Making Lemonade from Lemons: Our Laboratory Lives after COVID-19

Laboratorians struggled through 2020 but successfully navigated a difficult situation while maintaining and improving our high-quality service to our patients. By laboratorian, I mean all of us—medical, public health, research, industry, etc.—because, across all sectors, anyone working in a laboratory (our family) was pushed to the limits to do more with less, work harder with fewer people, provide results with challenging procedure standard, and save lives while risking our own. It is quite easy to go into a clinical laboratory that is providing COVID-19 testing and find heroes that were there before, excelled during this pandemic, and will be there tomorrow. But there were heroes in every laboratory. Our public health laboratorians spent tireless hours trying to provide testing, coordinate testing, disseminate information, and relay the best current epidemiology to leadership to keep the country running. Our research laboratorians developed and delivered data, new information, novel biology, and potential interventions for the novel coronavirus. Our industry laboratorians were crucial components to vaccine development and delivery. And, unlike most of the country, our laboratorians were not able to “work from home” because, well, there are laws against having certain things in your house that might escape and kill your neighbors. It is good to be essential, but it has it pain points. Our laboratorians have felt that pain by still commuting to their benches to get the work done every day. But they did it and did it well! And what is often forgotten is that every single one of these laboratorians already had a “day job” in delivering a full catalog of laboratory-based services to which they added a successful COVID-19 response. If you see a laboratorian after you read this blog, you should want to hug them and say thank you.

Vaccination is spreading and will overtake and conquer this virus in parallel with our continued social distancing, hand washing, and mask wearing. In the background, testing will continue and will drive how our leaders make decisions more than anything else. We can see an end to this bedlam and are now facing, perhaps, one of the most difficult questions we have ever faced as a global laboratory community: “What do we do now?”

Our pathologists, long awaiting the day when digital telepathology was the norm, were thrust headfirst into that practice during the pandemic under emergency conditions. Many of them had already started (sometimes in a big way) but others were pushing glass routinely. Many of us have leapfrogged to a place from which we cannot return. We need to evaluate the virtual practice of the past year to determine the error rates and see if it is comparable (or better) than our routine glass slide practice. Is eBay or LetGo going to be overwhelmed with microscopes while high resolution monitors go into backorder? We must still contend with the requirement of “presence” and the moniker of “CLIA”, which was temporarily separated from a pathologist’s role in care during the pandemic. These new digital practices may address our long-standing workforce shortages. Working from home was not a possibility but a requirement for much of the last year. Care continued and work was done. What evidence would argue that working in an office is “better” than working from home when we consider the practice of pathologists? The financial implications of cost per square foot of overhead when taking up space in an academic medical facility is more than sufficient for a CFO to argue that pathologists working from home is great. But this is assuming that the workstation, the workflow, and the outputs were optimized. Not all pathology laboratories went fully digital and there was a great deal of slide shipping/couriering. On the other side of this pandemic, much like the 6 to 10 different platforms found in a clinical lab to perform a COVID-19 test, we will find that many practices are not sustainable, can be replaced and optimized, and will require more upheaval and pivot from our pathologists. To clarify, before COVID-19, pathologists practiced basically the same anywhere in the world; namely, review of glass slides in slide folders with a connected case file. During COVID-19, a whole new set of options emerged for how we would do that routine work that were uncontrolled and ad hoc. Now on the other side, we must separate the practices that are best for patient care from those that got the work done in a crisis to find our way forward. If the optimal model is (and I am not saying that it is) digital telepathology from anywhere, we must work hard to define “anywhere” for the sake of our patient’s care and safety. Monitor or other devices standards, which have long been the bane of the telepathology community, are still not standards. CLIA is specific about what constitutes a laboratory and its four walls. Accreditation teams do not inspect people’s home offices. On the other side of this pandemic, how do we find a common, best practice in a virtual age? We must return to a state of highest possible quality for our patients without giving up the advances we made in this crisis.

I once wrote up a laboratory revision plan for a firm that had 9 hospitals. Each had its own pathology laboratory employing 1 to 3 pathologist and similar staff for grossing, histology, and admin. Each laboratory had a volume of less than 3000 samples per year (and referred complex cases to a tertiary care center out of network). Based on our revision, in formalin concentration and recycling alone, the system would save $100,000. With a centralized laboratory (easily capable of handling 30,000 samples per year) and a digital pathology strategy, the work could be done by half the number of pathologists. Most importantly, the reagent/supply savings from having one laboratory rather than 9 was astronomical. The bottom line was an increase in revenue of nearly $1,000,000 with a cost savings of more than 75%. The key element of this plan that is important here is the digital telepathology component that reduces the number of staff needed and the office space needed which, at the time of the revision proposal, was “innovative” but thought too new to be reasonable. COVID-19 has tested that one aspect of the model and found it to be more than reasonable. More importantly, laboratory management and organizational leadership has had to take a hard look at costs, cost centers, and fixed expenses in such a way that the model above now becomes not lucrative but essential to staying in operation. We are trained in the laboratory to always be working on quality improvement, but COVID-19 has pushed us to always be working on fiscal improvement as well.

