An Introduction to Laboratory Regulations – Part III (Accreditation)

So far we have reviewed the different federal regulatory agencies responsible for establishing laboratory testing guidelines, a brief overview of the different roles each department plays, as well as a discussion on testing complexity. In today’s post we’ll cover the optional accreditations available to labs, and how accreditation differs from certification.

In the simplest of terms, certification is a mandatory requirement, whereas accreditation is optional. Certification is required in order for laboratories to receive payments from Medicare or Medicaid. Laboratories must meet the minimum requirements set forth by CLIA to earn and maintain their certification status.

Accreditation is an extra additional step that laboratories can take to set themselves apart from neighboring labs by holding themselves to a higher standard. Accredited laboratories must still adhere to the minimum CLIA requirements, but there are additional rules and requirements to be satisfied depending upon the different accreditation agencies.

More rules and paperwork, why would anyone volunteer to take that on? Depending on the size, complexity, and client population that your lab serves, the benefits to obtaining accreditation can greatly outweigh the challenges of maintaining that accreditation status.

One of the requirements to maintaining your CLIA certification is routine inspections to confirm compliance with the rules. Accreditation agencies require inspections as well, but thankfully in most cases your CLIA inspection can be satisfied by your accrediting agency; meaning your lab will receive a single inspection to satisfy both groups. Results will vary for each lab, but generally speaking the accreditation inspections are perceived to be easier to get through than those conducted by the federal inspectors. For example, agencies like The CAP and COLA tend to be more focused on sharing of ideas and good laboratory practices, rather than coming in as the “lab police” and looking only for problems. The explanation of their regulatory requirements tends to be more user friendly and easier to interpret as well, rather than the formal CLIA laws which are legal documents and read as such.

Recognition by an accrediting agency confirms that the laboratory is qualified and competent to perform testing for which it has received the accreditation for. This stamp of approval can help patients and clients feel comfortable in choosing your laboratory for their testing needs. For laboratories that perform testing as part of clinical trial evaluations, this can help reduce the number of requested on-site audits by the client themselves, as the client may choose to rely on the third-party accreditation assessment due to their high standards. It may also help encourage new clients to choose you for their testing needs, as the accreditation confirms your commitment to higher quality standards.

Another possible benefit of having accreditation status is the impact on your laboratory staff. Continually striving to raise the bar on your standards and going above the bare minimum instills a sense of professionalism in your employees. By continually reviewing the regulations and preparing for or responding to inspections, staff are more likely to be committed to complying with your organization’s quality management system and standards of performance. Staff who are familiar with the requirements and the reasoning behind why a certain task is performed or documented, are more likely to comply with those policies and procedures.

There are currently 7 CLIA approved accreditation agencies: https://www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/Downloads/AOList.pdf. Some agencies are focused on a specific discipline, such as AABB for transfusion medicine, and others are more encompassing for all of the laboratory departments.  Organizations looking to become accredited should research each option in order to determine which ones would be best to meet their specific needs. It is also common for labs to maintain more than one accreditation at a time, for example AABB and CAP. As always, the regulatory agency with the most stringent rules would be the ones the lab is expected to adhere to. In cases of joint accreditation, multiple inspectors may be needed to complete the biennial inspection; however the agencies will try to coordinate efforts and work together so that the inspections occur simultaneously. Sticking with our AABB & CAP example, CAP will work with AABB to locate an AABB approved inspector for the transfusion medicine checklist, while the remainder of the CAP inspection will be carried out by CAP inspectors. The AABB inspector would then inspect the transfusion medicine department for compliance with both CAP and AABB requirements at the same time.

The accreditation process may be challenging, but once you have obtained that esteemed status, the opportunities for continual education and improvement of your laboratory will be endless.


-Kyle Nevins, MS, MLS(ASCP)CM is one of ASCP’s 2018 Top 5 in the 40 Under Forty recognition program. She has worked in the medical laboratory profession for over 18 years. In her current position, she transitions between performing laboratory audits across the entire Northwell Health System on Long Island, NY, consulting for at-risk laboratories outside of Northwell Health, bringing laboratories up to regulatory standards, and acting as supervisor and mentor in labs with management gaps.

Making Meetings Matter

Hello again everyone!

I’m writing to you now back in Manhattan after visiting sunny Phoenix, AZ for this year’s ASCP Annual Meeting. Last month I talked about downtime, pathology emergencies, and introduced you all to our insightful and dynamic colleague, Jalissa Hall. It was great working with her and one of the last things we talked about was getting to go to professional society meetings. We also talked about the upcoming meeting next year in Austin, TX! And that’s exactly what I’d like to talk about with you this time: why going to meetings like ASCP is not only educational, but an excellent way to network with your laboratorian peers from around the country.

