 genes identified which are mutated in heritable TAAD (H-TAAD). Clearly, the etiologies of hereditary TAAD (H-TAAD) expand far beyond Marfan syndrome.

H-TAAD can be categorized as “syndromic” or “non-syndromic” and has wide variability in clinical presentation. Syndromic forms show multisystem involvement, and often have externally apparent phenotypes. The most common forms of syndromic H-TAAD are Marfan syndrome, vascular Ehlers-Danlos, and Loeys-Dietz syndrome. However, the physical appearances associated with these syndromes can be subtle and aren’t always present.7 Non-syndromic H-TAAD affects only the aorta and aortic valve and includes both bicuspid aortic valve-associated TAAD and “familial” H-TAAD.

Thoracic aortic disease often remains subclinical until serious, life-threatening complications occur. Forensic pathologists can therefore play an important role in preventative health, proactively identifying patients at high risk for TAAD. Because a relatively large percentage of thoracic aortic disease is hereditary, it is prudent to ask whether forensic pathologists should initiate genetic testing in these situations.  Unfortunately, postmortem genetic testing is still out of reach for most Medical Examiner and Coroner systems. Insurance companies don’t reimburse for postmortem genetic tests, even when requested by healthcare providers of the surviving family. Selective testing of decedents with high-risk features may be more affordable, but there is no consensus on what those “high-risk” features are – and because of the variable penetrance and expressivity of H-TAAD, patients can present at nearly any age (even in their 80s).5,6

Despite the limitations of access to postmortem genetic testing, the most practical resource forensic pathologists have at our disposal is the telephone. According to 2022 guidelines from the American College of Cardiology and American Heart Association, aortic imaging is recommended in all first-degree relatives of patients with TAAD to screen for occult disease.8 Family members therefore need to be notified of this recommendation, regardless of the pathologist’s choice to pursue genetic testing. Developing a collaborative relationship with a local hospital or academic center may be beneficial; medical examiner offices then have a place to refer families for screening, and genetic counselors in these locations are better suited to evaluate the entire family and potentially order targeted genetic tests.9

Forensic pathologists are in a crucial position to recognize potential H-TAAD. Surgical outcomes for patients with TAAD are much better when performed prophylactically rather than emergently, so identifying aortic disease prior to rupture or dissection is crucial. Premature attribution to hypertension, or overreliance on the presence of Marfan-like features to identify hereditary disease, will result in missed opportunities to save lives. Forensic pathologists can therefore have a significant impact on public health, by recognizing the heritability of TAAD and contributing to improved screening of families at risk.

References

  1. Prahlow JA, Barnard JJ, Milewicz DM. Familial thoracic aortic aneurysms and dissections. J Forensic Sci. 1998 Nov;43(6):1244-1249.
  2. Gleason T. Heritable disorders predisposing to aortic dissection. Semin Thorac Cardiovasc Surg. 2005 17:274-281.
  3. Gago-Diaz M, Ramos-Luis E, Zoppis S. Postmortem genetic testing should be recommended in sudden cardiac death cases due to thoracic aortic dissection. Int J Legal Med. 2017 Sep;131(5):1211-1219.
  4. Biddinger A, Rocklin M, Coselli J, et al. Familial thoracic aortic dilatations and dissections: a case control study. J Vasc Surg. 1997;69:506-511.
  5. Coady MA, Davies RR, Roberts M, et al. Familial patterns of thoracic aortic aneurysms. Arch Surg. 1999;134:361-367.
  6. Chou AS, Ma WG, Mok SCM, et al. Do familial aortic dissections tend to occur at the same age? Ann Thorac Surg. 2017 Feb;103(2):546-550.
  7. Isselbacher EM, Cardenas CLL, Lindsay ME. Hereditary influence in thoracic aortic aneurysm and dissection. 2016. Circulation 133(24):2516-2528.
  8. Isselbacher EM, Preventza O, Hamilton Black 3rd J, et al. 2022 ACC/AHA Guideline for the diagnosis and management of aortic disease: A report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation. 2022 Nov 2. Online ahead of print.
  9. Krywanczyk A, Rodriguez ER, Tan CD, Gilson T. Thoracic aortic aneurysm and dissection: Review and recommendations for evaluation. Am J Forensic Med Pathol. 2023 Mar 6.

-Alison Krywanczyk, MD, FASCP, is currently a Deputy Medical Examiner at the Cuyahoga County Medical Examiner’s Office.

Thyroid Tales (First Edition)

I’ve found that our cytologists have a love-hate relationship with thyroids. Pathologists do too. Or it could be that we see so many goiters (50%) and follicular lesions or atypia of undetermined significance (35%) that the rare papillary thyroid carcinoma is a gem in our eyes. Minimally-invasive thyroid FNAs are instrumental in the management of thyroid nodules. It’s important to note that due to lack of architecture and assessment of capsular invasion, cytologic diagnoses may be limited, and prior to referring the patient for a potentially unnecessary surgery, various molecular tests can be utilized. The ongoing evolution of molecular testing on thyroid FNAs help classify indeterminate and suspicious cytology diagnoses (Bethesda Categories III and IV), examining the risk of malignancy or detecting the presence of genetic alterations, which help guide surgical intervention versus surveillance. This post (the first edition) features a series of our classic Bethesda Category VI specimens, which bypassed the need for risk classification and defaulted in surgical intervention based on guidelines at the time of diagnosis. It is worth mentioning that many of these cases occurred prior to the implementation of the Thyroid Imaging Reporting and Data System (TI-RADS), so to preserve the accuracy of patient history, a TI-RADS score will not be assumed.