As we return to our “new normal” after COVID-19, the lessons we learned from this pandemic are going to translate into mergers, acquisitions, consolidations, closings, and restructurings of all types of businesses and services with the laboratory being no exception. The concept of surge capacity, for example, for testing of a new infectious agent that has emerged, has been a trial by fire, and there are many important lessons to learn from this as well. Should our approach to the next pandemic be to divert our staff from regular laboratory operations and bring into our facilities 6 to 10 new platforms for testing? Perhaps we should consider using temporary warehouse space offsite from our existing laboratory as well as backfill or relocating staffing for this crisis management to prevent complete disruption of our workflow and our policies. This is the type of solution that can exist when contingency planning is a routine part of operations. Those many facilities that were forced to bring in extra platforms are going to be facing a different crisis as test volumes crash; namely, what to do with the equipment. The firms that produce and sell that equipment have a similar challenge of expanding their platform beyond COVID-19 testing and making it relevant and competitive for the laboratories that have their extra platforms. Although I am not sure eBay or LetGo will be full of microscopes just yet, I am sure you are going to be able to pick up some nifty analyzers for an incredibly low price very soon. Will the memorial to the half-a-million we have lost in this country to COVID-19 be the useless bodies of laboratory devices that we so desperately needed in 2020? I think we owe them a lot more than that. Let us actively rethink our strategies in the laboratory and across our healthcare system so that such memorials are never needed again.

milner-small


-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.

Is the Cures Act a Cure-All?

Hello everyone and welcome back! Thank you to all those that read the previous piece on life and loss, personal growth, and—of course—vaccines. This month, let’s explore something relatively new on the horizon that has the potential to change pathology as we know it: The Cures Act

Okay, well, new-“ish”; the Cures Act (114th Congress, H.R. 34) was signed into law on December 13, 2016…so you snooze, you lose I suppose. But don’t worry, this signed law faded into seeming obscurity and is now resurfacing because it’s being implemented and enforced based on some of the language of the bill. Along with supporting measures in research and innovation, the Cures Act has an aim at empowering patients with health record accessibility. 

Image 1. Outlined here in a graphic from The Office of the National Coordinator for Health Information Technology (ONC Health IT), are the three major take-home points of how the Cures Act will affect patient access to health information. (Source: HealthIT.gov)

I will state this plainly. This means that, soon, whether folks like it or not, patients will directly be able to access their medical record en toto without an intermediary office or provider. Pathology reports and other diagnostic materials are not exempt from this. Within the next few months, more hospital systems will implement direct access and release protocols for patients who will now be able to directly read their pathology reports without their primary care physician or specialist’s filter. 

Some of you reading are rejoicing and thrilled. Others may be projecting harsh words this way if I’m the first time you’ve seen this. To the former group: If you were a part of the last ASCP Annual Meeting, I was fortunate to be a part of a panel with Dr. Jeffrey Meyers discussing the role “Patient-Facing-Pathology” where he talked about practical applications of involving patients in our work. I discussed concepts like “Pathology Explanation Clinics” and other reimbursable potential encounters we in pathology might soon be involved in. The idea of bringing pathology out of the basement, out from behind the curtain, and in the forefront of the patient healthcare experience has become a large part of our professional discourse for the past few decades—and the Cures Act is an exciting potential catalyst.

Image 2. Excuse the stock-photo watermark, but if you’re expecting encounters like these. Well…you’re half right. (Source Cartoonstock.com)

To the latter group: don’t panic. It’s going to be fine. You’re (probably) not going to get a 03:00 am call from an anxious patient expressing confused consternation over your frozen section report of “low grade oncocytic malignancy” or “defer to permanent…” Well, at least for now. Most programs are implementing a sort of “proofreading delay” before reports are actually released, with enough time to compile addendum reports and amended notes, etc. Even still, the notion that we may be implicated in a tsunami of impending requisite patient demands is indeed daunting.

I’ve spoken to several colleagues inside and outside my department who can’t seem to come to a consensus (very specific joke there) about the nature of how the Cures Act will change our work. Dr. Imran Uraizee, a surgical pathology fellow with me here at Loyola who’s written on here before, shared much of the same sentiment. The double edged sword. The initial hesitation. The problematic “translatability” and readability of our material. The potential benefits… It led to a great discussion, and ultimately, with comparisons to HIPAA rollouts and other large-scale changes in our healthcare delivery, we agreed that there are going to be growing pains. But growing is good right?

And you’re right! Why should we have to add more responsibilities onto our overcrowded plates? We’ve all just accepted the reality of advancing technologies time and time again, adding infinite immunohistochemical capabilities to our testing/send out menus, incorporating as much molecular testing as our department funds can accommodate, and (some of you) painfully tolerating the advent of digital microscopy and—if I may—artificial intelligent software tools. That’s already so much that has changed our landscape. While we figure out ways to get out of the basement so we can finally have windows, why should we change the way we file and release our reports? Or should we? Will we be directly answering the phone calls of exceptionally-involved-in-their-care patients without some kind or reimbursable encounter? Will residents? Think of our administrative support and ancillary staff—we may not have enough phones. When you add more, you expect some burden to shift. This will undoubtedly tax someone’s productivity; we just haven’t figured out who, what, where, or how yet.

But let’s go back to the positives… This is, in fact, a double-edged sword. And while, on the one hand, we might worry over the implications of diving in too deep, this really has potential to advance our profession in such a positive way. First of all, patients’ direct access to pathology reports may do us all a favor an slowly increase the medical literacy challenges we face today. Let’s be honest, pathology reports are not user-friendly and, as much as we may like to admit that our autopsy reports are written so that decedents’ families may find solace or comfort, we’re not writing for them directly. Behind our medico-legalese, our coded clinical content, and high-expert level commentary that far supersedes the standard 7th grade reading level, are decades of evolution in a field of medicine that has catered to fellow clinicians over patients. We write for heralded concepts in high-reliability and high output departments that demand precision, accuracy, and volume. To some, this may have contributed to some of the medical mistrust we face in this country and with increased transparency and open doors, we may even reduce the litigious nature of the patient-physician dynamic. And hey! If we can actually charge for these encounters like our clinical compatriots—which we have the potential too, by the way—then why not? The average CPT reimbursement in 2018 was $75 for a 15 minute encounter. Let’s say a full day of meeting patients includes four of these consults per hour. That’s about $300 per hour, $2,400 per full work day; with a faculty of about 20-30, just a handful doing consults for a day would be nearly $10,000. I can do more math. So could you. But hey we just bought new state-of-the-art IHC stainers and a boatload of shiny clinical analyzers with matching middleware support. Let’s not look a gift horse in the mouth? Wishful budgets aside, I don’t have any definitive answers for you—I know, I usually do, I’m sorry. But if the last two years have taught me anything, it’s that we can’t know what we don’t know unless we figure out what we do know.