Image 1a. My wife and I made it to the Phoenix Hyatt Regency on registration day! ASCP swag on, obviously.
Image 1b. Behind the Scenes – Hosting the ASCP 2019 Facebook Live broadcast with two fantastic colleagues, Dr. K. Mirza and Dr. A. Booth! Did you catch us? But more about social media later…

I couldn’t go to every single session—there’s just too many—but I did learn so much valuable, practical information at the educational sessions. Here are just a mere few insights from the long list of fantastic speakers I had the chance to visit!

I participated in an interactive session on the ASCP/CAP/ASH guidelines for lymphoma workup…

Figure 1. All the multidisciplinary expertise must go through rigorous adjustment and evaluation all the way throughout the process of seeking out and publishing proper guidelines. (Source: ASCP 2019 session 5007-19; Kroft, S., Sever, C., and Cheung, M.)

Drs. Kroft, Sever, and Cheung discussed updates from the WHO 2016 guidelines as well as relating any changes in concurrent literature to appropriate diagnostic accuracy with evidence-based guidelines. If it sounds familiar, it’s because I talked about these guidelines a few months ago! In my month clerkship at The Mayo Clinic in Rochester, MN I presented a therapy-related AML case in the setting of Li-Fraumeni disorder. In my discussion I stressed the utility and importance of having organized and algorithmic guidelines to diagnose patients accurately, effectively, and timely. This time, instead of just talking about the guidelines, I got to listen to some of the folks who actually put them together—and, according to them, it’s no easy task!

I learned about culturally appropriate leadership training…

Figure 2. The panelists each had something insightful and moving to contribute to this wonderful discussion on female empowerment in our profession, and ultimately how it relates to improving patient care! (Source: ASCP 2019 session 8012-19; Mulder, L., Upton, M., Vuhahula, E., Abedl AlThagafi, M., Papas, F., and Sanford, K.)

This year’s ASCP president, Dr. Melissa Upton moderated this fantastic panel and opened with an old proverb: “If you want to go fast, go alone. If you want to go far, go together.” This was definitely a theme for each of the mini-sessions’ discussions. ASCP’s own Lotte Mulder discussed her research on culturally applicable leadership training using her Leadership Institute Initiative. She talked about countries that are culturally different and developmentally different up and down the spectrum can all benefit from leadership development and opportunity. Next came Dr. Edda Vuhahula, an accomplished physician, educator, and advocate in Tanzania. She related her experiences of women in leadership roles, and challenges on the horizon as more women rise to these positions every day. Dr. Malak Abed AlThagafi talked about her “hats:” as an entrepreneur, a medical director, and a researcher in her whirlwind story of empowerment and accomplishment. Finally, medical laboratory scientist and former Philippine Army colonel, Filipinas Papas gave her personal perspectives on sexism, education, bias, and opportunity.

Celebrated my colleagues and my contributions to the 6th Choosing Wisely list of recommendations…

Figure 3. My totally biased favorite slide from Dr. Lee H. Hilbourne, chair of the ASCP Effective Test Utilization Steering Committee. It’s an honor to be included in this year’s list, alongside so many accomplished contributors.

The Choosing Wisely initiative, partnering with the American Board of Internal Medicine and many other specialty organizations, is one of my favorite programs at ASCP. To date, our lab medicine organization has the highest number of effective test utilization recommendations. ASCP seeks active contributions to our expanding lists of recommendations to eliminate wasteful, unnecessary testing and to improve patient outcomes. This talk was also a great opportunity to honor the ASCP 2019 Choosing Wisely Champions: Dr. Gary W. Procop from the Cleveland Clinic, Dr. Lucy Nam from the Inova Lab best practice team, and Dr. Alyssa Ziman from UCLA Health. Want to read the most updated list of recommendations ASCP made to the Choosing Wisely initiative?

Check it out here: https://www.ascp.org/content/docs/default-source/get-involved-pdfs/istp_choosingwisely/2019_ascp-30-things-list.pdf

I watched some cutting-edge exchanges about cellular therapy…

Image 2. Here I am with laboratorian S. Malakian and Dr. Gastineau with The Mayo Clinic after they discussed the future of complex cell therapies.

One really effective take-home message from this seminar was that, if we’re going to rely on cellular therapy in the future—especially as it relates to “individualized medicine”—then who do you think should be in charge? Who’s got the most experience and knowledge when it comes to cell storage, transfusion protocol, patient outcomes, and high reliability? Short answer: it’s us. Long answer: go back and check out a piece I wrote about high-stakes responsibility in and out of the lab!

Popped into fascinating hematologic cases at our neighboring SHEAHP2019 meeting…

Listen, I like hematopathology, I’ll be the first to tell you that. There were so many people giving presentations in this near standing-room-only meeting, that I recognized from papers, abstracts, and journals that I’ve read in the past year alone! There were so many interesting sessions at this meeting, I wish I could have seen more…

Image 3. Here’s Dr. J. Dalland from Mayo Clinic Pathology discussing a lymphoproliferative disorder with associated eosinophilia. These talks go deep into morphology and photypic patterns, so that Hemepath colleagues have a chance to assess their workup and protocols. It’s also great learning for avoiding pitfalls—this case shows architectural changes in lymph nodes which could cause someone to misdiagnose!