Case 1

Okay, I know I said Bethesda VI, but let’s kick this series off with a Bethesda Category IV case. Thankfully, the patient decided to undergo a partial thyroidectomy, yielding a beautiful tissue follow-up. A 59-year-old male with newly diagnosed melanoma of the neck underwent imaging for staging purposes. A left thyroid nodule was identified measuring 3.0 centimeters. The patient presented for an ultrasound-guided fine needle aspiration.

Images 1-3: Thyroid, Left Lobe, FNA 1: DQ-stained smear; 2: Pap-stained smear; 3. H&E Cell Block section (400X).

Abundant oncocytic Hürthle cells, some with mild atypia, were identified, suggestive of Hürthle cell neoplasm (Images 1-3). With a lack of lymphocytes, we did not feel comfortable suggesting Hashimoto’s (lymphocytic) thyroiditis. Immunostains performed on cell block sections show the tumor cells are positive for TTF-1, focally positive for thyroglobulin and AE1/AE3 (rare), and negative for calcitonin. The morphology and immunohistochemical profile support the above diagnosis.

The patient underwent a left lobectomy and isthmusectomy. Pathology showed a 3.2 cm Hürthle cell carcinoma (Images 4-5) in the left lobe of the thyroid (encapsulated with a foci of capsular invasion without vascular invasion) as well as a 0.3 cm micropapillary carcinoma. Since Hürthle cell carcinoma does not typically concentrate radioiodine, the patient would not be responsive to treatment with radioactive iodine. Therefore, there would be less benefit derived from treating the smaller right lobed nodules (which don’t meet biopsy criteria) from remnant ablation. The patient had a clinically limited stage thyroid cancer. The patient is monitored with neck ultrasounds rather than serum thyroglobulin testing (due to the remaining right lobe).

Images 4-5: Thyroid, Left Lobe with Isthmus, Excision: H&E section (600X).

Cytology diagnosis: Hürthle cell neoplasm.

Pathology diagnosis: Hürthle cell carcinoma.


Case 2

A 53-year-old female with no prior history presented with fatigue and a self-palpated right thyroid nodule and normal thyroid function tests. She reported an extensive family history of hypothyroidism. On thyroid ultrasound, the right upper pole thyroid nodule measured 2.0 x 2.0 x 1.8 cm and was mostly solid and hypoechoic with microcalcifications. Pre-intervention serum calcitonin measured 1634 pg/mL. The patient underwent an FNA of the thyroid nodule and the smears are depicted below.

Images 6-7: Thyroid, Right Lobe, Upper Pole, FNA: 6: DQ-stained smear; 7: Pap-stained smear.

Cells appear plasmacytoid and appear both isolated and in clusters (Image 6). The nuclei are eccentrically placed, and the chromatin has a salt and pepper appearance akin to a neuroendocrine tumor (Image 7-8). Also identified were pink granules and intranuclear pseudoinclusions (Images 6-7). We performed immunohistochemical stains on paraffin sections of the cell block. Tumor cells show positive staining for calcitonin, chromogranin, mCEA, and TTF-1, while negative staining for thyroglobulin and CD45.

Following the diagnosis, the patient had a CT scan for staging purposes. Multiple lymph nodes in the right cervical chain were identified. the patient at a clinical stage IVA diagnosis. In the interim, the patient had a total thyroidectomy which revealed medullary thyroid carcinoma of the right lobe measuring 2.2 cm, a micropapillary carcinoma of the left lobe measuring 0.1 cm (Image 8). Lymphovascular invasion was not identified, the inked surgical resection margins are free of carcinoma, and metastatic medullary carcinoma was identified in 6 of the 77 lymph nodes removed during the central compartment lymph node dissection, and bilateral cervical lymphadenectomies. The calcitonin level dropped to 23 pg/mL postoperatively.  Genetic testing was performed to assess for Multiple Endocrine Neoplasia Type 2 (MEN2), and although her result was indeterminate, a RET mutation was not identified.

Image 8: Thyroid, Excision: H&E section (600X).

Case 3

A 67-year-old male with no pertinent medical history presented to the endocrinology clinic after his primary care physician identified a large lump in the patient’s neck. A 7.0 cm hypoechoic right thyroid mass with macrocalcifications was noted on ultrasound imaging. The patient was referred to diagnostic imaging for a thyroid FNA. The smears and cell block section are depicted below. While the papillary formation of Image 9 is not evident on the pap-stained slide (Image 10), the nuclear grooves and pseudoinclusions along with irregular nuclear membranes and powdery chromatin are highlighted. A separate needle pass was collected for molecular testing, which revealed a BRAF V600E mutation in the tumor cells.

Images 9-11: Thyroid, Right Lobe, FNA 9: DQ-stained smear; 10: Pap-stained smear; 11. H&E Cell Block section (600X).

Two weeks after the FNA diagnosis, the patient was scheduled for a partial thyroidectomy of the right lobe. While 60% of the mass demonstrated well-differentiated papillary thyroid carcinoma (Image 12), 40% of the tumor contained poorly differentiated thyroid carcinoma with squamous features (Image 13). No sarcomatous components or giant tumor cells were identified. Carcinoma with squamous features invaded into the surrounding tissue, strap muscle, thymus, and right paratracheal lymph node. Interestingly, the right-sided levels 3 and 4 lymph nodes contained predominantly well-differentiated papillary thyroid carcinoma with rare foci of poorly differentiated thyroid carcinoma with squamous differentiation.