We know we’ve been wanting to get out from the “paraffin curtain” for quite some time.

We know we’ve wanted to play a larger part in clinical patient care for decades.

We know we’ve got excellent professionals and experts in every nook and cranny this blog finds readers.

Well… careful what you wish for.

Is the Cures Act a cure all? Probably not. But maybe this is a chance for us to have some positive growth within our profession and an opportunity to connect with patients and simply make healthcare at-large better.

What do you think? Contact me on social media, leave a comment below, or share this piece with your colleagues to spark some conversations in your department.

Thanks for reading, see you next time!

Constantine E. Kanakis MD, MSc, MLS(ASCP)CM is a first-year resident physician in the Pathology and Laboratory Medicine Department at Loyola University Medical Center in Chicago with interests in hematopathology, transfusion medicine, bioethics, public health, and graphic medicine. He is a certified CAP inspector, holds an ASCP LMU certificate, and xxx. He was named on the 2017 ASCP Forty Under 40 list, The Pathologist magazine’s 2020 Power List and serves on ASCP’s Commission for Continuing Professional Development, Social Media Committee, and Patient Champions Advisory Board. He was featured in several online forums during the peak of the COVID pandemic discussing laboratory-related testing considerations, delivered a TEDx talk called “Unrecognizable Medicine,” and sits on the Auxiliary Board of the American Red Cross in Illinois. Dr. Kanakis is active on social media; follow him at @CEKanakisMD.

Microbiology Case Study: A 38 Year Old Female with Vaginal Bleeding and Diarrhea

A 38 year old female with history of endometriosis presented to emergency department complaining of heavy vaginal bleeding for 2 weeks duration. She also reported recent diarrhea, abdominal pain, nausea, fatigue, shortness of breath, fever, and chills. On physical exam, the patient had fever, tachycardia, tachypnea, and abdominal distention with a large, 32-week size uterine mass. She was found to have microcytic anemia (Hgb 9.2 g/dL, MCV 77.1 pg), diabetic ketoacidosis (glucose 522 mg/dL, ketones and glucose in urine, A1c 9.1%), and based on the above vital signs and leukocytosis (WBC 31.75/L)met sepsis criteria.

Abdominal CT revealed multiple uterine leiomyomas (fibroids), with the largest measuring up to 13.2 cm and demonstrating characteristics concerning for pyomyoma (abscess arising in  leiomyoma). The patient underwent exploratory laparotomy and myomectomy. Gross images of the resected uterine mass demonstrated  a circumscribed whorled nodular lesion with patchy necrosis (Image 1). Histologic examination of the resected lesion demonstrated a bland smooth muscle tumor, devoid of cytologic atypia and mitotic activity, with area of abscess formation showing necrosis and abundant neutrophils leading to a diagnosis of  “Leiomyoma with severe acute inflammation, areas of necrosis and abscess formation, consistent with pyomyoma (14 cm)” (Image 2).  A tissue Gram stain demonstrates multiple morphotypes of bacteria (image 3). Blood cultures, drawn on admission, flagged positive and the Gram stain revealed gram negative rods and blood, chocolate and Maconkey agars grew creamy gray non-hemolytic colonies that did not ferment lactose.  MALDI-TOF mass spectrometry was performed and identified the isolate as Salmonella species. A triple sugar iron agar slant was set up to confirm the phenotype of a non-typhoidal serovar of Salmonella. Growth of the organism demonstrated abundant hydrogen sulfide production, an acidic butt, and an alkaline slant, confirming the nontyphoidal phenotype.

Image 1. Gross image of the resected leiomyoma (fibroid). Formalin fixed, serially sectioned, encapsulated smooth muscle mass with patchy areas of abscess formation and necrosis. Mass measures 14 cm in greatest dimension.
Image 2. Histopathologic micrograph of hematoxylin and eosin stained leiomyoma (10x objective). A) shows spindle-shaped smooth muscle cells with admixed neutrophils. Central area of necrosis with abscess formation. B) shows edematous and necrotic smooth muscle with intermixed acute inflammation.
Image 3. Tissue Gram stain showing multiple morphotypes of bacilli with poorly staining gram characteristics (40x objective).

Discussion

Pyomyoma, also referred to as suppurative leiomyoma, is an exceedingly rare complication of uterine leiomyoma, which involves infarction of the benign tumor followed by introduction and growth of bacteria.1 Microbes can be introduced by way of ascending genitourinary infection, spread from adjacent structures, or hematogenous or lymphatic spread.2 These infections may be polymicrobial or caused by a single microorganism, and the reported causative agents vary widely, with the most common being Escherichia coli, Staphylococcus species, streptococcal species, enterococcal species, Bacterioides species, Clostridium perfringens, and Candida.3 However, there have been no reported cases of Salmonella species isolated from pyomyoma to date.