Learned how to create an impactful dialogue with patients directly…

What do you do as a pathologist when a patient wants to speak to you? Yes, you. Not a typo! This was the last talk I went to and it was a great way to close out this awesome conference.

Image 4. Me with (left to right) Dr. K. Sanford from VCU, Patient Champion Anthony Reed, Dr. M. Sitorius from the University of Nebraska, and M. Mitchell. All of these individuals had amazing things to say about bridging the gap between the bench and the bedside!

In their own ways these patient advocates demonstrated that if you want to represent our lab profession as one of accuracy, answers, and hope, we’ve got the skills and resources to do it! Dr. Sanford sees so many patients in her transfusion services and discusses their care plans regularly. Mr. Reed is an ASCP patient champion who, after being diagnosed with ESRD, became a learned lab ally. Dr. Sitorius is a family medicine physician at a pathology conference, talking about empathy and connection! Ms. Mitchell has done fantastic work with her pathology colleagues after beating cancer and fighting for patient education every day! These folks have taken our field of laboratory medicine to its outer edges, touching patients’ lives directly—and I left energized to take it further in the future.

And of course, I learned so much about the utilization of social media as a practical tool for education, advocacy, and outreach…

I can’t list every single session, lecture, keynote, presentation, or panel in this article. This was just a glimpse of what meetings like this have to offer. You will learn, obviously, but you’ll also gain access to new perspectives and meet people who reinvigorate your passion for your profession in ways you didn’t even consider. One of the most fulfilling experiences of this meeting was being on the ASCP Social Media Team! Posting to Instagram, Facebook, and Twitter with the hashtags #ASCP2019, #ASCPSoMeTeam, or the scavenger hunt #ASCPiSpy was a great way to bolster our enthusiastic network. This was my third ASCP Annual Meeting, and I met so many wonderful people I can’t wait for the next one! Here’s a few of my favorite snaps from the meeting:

Image 5. Here’s part of our amazing #SocialMediaTeam: (left to right) A. Odegard from Baptist Health, myself, Dr. S. Mukhopadhyay from the Cleveland Clinic, Dr. A. Booth from the University of Texas, and Dr. K. Mirza from Loyola Chicago!
Image 6. At my first ASCP meeting in California, Jeff Jacobs, ASCP’s Chief Science Officer, gave me some of the best advice for my own personal and professional growth, “Stay Humble” he told me. Nearly 5 years later, he added “Don’t Give Up” on goals, yourself, or anything in life. You can’t pick that up in a path review book. I feel lucky to know people like him.
Image 7. #SoMe FTW (Social Media for the win!) At this great talk, Dr. C. Arnold, Dr. L. Shirley, and Dr. D. Gray III, all from the Ohio State University discussed how to use social media to build a reputation and expand your impact as a pathologist, educator, and advocate!
Image 8: Conferences are a great time to run into old friends and colleagues whom you may have spent a month rotating with! If you read about my time at Danbury Hospital in Connecticut, Drs. O. Olayinka and G. Kuar were part of it and I’m glad to call them friends!
Image 9: Presented by the ASCP Resident and Pathologist Councils, this was a great networking session to discuss fellowships, employment, and how to plan for the first 100 days of working in laboratory medicine from PGY-1 and on! I certainly learned a lot!
Image 10: (left to right) Dr. K. Chaztopoulos from the Mayo Clinic, myself, and K.C. Booth, RN in front of his finalist poster in the scientific category! Another valuable professional connection and friend made through my experiences in laboratory medicine.
Image 11. When one of your mentors (Dr. K. Mirza) is signing copies of The Pathologist magazine that featured him on the cover, you get in line for one …obviously.
Image 12. Dr. M. Upton is an inspirational speaker and insightful individual both on stage and in person. She had words of encouragement for my upcoming residency interview season and made sure I felt I could rely on ASCP for whatever I needed professionally. Thank you, Dr. Upton!
Image 13. Some more colleagues from Mayo Clinic Pathology (left to right): Dr. A. Ravindran, Dr. D. Larson, Dr. J. Dalland, and myself. These folks were very busy with all the great hematology sessions at the SHEAHP2019 meeting.
Image 14: No ASCP Annual Meeting would be complete without the leadership, passion, and vision of our CEO Dr. Blair Holladay. He, his leadership team, and this organization have been integral in my path to pathology and I can’t wait to see what’s in store for the future!

Social media has become so valuable in our field. Not just for networking, but sharing cases, impressions, publications, and more! It’s so easy to rally behind a hashtag and support a cause in so many instances—why not in our profession? Get involved, be an active voice for your own practice as well as your colleagues.