Images 12-13: Thyroid, Right Lobe, Excision: H&E section (600X).

Five months after the excision, the patient developed a left-sided pleural effusion. A diagnostic thoracentesis was performed and metastatic thyroid carcinoma was identified. Immunostains performed on the cell block slides with adequate controls show that the tumor cells are positive for PAX8, and negative for TTF-1, and thyroglobulin. The findings support the diagnosis. While patients with papillary thyroid carcinoma tend to have better disease-free survival rates, the poorly differentiated tumor was difficult to control and eventually resulted in widespread metastasis.

Cytology diagnosis: Papillary thyroid carcinoma.

Pathology diagnosis: Poorly differentiated thyroid carcinoma with squamous features in a background of well-differentiated papillary thyroid carcinoma.


Case 4

A 73-year-old female presented with a rapidly growing and painful thyroid mass that measured 8 cm on imaging. Originating from the right lobe, multiple needle passes targeted various areas of the mass via ultrasound-guidance. The smears and cell block section are presented below. Smears (Images 14-15) feature pleomorphic nuclei in a background of inflammation and necrosis. The cell block section (Image 16) demonstrates increased mitotic figures and neutrophils.

Images 14-16: Thyroid, Right Lobe, FNA: 14: DQ-stained smear; 15: Pap-stained smear; 16. H&E Cell Block section (600X).

We performed immunocytochemical stains on paraffin sections of the cell block. Tumor cells how positive staining for p53, focal staining for cyclin D1, and negative staining for AE1/AE3, thyroglobulin, and BCL-2. Rare tumor cells show staining for TTF-1. The proliferation index by Ki-67 immunostaining is approximately 70%.

While not a standard procedure for thyroid specimens, core biopsies (Image 17) were also obtained from this mass.

Molecular testing on the core biopsy sample identified a high mutation burden, with the tissue harboring both TP53-inactivating and TERT promoter mutations. Imaging demonstrated widespread metastasis, and this patient did not survive the extensiveness of her disease.

Cytology Diagnosis: Undifferentiated (anaplastic) thyroid carcinoma.

Pathology Diagnosis: High-grade carcinoma consistent with anaplastic carcinoma (interchangeable diagnoses).


That’s enough for our classic thyroid cases. Stay tuned for the second edition featuring thyroid FNAs with unsuspecting findings!

-Taryn Waraksa-Deutsch, MS, SCT(ASCP)CM, CT(IAC), has worked as a cytotechnologist at Fox Chase Cancer Center, in Philadelphia, Pennsylvania, since earning her master’s degree from Thomas Jefferson University in 2014. She is an ASCP board-certified Specialist in Cytotechnology with an additional certification by the International Academy of Cytology (IAC). She is also a 2020 ASCP 40 Under Forty Honoree.

The Importance of Patient Identification in Forensics

Body identification is one of the core responsibilities of a forensic pathologist yet is also probably the most common one to be overlooked. Most of the deceased people who come to our office are visually identifiable, and the identity may already have been confirmed if they were transported to the hospital. In some situations, though, the body may be disfigured by fire, decomposition, injury, or there may only be partial remains recovered. In incidents with multiple fatalities, we need to be sure the correct remains are returned to the correct family. Particularly when foul play is involved, there may be intentional attempts to conceal the decedent’s identity or disguise them as another person.

There are two different levels of identification: “positive” identification (the gold standard) and “presumptive” identification.

The three generally accepted forms of “positive” identification are DNA comparison, fingerprint comparison, and radiograph comparison. While television shows have DNA “matches” coming back in the time it takes for a commercial break, DNA identification can pose challenges. A pre-existing specimen from the decedent or close family members is needed for comparison, which means you need to already have some suspicion of who they are. If they’ve been previously arrested or charged with a felony (the laws vary slightly by state), their DNA may have been uploaded to the Combined DNA Index System (CODIS), and a match may potentially be obtained blindly by uploading the decedent’s sample. By comparison, one can collect fingerprints from a decedent and submit them to the Automated Fingerprint Identification System (AFIS) for relatively rapid identification. Many people have been fingerprinted in their lifetime, whether for relatively minor arrests, employment, or background checks. However, there are still limitations. The hands (or at least fingertips) need to be intact, with printable skin. For mummified remains, the tissue can be rehydrated by soaking in sodium carbonate or sodium hydroxide to obtain legible prints. “Degloved” remains, where the skin has sloughed from the hands due to decomposition, can be fingerprinted by inserting one’s gloved hand into the sloughed skin.

Radiographs, like DNA, are limited by the need to have a pre-existing sample from the decedent (meaning you need to know who they might be). Radiographs are invaluable when trying to identify someone with no usable fingerprints, or no fingerprints on file. A variety of locations can be used for comparison, including the dentition, frontal sinuses, vertebral processes, healed fractures, or orthopedic implants. Serial numbers on implanted devices can also be traced back to the decedent, although not all implantable devices have such markings.

“Presumptive” identifications are based on many other common sense factors including context, visual identification, tattoos, belongings, and clothing. Depending on the context of the case, a presumptive identification may suffice. For a decomposed body in a secure apartment occupied by a single, elderly person the neighbors haven’t seen in days, monogrammed dentures within the mouth may be sufficient. But in a fire with three charred female victims, aged 20-25, it’s much more important to confirm the identifications by a positive method. As I mentioned earlier any situation involving foul play may provide motivation for to conceal a victim’s identity, and so all homicide victims must be positively identified. It’s often taken for granted that the tag on our patient’s toe is accurate, but we need to approach our autopsies with the same level of diligence a laboratorian has when evaluating the label on a blood tube. Knowing who your patient is, and who your sample comes from, is the first critical step for any pathologist.