Salmonella is a gram negative bacillus belonging to the Enterobacteriacae family.4,5 Salmonella enterica, the species responsible for causing disease in humans, is sub-divided into numerous serovars, which can be broadly grouped into typhoid and nontyphoid.4,5 While the typhoid serovars cause enteric fever, the nontyphoid serovars can cause gastroenteritis and bacteremia.5 Most nontyphoid Salmonella infections are foodborne, and approximately 5% of nontyphoid Salmonella infections progress to bacteremia.4 The bacteria gain access to the bloodstream by utilizing multiple virulence factors to invade the epithelial cells of the gut.4 Salmonella can be identified in the laboratory from blood culture based on several characteristic biochemical results, including Gram stain, absence of lactose fermentation, motility, hydrogen sulfide and gas production, utilization of citrate, and decarboxylation of lysine and ornithine.

This case presents Salmonella species as the cause of sepsis in the setting of pyomyoma, a very rare entity. It is postulated that gastroenteritis caused by nontyphoid Salmonella may have been the cause of the patient’s recent diarrhea, and uncontrolled blood glucose levels in the setting of diabetes may have contributed to the progression to sepsis. We could hypothesize whether the Salmonella seeded the fibroid precipitating the abscess formation since Salmonella is known to cause abscess formation in unusual sites including having a proclivity for vascular sites (e.g., aortitis). The patient unfortunately experienced complications from her sepsis with concomitant surgery. She became unresponsive despite numerous attempts at resuscitation and died.

References

  1. Azimi-Ghomi O and Gradon J. Pyomyoma: Case Report and Comprehensive Literature Review of 75 Cases Since 1945. 2017. SM Journal of Case Reports. 3(4):1054.
  2. Obele, CC, et al. A Case of Pyomyoma following Uterine Fibroid Embolization and a Review of the Literature. 2016. Case Reports in Obstetrics and Gynecology. 2016:9835412.
  3. Iwahashi N, et al. Large Uterine Pyomyoma in a Perimenopausal Female: A Case Report and Review of 50 Reported Cases in the Literature. 2016. Molecular and Clinical Oncology. 5(5):527-531.
  4. Eng SK, et al. Salmonella: A Review on Pathogenesis, Epidemiology, and Antibiotic Resistance. 2014. Frontiers in Life Science. 8(3):284-293.
  5. Coburn B, et al. Salmonella, the Host and Disease: A Brief Review. 2006. Immunology & Cell Biology. 85(2):112-118.

-Heather Jones is a first year AP/CP resident at UT Southwestern.

-Katja Gwin is an Assistant Professor at UT Southwestern in the Department of Pathology and specializes in gynecologic pathology.

-Dominick Cavuoti is a Professor at UT Southwestern in the Department of Pathology and specializes in cytopathology, infectious disease pathology and medical microbiology.

-Clare McCormick-Baw, MD, PhD is an Assistant Professor of Clinical Microbiology at UT Southwestern in Dallas, Texas. She has a passion for teaching about laboratory medicine in general and the best uses of the microbiology lab in particular.

The Pathology Value Chain and Global Health, part 4

In this last part of our four-part series on pathology value chain, where we are using the patient’s best outcome as the maximized value, we examine two areas: Marketing/Sales and Service. The former has inherent challenges, some of which were mentioned in the last blog on outbound logistics. The latter is becoming an increasingly important component of oncology care for which many pathology labs are grasping for solutions.

In traditional business budgeting, the first step is for the marketing and sales department of a firm to provide a projection of revenue for a given period based on their knowledge of trends, markets, prior years, competition, competitive advantage, etc. These projections are then paired with costing exercises to shoot for a margin of profit. If we are going to sell $1,000,000 in widgets and it costs us $750,000 in total to make those widgets available to our customers (including costs of goods sold, administrative expense, taxes, and interest), we would have a $250,000 profit to use as retained equity or to distribute to our shareholders. When we look at pathology services for cancer, a new laboratory with no prior history may find this process extremely challenging without an enormous amount of data. An existing laboratory with many years of work may have a much easier time and, short of drastic changes in supply prices, inflation, and taxes, could likely use a simple percentage growth approach for this calculation.

But unlike widgets or iPhones or Quarter Pounders or golf clubs, no one wants to have a tissue biopsy and certainly no one wants to have suspected cancer. If we turn to epidemiological data, we can predict (and do so below) the expected number of patients in a given population to likely have cancer in the coming year (although this is clearly not the only data point we need). For a new laboratory in a place where there are no other laboratories (e.g., a small low- to middle-income country with a new Ministry of Health mandate to fight cancer), such an estimate is important for determining both if we should even have a lab (or use a regional approach) and, if we do have a lab, what our maximum volume would be assuming 100% access. The former part has been addressed previously such that there is a threshold below which is difficult to justify a lab because of the cost per sample. The latter part, however, is crucial because a “marketing campaign” (i.e., patient education and clinician education about cancer, how to diagnosis it, and how labs are part of this process) is the only way to have any volume in this laboratory.