If you want to learn more about the sessions you may have missed, download the ASCP2019 app from the Apple App Store or Google App Store!

Thanks for reading! See you on social media, because when we communicate and collaborate, we are #StrongerTogether! I’m on twitter at @CKanakis, until next time!

–Constantine E. Kanakis MSc, MLS (ASCP)CM graduated from Loyola University Chicago with a BS in Molecular Biology and Bioethics and then Rush University with an MS in Medical Laboratory Science. He is currently a medical student actively involved in public health and laboratory medicine, conducting clinicals at Bronx-Care Hospital Center in New York City.

An Introduction to Laboratory Regulations – Part II (Testing Complexity)

Last month we reviewed the different federal regulatory agencies responsible for establishing laboratory testing guidelines, and a brief overview of the different roles each department has. This month we’ll attempt to demystify testing complexity (waived, non-waived, PPM) and why testing classification matters. Still to come, we’ll review the optional accreditations available to labs, and how accreditation differs from certification.

For all in vitro diagnostic tests, the FDA is responsible for categorizing each test based on their perceived complexity during the pre-market approval process. From least to most complex, the categorizations are waived, moderate complexity, and high complexity. The reason this is important is because with each jump in test category, the CLIA rules associated with performing testing will change – as will the permit designation required to perform testing. This includes things such as QC requirements, validation testing, and personnel requirements to define who can perform testing in the first place.

Waived tests are considered easy to use, with little to no chance that the test result will provide wrong information or cause harm if it is done incorrectly. This includes over-the-counter tests such as home use urine pregnancy kits, where if the sample is applied incorrectly or in insufficient volume there will simply be no result obtained at all. Many Point of Care tests fall under this category, with testing performed in a wide variety of locations including physician offices, urgent care clinics, imaging centers and nursing homes. Locations performing waived testing only are still required to obtain an appropriate CLIA Certificate of Waiver. (See the reference links at the end for a list of all FDA approved CLIA-Waived tests.)

For waived testing, laboratories must follow the manufacturer’s instructions for testing, including the stated FDA approved intended use, without any deviation. If the procedure is modified, or the test is used with specimens not approved by the FDA – the complexity classification of the test will change from waived to high complexity. A common situation where this occurs is with fingerstick whole blood glucometers. Most device manufacturers on the market today for point of care glucose testing are not FDA approved for use with critically ill patients. Using these waived meters for patients deemed “critically ill” based on your local institution’s designation would change the complexity of testing from waived, to high, for this population of patients as it would be considered “off-label use” – meaning you are using it against FDA recommendations and approved forms of use for the test/instrument.

Another caveat to be mindful of is your local state regulations. Certain states (NY, especially) have very strict rules regarding testing complexity designation. In NY, all tests performed within the same designated laboratory space will have the same testing complexity designation. Meaning that if you have a moderate complexity CBC analyzer in the same room you perform your waived urine pregnancy tests – both are now considered moderate complexity. Even though you’re following the manufacturer’s instructions for the pregnancy kit, using only approved specimen types, and the kit is on the FDA approved CLIA-Waived list – that test is now moderate complexity just because it is in the same room as other higher complexity tests. That same pregnancy kit is considered waived when kept separate in the emergency department, but becomes moderate complexity (or higher) when used in the central laboratory.

Nonwaived tests refer to both moderate and high complexity testing. After the FDA has approved a marketing submission, their CLIA categorization of the test follows by utilizing a scorecard to grade the test complexity on 7 different criteria. All phases of testing (preanalytic, analytic and postanalytic) are evaluated in these steps:

  1. Knowledge – low scores require minimal scientific and technical knowledge to perform the test, and knowledge needed can be easily obtained through on-the-job instruction.
  2. Training & Experience – low scores require minimal training and limited experience to perform the test.
  3. Reagents & Materials Preparation – low scores have stable and reliable reagents, and require no special handling, precautions, or storage conditions. They typically come prepackaged, premeasured, and ready for use; whereas high scores may include manual steps such as volumetric measurements and/or reconstitution.
  4. Characteristics of Operational Steps – low scores have automatically executed steps (such as dispensing specific volumes of sample/reagent, temperature monitoring, or timing of steps); high scores require close monitoring or control, precise temperatures or timing, accurate pipetting or extensive calculations.
  5. Calibration, Quality Control, and Proficiency Testing Materials – low scores have all required reagents, controls and PT material commercially available and products are stable.
  6. Test System Troubleshooting & Equipment Maintenance – low scores have automatic troubleshooting or self-correction of errors (failed internal QC will automatically repeat), or requires minimal judgement. Equipment maintenance will be performed by the manufacturer or is minimal and easily performed, whereas high scores require decision-making and direct intervention to resolve most issues, or maintenance tasks require special skills and abilities.
  7. Interpretation & Judgement – low scores require minimal interpretation and judgement for resolution of problems or determination of test results.