The mummified remains of a young adult were found in an abandoned house; while the fingertips were initially too dessicated to yield fingerprints, rehydration revealed excellent ridge details. Fingerprints were then uploaded to AFIS, and the decedent was identified within an hour.
For skeletal remains with intact teeth, dental radiographs of the remains can be used for identification; however, for edentulous patients, a different strategy must be used.

-Alison Krywanczyk, MD, FASCP, is currently a Deputy Medical Examiner at the Cuyahoga County Medical Examiner’s Office.

The Basics of Deaths by Fire: Answering Your Burning Questions

Emergency services were called to a fire in a small apartment building, in which the structure was completely engulfed. Most of the occupants had been evacuated – however, once the fire was extinguished, the charred remains of an adult woman were found in the debris.

At the autopsy of severely fire-damaged human remains, two key questions must be answered: 1) who is the decedent?, and 2) were they alive when the fire started?

Question #1 is particularly relevant in this case, as many people lived in the building. Presumptive identification based on the tenant list may seem reasonable at first, but this victim could represent a visitor, contractor, or subletter. When facial identification isn’t possible, radiographic identification can be done with dental x-rays or x-rays of other bones which may have unique features from healed trauma or degeneration. Additional methods of positive identification could include fingerprints (if still intact), or DNA comparison to first degree relatives.

Question #2 is of importance because fire can be used in an attempt to disguise the identity of a victim of violent crime and destroy evidence. Cutaneous evidence of trauma may be disguised by burns, so full body x-rays are taken of every fire-damaged body. X-rays can also reveal retained bullets, knife tips, or fractures unlikely to have been caused by the fire.

When deciding if a fire victim was alive when the fire started, we first examine the upper and lower airways for soot.  Most fire victims do not die from cutaneous burns, but from smoke inhalation – including carbon monoxide (CO) toxicity, which is often apparent by cherry red discoloration of the blood and viscera. Postmortem carboxyhemoglobin measurements in house fire victims are typically greater than 50%. There are exceptions to this rule, of course. Rarely, someone who was clearly alive when the fire began will have minimal or no soot in their airways and a negligible carbon monoxide concentration. This can happen in a “flash fire”, such as one ignited by gasoline or oxygen tanks, in which thermal injury to the upper airway may cause rapid occlusion by laryngospasm or edema. People with underlying heart or lung conditions will be more susceptible to the effects of carboxyhemoglobin, and may not survive long enough to obtain a level above 50%. Fires also produce other toxic products of combustion such as cyanide, and can lower ambient oxygen saturations to result in asphyxiation by lack of ambient oxygen (even without CO).

Forensic pathologists need to be aware of the artifacts that fires can create. Pugilistic posturing of fire victims (limb flexion) is due to heat-related contraction of muscle fibers. Epidural hematomas can result from boiling blood and bone marrow within the calvarium extravasating into the epidural space. The heat can induce fractures in exposed bone once the surrounding soft tissue is consumed or fully charred. Finally, the heat can split apart skin and soft tissue, resulting in sharp-force-like defects which occur parallel to the orientation of muscle fibers (rather than across them, which is more suspicious for penetrating trauma).

Of utmost importance in fire-related deaths, however, is scene investigation. The manner of death in fire fatalities is related to the origin of the fire. Most fire deaths are accidental, as the fire is unintentionally sparked by some electrical malfunction or unattended flame. However if the fire started intentionally, the manner of death can be homicide (if started by another) or suicide (started by the victim). It is therefore crucial to review the final fire investigation report before finalizing the autopsy report and death certificate. 

This image shows dark black soot lining the main and lobar bronchi; this indicates the victim was breathing during the fire.
Heat-related epidural hematomas have a brown, amorphous appearance rather than the bright red color of traumatic epidural hematomas.
The scalp has been consumed by fire, and the exposed bone is calcined and brittle with fractures of the outer table.

-Alison Krywanczyk, MD, FASCP, is currently a Deputy Medical Examiner at the Cuyahoga County Medical Examiner’s Office.

Determining Time of Death: Separating Science from Pseudoscience

One of the most common questions I’m asked by family members is “do you know when they died?” If death occurs in the hospital, or is witnessed, the time of death isn’t controversial. It’s common though in forensics that people may not be found for hours, days, weeks, or more. Forensics television shows usually depict an investigator measuring body temperature at the scene, and then confidently declaring they’ve been dead for 44 hours. Unfortunately, there aren’t any existing methods that actually give that level of precision – but there is a way we can systematically approach the question.

When determining time of death (TOD), it’s most important to keep in mind that it will be an estimate. The estimate starts with the “window of death” – the time between when the decedent was last known alive and when their body was found. The smaller this window, the greater accuracy is possible.

Once the window is known, one can assess postmortem changes of the body. Livor mortis is the gravity-dependent settling of blood within vessels, which can appear as soon as twenty minutes after death. Sparing of lividity will be present in areas of pressure, such as parts of the body pressed against the floor or with tight clothing. Livor is initially blanchable, but after 8 to 12 hours blood extravasates from vessels and it becomes “fixed”. Clearly though, this only allows one to differentiate between ‘less than’ or ‘greater than’ 8 to 12 hours.