We would except it to start slow and build but we have a finite endpoint for cancer cases in mind. But note, importantly, that the marketing campaign described has nothing to do with the pathology laboratory itself. In an existing, highly-developed market (e.g., Boston, London, Montreal, Sydney), there is a population that we can assume represents our cancer risk pool but there are also many competing laboratories (and health systems), transient use of services (e.g., Ms. Smith from Iowa decides to go to Boston for cancer care), and levels of care (i.e., low-stage cancer care in a community setting versus later-stage cancer with comorbidities in a tertiary care setting). None of these things can a given pathology laboratory control if they are in that market, but must they use all of this information to understand the projected revenue and create their budget? Or can they just assume a percentage increase? From the patient perspective, all of this is irrelevant because patients most commonly do not choose the pathology laboratory that is going to see their biopsy as it is a function of the health system to which they subscribe for their care. In that context, marketing and sales for cancer diagnostic services is largely a negotiation between laboratories and clients (e.g., clinicians, hospitals, health plans) which is often contractual. Such contracts are difficult to negotiate, take a long time, and usually last for an extended period like 1 year or longer. This very concept is contrary to the activities of the marketing and sales department which must constantly pivot, update, and change their strategy to achieve their projected revenue. It is worth noting that in many poorly developed cancer systems, patients do directly take their samples to pathology laboratories of their choice and examples of systems with kick backs to shift these samples away from government laboratories toward private practice facilities (at a much higher cost to patients) are well documented.

In the Value Chain model, service is the after-market activities of a firm to maintain their product(s) for a customer, create customer loyalty and resales, and enhance their competitive advantage through maximized firm-customer relationships. The popularity of subscription services (e.g., Amazon Prime, Netflix, Massage Envy, car leasing) stems from the increased opportunity to interact with customers continuously in low-cost ways that enhance the customer’s experience with the firm. Although a service like rending a definitive pathological diagnosis may appear to be a one-time event, recent evolution in the practice of oncology and increasing research needs have created unique servicing opportunities for pathology laboratories. The emergence of biomarkers that dictate treatment unrelated to the diagnostic process has created gaps in quality due to inefficient systems, entry cost barriers, volume challenges, and intellectual disconnect from the traditional diagnostic process. However, streamlining the biomarker process, for example, can create a competitive advantage for a laboratory and improve client loyalty and rapport.

Marketing and Sales

This activity focuses on “strategies to enhance visibility and target appropriate customers.” This activity in diagnostic anatomic pathology specifically for cancer speaks to the first part of the value chain for the patient; namely, the timely presentation of a patient to the clinical system for evaluation of cancer at the earliest possible time. As such, whether a patient presents incredibly early or very late makes no difference to the pathology laboratory because the customer choosing the pathology service is either an independent clinician or a health system. Private practice pathologists may advertise or market to community hospitals or hospital systems in hopes of capturing their volume (and revenue). Marketing for second opinion review by a pathologist can also occur and may be directly to patients. This activity is challenged from the beginning, however, due to the small market. For every 1,000,000 patients in the United States, there are about 5500 cancers per year. Assuming the accuracy of a clinical decision to obtain a biopsy is around 50% (i.e., the “malignancy rate” – when a clinician decides a biopsy is needed for suspected tumor, 50% of the time it is cancer and 50% of the time it is not), that’s 11,000 suspected cancer biopsies per million per year. Extrapolating to the US population, we get 3.6 million biopsies per year. Given that there are ~10,000 anatomic pathologists, that equates to, on average, 361 biopsies per year per pathologist (or, roughly 1 per day). Since most pathologists could easily sign out 20 cases every other day working Monday – Friday with 4 weeks of vacation annually, that’s a ratio of 1:8 (average:capacity).

The point of all of this math is that the volume of pathology work in the US that is for cancer is small relative to the total biopsies performed (or capable of being performed) by the pathology community and, thus, the market for cancer diagnostic services appears saturated. We can adjust the dial of this to take the malignancy rate to 5% (i.e., massive over biopsy setting), and find that pathology would be overwhelmed at 130% capacity just for suspected cancers; however, as we move back towards 50% malignancy rate, the average capacity is around 25% for volume. If we move on the other side of 50% towards lower biopsy rates or “improved clinical acumen,” capacity quickly drops to below 9% with a great excess of pathologists. With the promise of artificial intelligence to assist pathologists in faster sign out of higher volumes, the capacity for cancer diagnosis increases possibly 10-fold. But if you ask your average pathologist if they are busy, they report that they are. This is because the pathology laboratory, as all laboratorians are aware, processes more than just suspected cancer biopsies. Medical kidney, medical dermatology, screening colonoscopy, colposcopy, breast core needles, melanotic and non-melanotic skin lesions create a huge portion of the volume that is not part of the specific calculation above that adds many millions more samples per year to the pathology revenue stream. One framing of this case pool is that cancer biopsies, because they aren’t technically elective, are cross subsidized by providing all of the other services which are equally billable. However, this large bulk of cases are still not through direct marketing to the patient but rather to providers or health systems.

As we turn this activity towards LMICs, we instantly have a problem. There is no system in most places to support routine services for medical kidney, medical dermatology, screening colonoscopy, colposcopy, breast core needles, melanotic and non-melanotic skin lesions (especially in Black patient populations for the last). Without the cross-subsidization that these billable biopsies bring in, pathology laboratories are left with the low volumes of suspected cancer cases. As mentioned above, these laboratories are often overwhelmed to begin with so the marketing and sales activity, which would theoretically increase volume, is likely not to be a priority. In these settings, however, what will increase volume and improve the quality of care for patients is large pre-analytical efforts by governments and other entities to educate the public and the general practitioner about cancer screening and diagnosis, community awareness about cancer care systems, specimen transport networks from the most rural directly to pathology laboratories, and government spending on prevention of cancer.

Service

This last set of activities are to “maintain products and enhance consumer experience.” For a diagnosis of cancer, once rendered, there are many potential touch points with both the patient and the treating clinician that can enhance the outcomes for the patient. These include maintenance of tissue in repositories for future studies, performance of future studies related to newly available treatments, access to clinical trials, and, as mentioned in the outgoing logistics, increased, and enhanced communications around the diagnosis and subsequent information. In LMICs, there is a great desire to provide such enhancements especially in settings where these activities can facilitate local research and generate much-needed local clinical trials with pharmaceutical and other industry partners. As the other steps of the value chain are improved, the continue service will come into focus and can include such activities as external quality assurance, laboratory accreditation, personnel certification, documented compliance with standards, awards, and other accolades.