Low scores indicate low complexity, with tests obtaining a total score of ≤12 being categorized as moderate complexity. Tests with final scores >12 are categorized as high complexity.

PPM: Within the category of nonwaived tests is a subcategory referred to as Provider Performed Microscopy (PPM). These are tests that are performed directly by a clinician during a patient visit, and require the use of a microscope limited to bright-field or phase-contrast microscopy. Based on the nature of the sample obtained, testing must be performed immediately at the time of collection as delays could compromise the accuracy of test results. As controls are typically not commercially available for these tests, the testing is restricted to clinicians only as knowledge and judgment is required to confirm testing accuracy and correlation to the clinical presentation.

Tests allowed under a PPM certificate are mostly related to OB/GYN procedures, with a full list available through CMS here:

https://www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/Downloads/ppmplist.pdf

So why does it matter?

So the next time you receive a request to add a new test at your laboratory, you’ll be armed with a fairly long list of the requirements that come with that test based on its complexity. Coming up next month we’ll discuss the difference between laboratory certification and accreditation, along with the benefits of obtaining accreditation for your lab.

References

  1. Electronic Code of Federal Regulations: https://www.ecfr.gov/cgi-bin/text-idx?SID=1248e3189da5e5f936e55315402bc38b&node=pt42.5.493&rgn=div5
  2. CLIA-Waived Analytes: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfClia/analyteswaived.cfm
  3. CLIA Complexity Database: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCLIA/Search.cfm?sAN=0
  4. FDA Approved Devices: https://www.accessdata.fda.gov/scripts/cdrh/devicesatfda/index.cfm


-Kyle Nevins, MS, MLS(ASCP)CM is one of ASCP’s 2018 Top 5 in the 40 Under Forty recognition program. She has worked in the medical laboratory profession for over 18 years. In her current position, she transitions between performing laboratory audits across the entire Northwell Health System on Long Island, NY, consulting for at-risk laboratories outside of Northwell Health, bringing laboratories up to regulatory standards, and acting as supervisor and mentor in labs with management gaps.

The Disaster Risk Assessment

There are multiple types of risk assessments required when managing a laboratory safety program. OSHA’s Bloodborne and Airborne pathogens standards require assessing the risk of employees’ exposure to particular lab hazards. Risk assessments can be used to determine whether or not to add an emergency eyewash station, and all lab chemicals need to be assessed for the hazards they pose. These are just some assessments that are needed, and there are particular steps to take when performing them. But what about the lab emergency management plan? Should the lab perform a risk assessment for that? The answer is yes, although the terminology used may be different. To prepare a disaster readiness plan for the lab, the risk assessment that is needed is known as a Hazard Vulnerability Analysis (HVA).

The Centers for Medicare & Medicaid Services (CMS) requires that all healthcare facilities use an “all-hazards” approach when considering emergency preparedness and planning. While some laboratories may be included with the facility-wide disaster plan, the lab should absolutely have its own plan with specific instructions that apply directly to the department. That means the lab should also consider an all-hazards approach.

It may seem daunting to try to consider every possible disaster that could occur in the department, but that is not exactly what the directive from CMS dictates. An all-hazards approach means that emergency plans should be scalable or flexible so that it can be used for many types of disasters. The plan should focus on the lab’s ability to continue to offer services, especially those deemed critical, as a disaster situation unfolds.

The first step to the plan creation is the risk assessment- the Hazard Vulnerability Analysis. The HVA can be a table that lists all of the potential types of disaster; natural, man-made, facility-specific, etc. List as many as you can think of, and be sure to include specific disasters that may be particular to your locale (earthquakes, blizzards, etc.). Rate each disaster type by probability, severity of impact, and level of readiness of the lab to respond. Using that data, you can calculate the risk percentage for each emergency type.

One other requirement imposed by CMS is that facilities must include emerging infectious diseases as one potential type of hazard class. With the advent of particular diseases in the past years like Ebola, Zika, and certain influenza types, it is important to consider how an outbreak would affect lab operations and staffing. The risk level of infectious diseases may vary as incidents and outbreaks occur in particular geographic regions or if pandemics arise.

The HVA should be reviewed and updated as necessary each year. Things change that can affect what is on your HVA list. The addition of a nearby airport might make you consider adding airline disaster to the HVA. A change in weather patterns could occur as well. In 2011 a surprise earthquake in Virginia made state facilities re-look at their HVA list of possible emergency situations. Also, the actual list of disasters might not change, but there may be a change in the potential of a particular incident occurring.

If your lab or facility has not yet performed the HVA risk assessment, there is no need to panic. There are several model HVA tools available on line that can be used. As with any risk assessment, be sure to keep documentation readily available, review it each year, and make sure staff are trained about not only the HVA process, but in how to use the emergency management plan as well. There is a great amount of work that can go into preparing for a disaster, and training and drills for your staff will help to facilitate a smoother activation of the plan when the real emergency situation occurs.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.