Rigor mortis (stiffening of the body after death) occurs because of postmortem ATP depletion. Muscle fibers require a supply of ATP to both contract and relax – once ATP levels are sufficiently low, muscle will remain contracted until the fibers are broken down by decompositional changes. Generally speaking, rigor starts to develop within an hour of death, peaks from 12 to 24 hours, and dissipates by 36 hours. However, these are average intervals. The onset of rigor is hastened by vigorous physical activity, seizures, electrocution, or increased body temperature, which preemptively deplete ATP. Rigor is also harder to detect in people with low muscle mass (e.g. infants), and can’t be assessed in frozen bodies with those with extensive thermal damage.

Cooling of the body after death, known as algor mortis, is similarly prone to interfering elements. One can find many formulas for estimating the time of death based on the temperature of the body – unfortunately, none of them are particularly useful because of the assumptions that must be made. Change in temperature after death is affected by numerous variables, including body habitus, clothing, wind, actual body temperature at the time of death (not many people are constantly at 98.6℉), sepsis, terminal seizures, and many others. If the environment is warmer than the body, the temperature can even increase after death.

I’ll briefly mention vitreous potassium measurement, which is probably the most recently discovered (and debunked) “holy grail” of time of death. Similar to algor and rigor mortis, vitreous potassium does a reasonably decent job predicting time of death in a controlled experiment – but in this line of work, people don’t tend to die in controlled environments.

At the end of the day, time of death is best estimated by thorough scene investigation, correlated with the evidence the body provides. Newspapers or mail not retrieved from the mailbox, expiration dates on perishable groceries, last refills of prescriptions, and unreturned text messages or phone calls can all narrow down the window of death.

As stated earlier, the longer the interval between death and discovery of the body, the more difficult time of death determination becomes. In advanced decomposition, there is no rigor, livor, or algor remaining to assess (there may even be scant residual soft tissue). In one such situation, despite months of a potential “window of death”, dates on unopened bills and crossed-off calendar dates helped us place the time of death within one or two days. It’s not as flashy as multivariate equations for temperature or potassium levels, but it’s far more accurate and scientifically defensible.

Image 1. The quilting pattern of this decedent’s mattress is visible in the livor mortis on his back.
Image 2. This decedent’s right arm is defying gravity due to rigor – he was initially face down, and his arm musculature became temporarily fixed in this position. Rigor can be forcibly broken if needed, but will also break down as decomposition proceeds.

-Alison Krywanczyk, MD, FASCP, is currently a Deputy Medical Examiner at the Cuyahoga County Medical Examiner’s Office.

Microbiology Case Study: How to “Pin” a Diagnosis

Case History

A 7 year old female presented to the emergency department with left sided abdominal pain and a temperature of 103 degrees Fahrenheit. Labs drawn showed mild leukocytosis with a CT scan suggestive of acute appendicitis. The patient underwent uncomplicated appendectomy with no complication. Gross examination of the appendix revealed an unremarkable, non-perforated serosa and a fecalith within the lumen. Representative tissue sections submitted for microscopic analysis per grossing policy. The findings below led to the submission of the entire appendix to be evaluated.

Figure 1. Low power image of an appendix demonstrating mild acute inflammation, lymphoid hyperplasia and congestion.

Figure 2. High power image, Cross-section of an adult female E. vermicularis from the same specimen shown in Figure 1. Adherent to the appendiceal surface. Note the presence of the alae (blue arrow), and the presence of almond shaped eggs (red arrow).

Discussion

The nematode Enterobius vermicularis, widely known as the human pinworm, is one of the most common parasitic worm infections today in the United States, infecting approximately 40 million people. The patient population is often children who are infected via fecal-oral transmission, with autoinfection being common. Humans are the only known host of this nematode. Once E. vermicularis embryonated oocytes are ingested, the larvae hatch and inhabit the gastrointestinal system. At night, the larvae migrate down to the anus, lay their eggs, and the cycle recurs.

The clinical presentation can be asymptomatic or can present with perianal pruritus at night, which can be explained via the life cycle of the parasite as stated above. The method of choice for diagnosing E. Vermicularis is microscopic examination of the eggs via cellulose tape slide test. A piece of scotch tape collects the eggs near the perianal area of the patient, which is then used for analysis and identification of the eggs. Microscopically, E. Vermicularis can be identified by the spines or ‘alas’ on the surface with oval shaped, thick capsuled oocytes within, seen in figure 2. To improve the sensitivity of the scotch tape test, it is best to do this test in the early morning, when there is an increased chance of sampling the eggs.

Rarely, is this worm associated with any severe symptoms but patients can present with abdominal pain, suggesting intestinal obstruction, extra intestinal manifestations like vulvovaginitis, or appendicitis. The relationship between E. Vermicularis and appendicitis is up for debate as to whether there is a causative relationship or if it is an incidental finding seen within appendicitis. Regardless of the relationship, once a diagnosis of Enterobius vermicularis is made, treatment with an anthelmintic needs to be given to the patient, such as Albendazole or Pyrantel Pamoate. In addition, treatment for everyone in the household needs to be considered in confirmed cases of infection.

Routine surgical specimens, such as appendices, can perhaps be overlooked once acute inflammation is noted. It is important to be able to identify organisms, such as pinworms, on such specimens to get the patient the appropriate treatment.