To conclude, from the patient framework, the maximum value for a patient with cancer involves the earliest possible detection of the tumor and a rapid, accurate diagnostic report matched to treatment options that lead to survivorship. For a pathology laboratory, the best outcomes for patients and the best revenue model for the laboratory results from a high-volume of small samples (i.e., biopsies) reported with complete clarity. Cross subsidization of cancer diagnostic services (especially those for later staged, complex cancer patients) with other non-cancer, pathology-based reporting is crucial to create a sustainable revenue stream and ensure highest quality outcomes. Competitive advantage in pathology services specific to cancer are currently and will continued to be largely tied to the after diagnostic service and support to keep the patient on the most beneficial cancer journey.

References

  1. Porter, M. (1985). The value chain and competitive advantage, Chapter 2 in Competitive Advantage: Creating and Sustaining Superior Performance. Free Press, New York, 33-61.
  2. Histology. Wikipedia. https://en.wikipedia.org/wiki/Histology#:~:text=In%20the%2019th%20century%20histology,by%20Karl%20Meyer%20in%201819.
  3. Thorpe A et al. The healthcare diagnostics value game. KPMG International. Global Strategy Group. https://assets.kpmg/content/dam/kpmg/xx/pdf/2018/07/the-healthcare-diagnostics-value-game.pdf
  4. Digital Pathology Market CAGR, Value Chain Study, PESTEL Analysis and SWOT Study|Omnyx LLC, 3DHISTECH Ltd, Definiens AG. https://www.pharmiweb.com/press-release/2020-06-30/digital-pathology-market-cagr-value-chain-study-pestel-analysis-and-swot-study-omnyx-llc-3dhistec
  5. Friedman B. The Three Key Components of the Diagnostic Value Chain. Lab Soft News. January 2007. https://labsoftnews.typepad.com/lab_soft_news/2007/01/the_three_eleme.html
  6. XIFIN. The Evolution of Diagnostics: Climbing the Value Chain. January 2020. https://www.xifin.com/resources/blog/202001/evolution-diagnostics-climbing-value-chain
  7. Sommer R. Profiting from Diagnostic Laboratories. November 2011. Seeking alpha. https://seekingalpha.com/article/305931-profiting-from-diagnostic-laboratories#:~:text=The%20three%20year%20average%20operating,current%20operating%20margin%20of%2012.9%25.
milner-small


-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.

Hematology Case Study: CBC with >80% Blasts

The patient is a 67 year old male who first visited his dentist at the end of December complaining of pain in the jaw that he had been experiencing since early Dec. He had put off making an appointment because he didn’t want to have to go to the doctor with COVID precautions, but the pain was now radiating to his teeth, so he made a dentist appointment. The dentist found no evidence of abscess or other infection but ‘adjusted his bite’. The patient was advised to take over the counter NSAIDs as needed or pain but no prescriptions was needed. Three weeks later the patient visited an urgent care because he had no improvement of the jaw pain. At this time he relayed symptoms of cough, fever, chills, night sweats and chronic fatigue. Patient history included an active lifestyle with vigorous aerobic exercise several times a week, but the he stated that he had been feeling too fatigued to exercise for over a month. On exam the patient was found to be tachycardic with bilateral tonsillar lymphadenopathy and oropharyngeal exudate. The patient was tested for COVID, influenza and Group A Strep. The COVID-19 was negative, as was the influenza A and B, but the Group A Strep was positive. The patient was sent home with a prescription for antibiotics.

One week later, the patient called his PCP because he still had cough, fever and chills and now was experiencing shortness of breath. The office directed the patient to go to the ER but the patient was reluctant to go to the hospital and stated he would rather be seen at the office. On review of the patients chart, the PCP agreed to see him in the office because he had had a negative COVID test in the past week. Two days later the doctor examined the patient in his office and still suspected COVID-19. He ordered a PCR COVID-19 test along with CBC/differential and erythrocyte sedimentation rate (ESR). We received a routine CBC on the patient. Results are shown below.

The patient had no previous hematology or oncology history and no previous CBC received at our lab. The critical WBC was called to the physician. Based on the WBC and flags on the auto differential, a slide was made and sent to our CellaVision (CV). On opening the slide in CV, we immediately called our pathologist for a pathology review. A rare neutrophil was seen on the peripheral smear, with immature appearing monocytes, few lymphocytes and many blasts.

Image 1. Images from CellaVision.

The pathologist reviewed the slide and the sample was sent for flow cytology studies and FISH. The pathologist’s comment ”Numerous blasts (>60%) consistent with Acute Myeloid Leukemia(AML). Specimen to be submitted for flow cytometry. Hematology consult recommended” was added to the report.

Image 2. Image from CellaVision. Predominately blasts with one neutrophil seen in field of unremarkable RBCs.
Image 3. Image from CellaVision.

The myeloid/lymphoid disorders and acute leukemia analysis by flow cytometry reported myeloblasts positive for CD117,CD33, and CD13. Final interpretation was Acute Myeloid leukemia (non-M3 type).