Tips for Performing Internal Lab Audits

In previous blog posts we discussed some hints and tips for how to survive when your lab is being inspected. Today we get to flip things around and let you be the inspector. Whether it’s an internal audit of your own laboratory, or an external inspection of a peer laboratory, we’ll discuss some ways to help keep you on track to cover the most important aspects of the overall testing process in a limited amount of time.

For external audit preparation, the CAP has a wonderful training program that all volunteer inspectors are required to take prior to participating in an inspection. For labs that are not CAP accredited, they still have helpful information on their website that is free and open to all: https://www.cap.org/laboratory-improvement/accreditation/inspector-training. CLSI document QMS15-A (Assessments: Laboratory Internal Audit Program; Approved Guideline) is another great resource to use when planning your audit.

The primary role of an auditor is to review policies, processes, and procedures to identify any inconsistencies (does your SOP match the manufacturer recommendations, and is staff following the SOP as written). Audits should focus on collecting objective evidence and facts, rather than subjective opinions. For example, staff failing to document required weekly maintenance tasks, as opposed to an auditor simply not liking the particular form the tasks are being documented on.

Define the Objective of the Audit

Laboratory leadership should be involved in the planning process to help define the scope and expected goal of performing the audit. This can range from an overall assessment of general laboratory quality and safety, to a more directed and focused audit on either a single department, instrument/test, or test process (specimen collection, physician notification of critical values, etc). The format for the audit findings should also be discussed – will the site require a formal, written report outlining all observations detected, or will a simple informal summation discussion be sufficient?

Draft a Schedule for the Audit

Once the scope of the audit is defined, a tentative schedule should be created so all staff involved in the audit process are aware and available to participate. If the audit will encompass multiple departments and all phases of testing (pre-analytic, analytic, post-analytic), it may be necessary to split the audit up over multiple days, or to recruit multiple auditors. The frequency of audits will depend on the perceived risk to quality based on previous findings or complaints received, but at a minimum should be completed annually.

Prepare for the Audit

Reach out to the local management team of the site being audited for help in gathering the information you’ll need to prepare. This can include things such as a testing activity menu, list of new instrumentation or new test validation studies, employee roster if personnel and competency records will be reviewed, and copies of previous audit/inspection results to check for corrective action implementation and sustainability. Review the information provided, and use it as a guide for where you feel your efforts should be focused on based on highest risk.

Utilize a Patient Tracer

Ask the site to pull all related records and reports for a particular patient sample by choosing a date, and specifying any particular characteristics for the specimen that you want to follow (such as age of the patient, sex, or focusing on abnormal/critical results). By asking the sites to prepare a patient tracer ahead of time, this will reduce the amount of time spent waiting and digging for specific files or log sheets as they are already organized and ready when you walk in for the audit. Tracers should adhere to the defined scope/objective of the audit, and will help you follow the path of a specimen through the entire process from pre-analytical, analytical, and finally post-analytical phases.

Pre-analytical: Include any specimen collection instructions or a printout/photocopy from the test directory for each test requested. This information should be compared to the information within the applicable SOPs to ensure they match and are both current and accurate. Physician orders can be included to confirm that the correct test was ordered and performed based on what was requested by the clinician.

Analytical: Copies of the related SOPs for the test being reviewed should be included. Ensure the SOPs have all required elements, including a current, valid signature of approval from the medical director. Instrument QC and maintenance logs for the day of testing, calibration records, and patient correlation studies should also be reviewed, along with the reagent lot-lot validation performed. When available, copies of the actual instrument printouts should be included to check for accuracy in result transcription. Training and competency records for the staff who performed any handling or testing of the specimens in question may also be reviewed.

Post-analytical: Check for supervisory review of patient log sheets and QC records, along with appropriate corrective actions documented as applicable. Review the patient results in the same format that is seen by the physician: confirm reference ranges and units of measure are accurate, interpretive notes are valid and appropriate, test methodology is stated when applicable, abnormal values are flagged, and confirm result transcription accuracy from the original instrument printout. Proficiency testing results should be reviewed for any unsuccessful events to confirm sustainability of corrective actions.

Conduct the Audit

Perform an objective review of the documents provided, along with any affiliated records and logs based on the scope of the audit (temperature logs, reagent inventory records, decontamination records, etc). As with an official inspection, be transparent with the staff as issues are identified so they can have an opportunity to clarify any confusion, or locate additional records that may be missing or incomplete. Document any discrepancies or possible issues noted, as well as any good lab practices observed that should be celebrated. When logging your findings, be specific and provide as much details as possible so the staff can quickly identify what was found and make the needed corrections (SOP numbers, dates, instrument serial numbers, etc).