References

  1. https://www.cdc.gov/dpdx/enterobiasis/index.html.
  2. https://www.sciencedirect.com/science/article/pii/S204908012030412X
  3. https://www.uptodate.com/contents/enterobiasis-pinworm-and-trichuriasis-whipworm?search=enterobius%20vermicularis&source=search_result&selectedTitle=1~32&usage_type=default&display_rank=1#H12

-Alexandra Medeiros, MD, is a first year anatomic and clinical pathology resident at Medical College of Georgia at Augusta University. Her academic interests include Forensic pathology, and surgical pathology.

-Hasan Samra, MD, is the Director of Clinical Microbiology at Augusta University and an Assistant Professor at the Medical College of Georgia.

Microbiology Case Study: A 26 Year Old Female with Diarrhea

Case Description

A 26 year old female with a past medical history of Hemoglobin SC disease (Hb SC) and iron deficiency anemia presented to the emergency department with lower abdominal pain and diarrhea for three days. She began having multiple episodes of watery diarrhea, followed by bloody diarrhea after eating at a restaurant. During this time, she also had fever, chills, body aches, and headache. The patient had been on a course of ceftriaxone and metronidazole started three weeks prior for sore throat, ear infection, and bacterial vaginosis. She completed her metronidazole course prior to the current illness. Abdominal computed tomography revealed splenomegaly and a mildly dilated, fluid-filled appendix without evidence of infectious or inflammatory abnormalities. Hemoglobin on admission was 11.1 mg/dL (Reference Range: 11.2- 15.7 mg/dL) and MCV 62.9 fL (Reference Range: 79.4- 94.8 fL), which is similar to her baseline.

Laboratory Identification

The patient underwent work up for community-acquired diarrhea. Stool cultures grew non-typhoidal Salmonella (Image 1). Blood cultures performed at the time of admission flagged positive with gram negative rods which were also identified as Salmonella species by MALDI-TOF. The organism was susceptible to ampicillin, ceftriaxone, ciprofloxacin, and trimethoprim/sulfamethoxazole. The patient continued on intravenous ceftriaxone and responded to therapy. She was discharged home on oral ciprofloxacin.

Image 1. Salmonella Microbiologic Diagnosis using Xylose Lysine Deoxycholate agar and Triple Sugar Iron slant. A) Non-typhoidal strains of Salmonella are lactose non-fermenting, hydrogen sulfide producing (black colonies) enteric Gram-negative rods on Xylose Lysine Deoxycholate agar (XLD agar). B) Non-typhoidal strains of Salmonella are Alkaline (pink) over Acid (yellow) with the production of copious amounts of hydrogen sulfide on Triple Sugar Iron agar (TSI).

Discussion

Hemoglobin SC disease (Hb SC) is the second most common hemoglobinopathy after Sickle Cell Disease (SCD, Hb SS) globally.1 Hb SC disease occurs when a patient inherits both hemoglobin S and hemoglobin C alleles. Hemoglobin S and C variants are caused by point mutations in the hemoglobin beta- chain, and both variants lead to reduced affinity to the alpha-chain. While hemoglobin C is an abnormal form of hemoglobin that does not cause sickling on its own, when co-inherited with hemoglobin S, the beta chains polymerize, causing red cell sickling when oxygen tension is lowered in the blood.2 Patients develop anemia due to reduced red cell lifespan (27-29 days for Hb SC vs. 15-17 days for Hb SS) and subsequent destruction of red blood cells.3

Complications arise from vascular occlusion and destruction of red blood cells, leading to gallstones, pulmonary infarction, priapism, and/or cerebral infarction. Other complications include avascular necrosis of the femoral head, bone marrow necrosis, renal papillary necrosis, retinopathies, splenomegaly, and recurrent pregnancy loss. Although Hb SC patients often exhibit similar symptomology to sickle cell disease, symptoms are typically milder and present later in childhood.2,3 In comparison to patients with Hb SS, Hb SC patients have milder anemia, less frequent sickle cells, and less severe hemolysis. While Hb SC patients have fewer sickling episodes compared to Hb SS patients, Hb SC patients have more severe retinopathy and splenomegaly. It is also important to note that the enlargement of the spleen is often caused by red blood cell sequestration and the optimal function of the spleen is significantly reduced (functional hyposplenia), which can lead to increased risk of infection from encapsulated bacteria.

Diagnosis of Hb SC disease is typically made by performing hemoglobin electrophoresis (Image 2). Hemoglobin electrophoresis separates the differing varieties of hemoglobin by size and electrical charge. Capillary electrophoresis separates hemoglobin variants based on the “zone” of detection where each variant hemoglobin appears based on a reference pattern. Normal hemoglobin (A, F, A2) is easily discriminated from variant hemoglobins (S, C, E, D), and quantification allows for detection of beta-thalassemia (increased A2 fraction). While useful as a screening tool, the hemoglobin variants identified in the “zones” are not specific. For example, Hb C and Hb Constant Spring share a zone, and Hb A2 shares a zone with Hb O- Arab. Variants detected by capillary electrophoresis are confirmed by a second method, and in this case Hb SC was confirmed by acid agarose gel (Sebia Hydrogel). When subjected to acid gel electrophoresis, Hb C and Hb S migrate in separate bands, while Hb A, A2, D, and E comigrate in the “A” band, and the “F” band may contain F in addition to the glycated fraction of normal adult Hb A. Patients with Hb SC disease will have variants detected in the S and C zones in capillary electrophoresis and lack signal in the A zone.4

Image 2. Laboratory Diagnosis of Hb SC disease includes hemoglobin electrophoresis and peripheral blood smear review. A) Hemoglobin capillary electrophoresis (pH 9.4) separates F, S, C, A2, A (Sebia, Capillarys 2 Flex Piercing). B) Acid agarose gel (pH 6.0-6.2) separates hemoglobins F, A, S, and C (Sebia, Hydragel Acid QC lane).  C) Peripheral blood smear morphology showing characteristic Hb SC forms including target cells, boat shaped cells (single arrow), red cell with crystals (double arrow), and hemighost cells (triple arrow).