AML is the most common form of leukemia found in adults. AML was traditionally classified into subtypes M0 through M7, based on the cell line and maturity of the cells. This was determined by how the cells looked under the microscope after a series of special staining techniques, but did not take into account prognosis. It is now known that the subtype of AML is important in helping to determine a patient’s prognosis. In 2016 World Health Organization (WHO) updated the classification system to better address prognostic factors. They divided AML into several broad groups, including AML with certain chromosomal translocations, AML related to previous cancer or cancer therapy, AML with involvement of more than one cell type, and other AML that don’t fall into the first three groups.2 Once a case has been placed in one of these broad groups, the AML can be further classified as poor risk, intermediate risk and better risk based on other test results. Better risk is associated with better response to treatments and longer survival.3 The European LeukemiaNET (ELN) first recommended integrating molecular and cytogenic data into classification to create such a risk classification system for AML in 2010 (ELN-2010). In 2017, this was again revised (ELN-2017) to further improve risk stratification. The ELN-2017 can be used to more accurately predict prognosis in newly diagnosed AML.1

What this means is that AML is now classified by abnormal cell type as well as by the cytogenetic, or chromosome, changes found in the leukemia cells. Certain chromosomal changes can be matched with the morphology of the abnormal cells. These chromosomal changes can help doctors determine the best treatment options for patients because these changes can predict how well treatment will work.

Examples of risk classification include the knowledge that some chromosome rearrangements actually offer a better prognosis. For example, a translocation between chromosomes 15 and 17 [t(15;17)] is associated with acute promyelocytic leukemia (APL or M3). APL is treated differently than other subtypes and has the best prognosis of all the AML subtypes. Other favorable chromosomal changes include [t(8;21)] and [inversion (16) or translocation t(16;16)]. Examples of intermediate risk prognosis are ones associated with normal chromosomes and [t(9;11)]. Poor prognosis is associated with findings such as deletions or extra copies of certain chromosomes or complex changes in many chromosomes.3

The patient was diagnosed with AML, non M3 type. AML prognosis is based on CBC results, markers on the leukemia cells (flow cytometry), chromosome (cytogenic) abnormalities found and gene mutations (molecular abnormalities). In this patient the FISH studies did not demonstrate any chromosome rearrangements, which alone would place him in an intermediate risk group. In addition, our patient was over age 60 and had a WBC over 100,000/mm3 which have both been linked to worse outcomes.

Here’s one more photo for your enjoyment! It’s not often that we see so many blasts in a patient with no previous history. As a side note, I was contemplating titling this blog “Fatigue and Shortness of Breath in the Time of COVID.” I can’t help but wonder if this patient would have been diagnosed 6-8 weeks earlier if this was another year and he had been seen when he first experienced symptoms. This year, emergency rooms and physicians have reported a decrease in numbers of patients being seen for chest pain, ketoacidosis, shortness of breath, strokes and other serious conditions. Many patients are reluctant or afraid of sitting in crowded waiting rooms, fearful they will catch COVID. And many doctors are only offering virtual visits or have reduced the number of patients being seen so it is harder to get appointments. This patient expressed his reluctance to seek medical help because of fears of COVID. He did not want to go out in public and waited almost a month for symptoms to go away on their own before first being seen. After going to the walk in center, he called his PCP a week later and was still averse to going to the ER as suggested by the doctor. Then he waited another 2 days for an office appointment. The doctor still suspected COVID, but fortunately for the patient, ordered a CBC. The flow cytometry and FISH studies were available the following day. The patient was referred for hematology consult but has not been seen again at our hospital.

Image 4. More images from CellaVision.

References

  1. Boddu, P.C., Kadia, T.M., Garcia‐Manero, G., Cortes, J., Alfayez, M., Borthakur, G., Konopleva, M., Jabbour, E.J., Daver, N.G., DiNardo, C.D., Naqvi, K., Yilmaz, M., Short, N.J., Pierce, S., Kantarjian, H.M. and Ravandi, F. (2019), Validation of the 2017 European LeukemiaNet classification for acute myeloid leukemia with NPM1 and FLT3‐internal tandem duplication genotypes. Cancer, 125: 1091-1100. https://doi.org/10.1002/cncr.31885
  2. Mandel, Ananya. Acute Myeloid Leukemia Classification. Medical Life Sciences. https://www.news-medical.net/health/Acute-Myeloid-Leukemia-Classification.aspx
  3. Ari VanderWalde, MD, MPH, MA, FACP; Chief Editor: Karl S Roth, MD. Genetics of Acute Myeloid Leukemia. Medscape. Updated: Dec 17, 2018 
Socha-small

-Becky Socha, MS, MLS(ASCP)CMBBCM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 40 years and has taught as an adjunct faculty member at Merrimack College, UMass Lowell and Stevenson University for over 20 years.  She has worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. She currently works at Mercy Medical Center in Baltimore, Md. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

The Pathology Value Chain and Global Health, Part 3

In the first two installments of this blog series, we looked at inbound logistics and operations in which we can conclude that competitive advantage may be challenging to achieve. Now we turn to outbound logistics or, in simplest terms, the pathology report.