In addition to reviewing documentation, perform a direct observation of the staff doing specific tasks. Are they following the steps outlined in their procedures, or are deviations noted? Rather than a formal interview, ask the staff to explain what they are doing, or why they are performing certain steps in a particular order. Again, the audit is not meant to be punitive or to ‘catch someone in the act’, but rather to help identify areas for improvement or clarification so that testing processes can be improved and standardized among all staff members. Asking open ended questions will provide more information than directed ones. For example, “Show me how you would access testing instructions if your computer network was down” as opposed to “Where are the paper versions of your SOPs?”

Prepare an Audit Report

The audit findings should be summarized for the site based on the format agreed upon during the initial planning stage (written report, verbal discussion). Whenever possible, similar findings should be grouped together so the location can identify systemic problems that need to be addressed on a more global level (expired reagents found in multiple departments, staff failing to utilize appropriate PPE in multiple departments, etc). Depending on the number and severity of the issues identified, sites may prefer to have the observations grouped by department as well for easy assignment of follow-up action items to the department leaders. Issues should also be ranked by risk severity so that the site knows where to focus their improvement efforts first: 1) Patient care and employee safety issues; 2) Regulatory compliance gaps; 3) Recommendations for improved overall good laboratory practice.

Implement Corrective Actions

Any issues identified during the audit should be assigned to a specific person for follow-up, along with an anticipated date of completion. Perform a proper root cause analysis to identify why the issue happened, and then decide how to correct it and prevent it from happening again. Depending on the scope of the audit, the audit team members may be involved with these tasks, or this may fall to the sole responsibility of the management team being inspected.

Evaluate the Effectiveness of the Audit

The utility of the audits will depend greatly on the commitment of laboratory leadership to both implement, and sustain, effective corrective actions based on the quality gaps identified. This can be assessed by the overall level of compliance with the regulations being checked, and comparing the results of this audit to previous and subsequent ones to hopefully show a downward trend in potential citations detected. The audit team should obtain feedback on the audit process to assess the inspected lab’s overall satisfaction with the program, the amount of support offered to the inspected laboratory, effectiveness of communication between the teams, and any potential areas for improvement in the process.

Performing internal audits is a great way to meet regulatory, accreditation, and customer requirements. It allows you an opportunity to identify non-conformances and risks that can affect both quality, and patient/employee safety. By performing regularly scheduled internal audits, not only will staff members become more experienced and better prepared for the official external inspections from regulatory and accrediting agencies, but the laboratory will move from a culture of reactive, corrective actions to that of a proactive model of continual improvements.


-Kyle Nevins, MS, MLS(ASCP)CM is one of ASCP’s 2018 Top 5 in the 40 Under Forty recognition program. She has worked in the medical laboratory profession for over 18 years. In her current position, she transitions between performing laboratory audits across the entire Northwell Health System on Long Island, NY, consulting for at-risk laboratories outside of Northwell Health, bringing laboratories up to regulatory standards, and acting as supervisor and mentor in labs with management gaps.

Proficiency Testing (PT) Part 3: Quality Indicators

Last month we discussed the rules associated with evaluating your PT results, and how to investigate any unsuccessful surveys. In the last of this 3-part series we’ll review ways to utilize your PT reports to check for trending in your patient values – shifts, trends and bias. Your PT results can help show you developing problems and allow you to correct them, before they become failures or begin to affect patient care. Before declaring a failure as a ‘random error’, be sure that it truly is.

Accuracy & Systematic Errors

Accuracy describes how close your measured value is to the reference value – did you obtain the correct result? This will be affected by systematic errors, such as using expired or degraded reagents, changes in lot numbers or calibration values, or instruments with analytical lamps or lasers near the end of their use life. Systematic errors are reproducible inaccuracies that occur in the same direction; all results will be falsely low or all results will be falsely high. If systematic errors are present, all results will show similar deviations from the true value. Bias is a measure of how far off your results are from their true intended value.

Precision and Random Errors

Precision on the other hand refers to the overall agreement of results upon replicate testing – will you get the same value if you repeat the test? Precision is affected by random errors, such as incomplete aspiration of a sample or reagent due to fibrin clots or air bubbles, operator variability in pipetting technique, or temperature fluctuations. Random errors are statistical fluctuations in the measured data due to the limitations of the assay in use. These errors will occur in either direction from the mean, unlike systematic errors that will be on the same side. Imprecision can be measured and monitored by evaluating the standard deviation (SD) and coefficient of variance (CV) for an assay.

https://blog.forecast.it/the-difference-between-accuracy-and-precision

Let’s look at some example PT results from CAP, and see what hints these reports reveal to us.