Examination of the peripheral blood smear from a patient with Hb SC disease (Image 2C) reveals frequent target cells, boat-shaped cells (taco shaped), and only rarely contains classic sickle cells. Hemoglobin C crystals can be seen, both free floating and inside red cells, a feature of CC and SC disease but not seen in SS disease. Hemi-ghost cells and cells with irregular membrane contractions are also more frequent in Hb SC disease. In contrast, sickle cells are rarely observed in peripheral smears from Hb SC patients.

Salmonellaeare flagellated gram negative bacilli that are members of the Enterobacterales. Salmonellosis is typically foodborne in nature and presents as a self-limiting acute gastroenteritis.5,6 However, these organisms can invade beyond the gastrointestinal tract resulting in bacteremia.6 This case presents Salmonella as a cause of bacteremia in a patient with Hb SC disease following a bout of gastroenteritis. Although there is a well-known association between SCD and invasive infections with Salmonella, the incidence of Salmonella infection in patients with Hb SC disease has not been well studied. Patients with SCD, particularly those in Africa, are at risk for developing invasive disease caused by non-typhoidal Salmonella, including osteomyelitis, meningitis, and bacteremia. It has been hypothesized that disruptions in the gut microbiome and increased permeability of enterocytes makes SCD patients more prone to invasive Salmonella infections.6 Furthermore, the compromised function of the spleen in both patients with SCD and Hb SC disease increases the risk of disseminated infection by encapsulated bacteria and Gram negative rods. The spleen plays an important housekeeping role removing old or damaged erythrocytes, but also has an important immunological function housing memory B cells, producing antibodies and macrophages that phagocytize circulating bacteria, particulates or other debris and then present the antigens to other immunological cells in the spleen.7 Although sepsis caused by Salmonella is an occasional progression of gastroenteritis, this patient’s Hb SC disease likely increased the likelihood of bacteremia because of her functional asplenia.

References

  1. Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115(22):4331–6.
  2. Tim R. Randolph,24 – Hemoglobinopathies (structural defects in hemoglobin),Editor(s): Elaine M. Keohane, Catherine N. Otto, Jeanine M. Walenga,Rodak’s Hematology (Sixth Edition), Elsevier, 2020, Pages 394-423, ISBN 9780323530453, https://doi.org/10.1016/B978-0-323-53045-3.00033-7.
  3. (https://www.sciencedirect.com/science/article/pii/B9780323530453000337)
  4. Nathan, D. G., Orkin, S. H., & Oski, F. A. (2015). Sickle Cell Disease. In Nathan and Oski’s hematology and oncology of infancy and childhood (8th ed., pp. 675-714). Philadelphia, PA: Elsevier. Retrieved from https://www.clinicalkey.com/#!/content/book/3-s2.0-B9781455754144000206y.com/#!/content/book/3-s2.0-B9781455754144000206. Accessed 2022
  5. Bain, BJ. (2020) Haemoglobinopathy Diagnosis, Third Edition. Hoboken: John Wiley and Sons, Ltd
  6. Kurtz, J. R., Goggins, J. A., & McLachlan, J. B. (2017). Salmonella infection: Interplay between the bacteria and host immune system. Immunology letters190, 42–50. https://doi.org/10.1016/j.imlet.2017.07.006
  7. Lim, S.H., Methé, B.A., Knoll, B.M. et al. Invasive non-typhoidal Salmonella in sickle cell disease in Africa: is increased gut permeability the missing link?. J Transl Med 16, 239 (2018). https://doi.org/10.1186/s12967-018-1622-4
  8. Leone G, Pizzigallo E. Bacterial Infections Following Splenectomy for Malignant and Nonmalignant Hematologic Diseases. Mediterr J Hematol

-John Stack is a first year AP/CP resident at UT Southwestern Medical Center.

-Marisa Juntilla is an Assistant Professor in the Department of Pathology at UT Southwestern Medical Center. Dr. Juntilla is a board certified Clinical Pathologist and is certified in the subspecialty of Hematopathology.

-Dominick Cavuoti is a Professor in the Department of Pathology at UT Southwestern Medical Center. Dr. Cavuoti is a board certified AP/CP who is a practicing Clinical Microbiologist, Infectious Disease pathologist and Cytopathologist.

-Andrew Clark, PhD, D(ABMM) is an Assistant Professor at UT Southwestern Medical Center in the Department of Pathology, and Associate Director of the Clements University Hospital microbiology laboratory. He completed a CPEP-accredited postdoctoral fellowship in Medical and Public Health Microbiology at National Institutes of Health, and is interested in antimicrobial susceptibility and anaerobe pathophysiology.

-Clare McCormick-Baw, MD, PhD is an Assistant Professor of Clinical Microbiology at UT Southwestern in Dallas, Texas. She has a passion for teaching about laboratory medicine in general and the best uses of the microbiology lab in particular.