  • Albumin: Although all results passed and were graded as ‘acceptable’, there are still issues that should be looked into. For the last 3 surveys in a row, the plot shows that nearly all samples have been on the same right side of the mean. When comparing the value of the % relative distance from the first survey to the most recent one, you can see that the values are trending worse and getting closer to being unacceptable if the pattern continues. Additionally, be mindful of the standard deviation index (SDI) value reported. This is a measure of your bias, and how far off your values are from the mean. It should be defined within your Quality System Manual (QSM) the values which should trigger an investigation, but as a general rule, anything >±2.0 indicates a potential issue. (https://unityweb.qcnet.com/Documentation/Help/UnityWeb/399.htm)
  • Alkaline Phosphatase: Again all results passed, but 3/5 samples have SDI values >±2.0. The first survey had all values to the right of the mean, the second survey was a nice tight even mix of +/- bias, and now with the most recent survey all values are appearing to the left of the mean. If this shift coincides with a change in lot number, a calibration may be necessary to get results back on target to help lower the SDI values.
  • GGT: Although only 1 sample was graded as unacceptable, all of the results for this recent survey were at risk of being failures due to how close they were to the upper limit of acceptability. Results like this should be very carefully evaluated to ensure that there is no impact on patient care. Provided the sample stability has not been exceeded, all 5 samples should be repeated. If the repeat values are closer to the target mean, you will need to identify what went wrong on the day the samples were originally tested. If the repeat values are still grossly far from their intended target, a full patient lookback would need to be performed from the time the samples were originally tested until the day they were repeated, as there is a systemic problem that has now continued for weeks or longer.  
  • Vancomycin: Similar to the albumin example above, these results show a trend occurring between the first survey and the most recent; however unlike albumin these are moving in the correct direction. Values are getting closer to the target mean, and SDI values are decreasing, suggesting that any corrective actions implemented after the last survey were successful.
  • Lithium: This shows a good example of what you hope all of your quantitative proficiency results will look like. There is a nice distribution of results on both sides of the mean, and SDI values are all relatively low. Values such as these allow you to have complete confidence in the accuracy of your patient results.
  • MCH: Focus on sample #2, with an SDI of -1.9. The other samples within this survey all appear fine, but it looks as though there was truly a random error with sample #2. When we look at the affiliated analytes we see a similar issue with the RBC count of sample #2, which coincides with our decreased MCH (a reminder for our non-hematology readers, MCH = (Hgb x 10)/RBC). For any calculated values, be sure to evaluate the all parameters together as well as individually to serve as a common sense check that your results are appropriate and truly make sense.

It is important to have a robust quality assurance program that outlines what to monitor, key decision points for when to take action, and guidance on what those actions should include. Your proficiency testing results can provide you with a ton of useful information to evaluate the overall quality of laboratory, and help provide confidence in the patient values being reported out as well.

-Kyle Nevins, MS, MLS(ASCP)CM is one of ASCP’s 2018 Top 5 in the 40 Under Forty recognition program. She has worked in the medical laboratory profession for over 18 years. In her current position, she transitions between performing laboratory audits across the entire Northwell Health System on Long Island, NY, consulting for at-risk laboratories outside of Northwell Health, bringing laboratories up to regulatory standards, and acting as supervisor and mentor in labs with management gaps.

Working with Generation Z: How Other Generations Can Adapt

This generation is very new to the workforce. In fact, the majority has not had a job yet as they are all eighteen and younger at the time of this writing. However, it is important to know how to adapt to this generation as they are starting to enter the workforce and many people communicate with this generation daily on a personal level.

This generation experiences a tremendous amount of uncertainty in their early lives. From the economic downturn in the late 2000s and school and concert shootings, this generation cares about security. This security is important on both a physical but also on a professional level; they want to make sure that they have professional stability. They care about making a difference, but not to the extent of Generation Y, the Millennial Generation.

There is some concern about this generation’s ability to connect with people on a long-term social level, mainly due to technological and social media advances. However, they do have a preference for face-to-face communication, so even if they do not come with that skill to the workplace, they can learn and adapt to it. Additionally, they are competitive and good multitaskers. They also have an entrepreneurial and independent spirit; they want to be in charge of their own projects and start their own companies. They are also looking into different ways to get their education that do not involve higher education and student debt. They are an imaginative generation with an intellectual curiosity.

Generation Z is the most diverse and open-minded generation, which means that they bring a plethora of ideas, background, concepts, and experiences. Leaders can utilize their diverse base to foster diversity of thought, practice, and skills at organizations. Including this generation as interns and entry-level workers is a good start to begin the process of mentoring this generation while learning from everything they bring to the organizational table.

lotte-small

-Lotte Mulder earned her Master’s of Education from the Harvard Graduate School of Education in 2013, where she focused on Leadership and Group Development. She’s currently working toward a PhD in Organizational Leadership. At ASCP, Lotte designs and facilitates the ASCP Leadership Institute, an online leadership certificate program. She has also built ASCP’s first patient ambassador program, called Patient Champions, which leverages patient stories as they relate to the value of the lab.