BOGO: Biopsy One, Get One Free

I’ve mentioned before how important it is to know clinical history before attending a biopsy, and I cannot stress this point enough. As the first line of screening, the intermediary between clinician and pathologist, the role of the cytologist is to prepare, assess, and convey. In a cancer center, we have three main populations: the patients with the unknown primary, the patients with the suspected primary, and the patients with the suspected metastasis. In the event of a suspected metastasis, we’ll review previous relevant pathology material if we have it onsite. Unless the clinician is requesting additional prognostic markers, the review process helps us eliminate the unnecessary repetition of immunostains (IHC) by confirming that the current material is morphologically consistent with the prior material. Sometimes we still perform old-school cytology without a plethora of ancillary studies. HA!

Most of the endobronchial ultrasound (EBUS) procedures performed at our institution are for lung cancer staging or differentiation between a lung cancer metastasis and an extra-pulmonary metastasis. Not that we don’t see the occasional sarcoid- or anthracosis-related process from time to time, but our most common indication is cancer. For an 88-year-old male patient with multiple lung nodules and both mediastinal and hilar lymphadenopathy, confirmation of metastasis was the main objective of the EBUS procedure. The patient’s pertinent medical history includes former tobacco use, squamous cell carcinoma of the lung (diagnosed percutaneously in 2022), clear cell renal cell carcinoma (s/p partial nephrectomy in 2020), prostate cancer (radiated in 2007), melanoma (excised in 2001), and cutaneous squamous cell and basal cell carcinoma (also previously excised in 2002 and 2008). With an extensive cancer history, the lung nodules and thoracic nodes could be any of them, although metastatic squamous cell carcinoma of the lung was clinically favored. My awesome cytologist colleague, Kelly, attended the EBUS procedure. The Rapid Onsite Evaluation (ROSE) was a clear-cut “adequate for diagnostic material,” and the attending pathologist added “tumor cells present.” The following morning, Kelly stopped by my desk to ask my opinion of the 12R (right hilar) lymph node she was screening. She said, “look at my dots. Do these look like the same cells to you? Or are they different? Because I feel like they’re different.” Before putting the slide on my scope, I asked, “so… like a combined adenosquamous? Or a small cell component?” She replied, “not small cell. Something… I don’t know, but they look different. The patient was recently diagnosed with lung cancer and has a history of renal cell.” I fixated on the H&E cell block slides (Images 1-3) before perusing the Diff-Quik and Papanicolaou-stained slides (Images 4-5). “Uhm… Why are there two different types of tumor cells here?! The cytoplasm here is so… vacuolated, but it’s not quite like lung adeno, and the other group… even the n/c (nuclear-to-cytoplasmic) ratio is different. What is this?” Kelly replied, “okay, so there are definitely two different types of tumor here.” I looked up, “It has to be. Absolutely, yes.”

Images 1-4. Lymph node, 12R, EBUS-guided FNA. 1-3: H&E cell block sections 1, 100x; 2, 400x; 3, 100x. 4: Diff-Quik stained smear.
Image 5. Lymph Node, 12R, EBUS-guided FNA. Pap-stained smear.

Kelly entered her diagnosis into our laboratory information system and brought the case over to the pathologist on cytology service for the day. She explained her thought process, and the pathologist also questioned if it was a combined process, such as a lung adenosquamous and maybe the original lung biopsy only sampled the squamous component. With the most recent clinical history of both lung squamous cell carcinoma and clear cell renal cell carcinoma, an IHC panel was appropriately selected. Later that afternoon, the pathologist exclaimed, “IT’S BOTH! IT’S SQUAMOUS AND RCC!” The clusters of squamous cell carcinoma did not stain for PAX8 (a renal cell carcinoma marker) (Image 6), and the same cluster stained positive for p40 (a squamous cell carcinoma marker) (Image 7). Within the same level of the cell block, the cluster of cells that appeared morphologically different than squamous cluster stained positive for PAX8 (Image 8) and negative for p40 (Image 9), confirming a renal cell carcinoma component. A small focus of p40-positive cells was present next to the p40-negative renal cell carcinoma (Image 9), further demonstrating mixed histology. This finding was shared with other pathologists, and the results were immediately called to the pulmonologist as this was a critical finding. Sometimes we encounter a partially involved node where the tumor cells are intermixed with lymphocytes, sometimes the lymph node yields more tumor than the primary site, and sometimes, albeit rarely, we encounter a lymph node infiltrated by two different carcinomas.

Images 6-9. Lymph Node, 12R, EBUS-guided FNA. Cell block section immunocytochemistry. Squamous cell carcinoma cluster – 6: PAX8-negative; 7: p40-positive. Renal cell carcinoma cluster – 8: PAX8-positive, 9: p40-negative (with small focus of p40-positive squamous cell carcinoma).

Due to the patient’s bulky disease and PD-L1 expression of 30%, the medical oncologists primary aim was to treat the squamous cell carcinoma first and follow up renal cell carcinoma therapy second. After the first few cycles of treatment, the lung nodules have decreased in size, but the thoracic nodes remain unchanged. Once the squamous cell carcinoma is controlled or demonstrates a more significant response, immunotherapy may be added to target both, with a tyrosine kinase inhibitor directed at renal cell carcinoma metastases in the event of progression.

-Taryn Waraksa-Deutsch, MS, SCT(ASCP)CM, CT(IAC), has worked as a cytotechnologist at Fox Chase Cancer Center, in Philadelphia, Pennsylvania, since earning her master’s degree from Thomas Jefferson University in 2014. She is an ASCP board-certified Specialist in Cytotechnology with an additional certification by the International Academy of Cytology (IAC). She is also a 2020 ASCP 40 Under Forty Honoree.