No document can be more terrifying for a patient than a pending pathology report from a biopsy, as it may contain a benign diagnosis, a malignant diagnosis, or something entirely unexpected. These reports are so important that unsuspected (non-malignant) and malignant diagnoses are included as “critical values” requiring a call and documentation to the clinical team as soon as they are discovered. Pathology reports in HIC are often not immediately available to the patient (unlike other laboratory tests) because the reports are often complex, may contain confusing terms, and may use language that patients inappropriately react to without the guidance of their clinician for meaning in their care. For example, cytology reports may be highly informative to a clinician by simply stating, “No evidence of malignancy” but may be stressful to a patient without guidance because there is not a definitive answer to what a lesion was. Similarly, a colon resection that states, “Invasive adenocarcinoma confined to the mucosa” is good news to the clinician but the first two words (and the internet) may be disturbing for the patient. The important point here is that pathology reports are written for clinicians and not written for patients as an audience. To that end, pathology reports should be highly aligned with the clinical decision-making process, an approach which is naturally aided by standardize or synoptic reporting of cancers using guidelines such as those of the College of American Pathologists, the Royal Colleges of the UK and Australia, and/or the International Collaboration on Cancer Reporting (a consortium of CAP, RCUK, RCA, ASCP, and others). These templates for a given cancer are complex, not easily committed to memory, nuanced, and require a high degree of pathology knowledge to apply correctly from the gross to the final histology findings. Thus, the value in these templates is in use by a pathologist directly, making task-shifting in this area nearly impossible without the aid of tools such as whole slide imaging and artificial intelligence (which still require a pathologist to finalize the report). Like operations, we see that a “standard of care” or a “standardized approach” to reporting cancer reduces the variability or uniqueness that can be achieved with a pathology report, infringing on competitive advantage.

Outbound Logistics – This activity covers the distribution of the final product to the consumer. For the maximum value to the patient, a report should be organized to match the treatment plan, available immediately upon completion, and provide an unambiguous answer than can be acted on. Although the first two activities generate the most important information for the patient and do so with “standards of care”, this activity involves communicating the results to the clinical team members who will act on it and, therefore, can open opportunities for competitive advantage. A new diagnosis of cancer is considered a “critical value” and requires a communication with documentation to the clinical team. However, much of pathology’s role in cancer care includes work with existing cancer patients so rapid communication of any result (not just the first cancer diagnosis) can add value. For example, integration of the pathology laboratory information system into the electronic medical record creates immediate results to clinicians. Alert systems including text messages, instant messages, emails, faxes, etc. add value by informing the busy clinician that the result is there. Photographs of the tumor grossly, histologically, or the results of specials studies can be included in printed or digital reports. Pathologists can attend tumor boards or other in-person or virtual meetings to present the results and explain them if there are questions. The more information that is transmitted with clarity to clinicians, the higher value the patient will obtain. The challenge in this activity is that the payment for the laboratory services ends with the diagnostic report and appropriate coding and, thus, laboratories may have to upcharge for their services to add these features. These further communications, which we can see adds value to the patient, does not add value to the laboratory’s revenue model without upcharges. In fact, it likely costs more to have such active communications as it takes pathologists away from the higher volumes which do equate to higher revenue (as we saw in operations). Streamlining these types of communications with electronic systems is key in cost and time savings and is the basis for the laws and regulations, for example, in the USA which require electronic medical records including laboratories. However, as laws, regulations, and guidelines evolved, these electronic communications are becoming standard of care requiring the entire system to increase the costs to have them but eroding the competitive advantage of providing such concierge services. Consider the change COVID-19 has had on communications between patients, clinicians, and the laboratory where a multi-person discussion of a case with images and consensus opinions can be done in a few minutes over a video conference without anyone leaving their office. Has this crisis provided a new way to capture time (and therefore revenue) but still provide concierge services? Or has it (more likely) created a new normal that everyone has to adopt (eroding competitive advantage)?

When we turn to LMICs and observe the activities of the pathology laboratory, communication with clinical teams on the front or back end has been uncommon and traditionally not done. Oncological practices in HIC are filtering down to LMICs including tumor boards, frozen sections (i.e., rapid, in surgery diagnostics), etc. and being instituted with some frequency. These activities improve patient value and outcomes, educate the teams in both directions, and are clearly beneficial to the system. But they take time and effort away from already understaffed systems which detracts from the value of other patients ultimately. However, when we observe these systems, we often find that they lack electronic tools for running the laboratory internally which inhibits tools for reporting externally. Thus, the major needed solution now is that any histology laboratory anywhere in the world should be using an anatomic pathology laboratory information system as it creates internal and external tools for standardized reporting, communication, and management. Furthermore, it creates better opportunities to integrate synoptic (templated) reporting, interdisciplinary team activities, and standardization of requisitions (i.e., upon receipt of samples). Greatly increased value for patients in LMICs can be achieved with electronic APLIS.

Lastly, there are incredible examples of pathologists who make time in their day to meet with patients to discuss their pathology reports. These discussions can only focus on what the reports says and what the words in the report mean, as defined not in context of that patient. Such exchanges can provide patients with helpful questions to ask their clinicians and prepare them to better understand what the clinicians suggests as next steps for treatment. Clearly valuable to the patient, these exchanges are also valued by the pathologists who enjoy the face-to-face interactions with patients that humanize the process. In rare cases (possibly a for-profit situation), these services may generate revenue but under current medical billing rules there is no standard mechanism for the pathologist to be reimbursed. If we have identified this as adding value to the patient in the pathology value chain, should we not try to find ways to build these services into the care model financially? With the ubiquitous use of video conferencing in the COVID-19 era, can this task be of minimal effort to pathologists but still add value for patients?

In our last installment, we will discuss marketing & sales and service, both of which are particularly flawed and fascinating to consider.

References

  1. Porter, M. (1985). The value chain and competitive advantage, Chapter 2 in Competitive Advantage: Creating and Sustaining Superior Performance. Free Press, New York, 33-61.
  2. Histology. Wikipedia. https://en.wikipedia.org/wiki/Histology#:~:text=In%20the%2019th%20century%20histology,by%20Karl%20Meyer%20in%201819.
  3. Thorpe A et al. The healthcare diagnostics value game. KPMG International. Global Strategy Group. https://assets.kpmg/content/dam/kpmg/xx/pdf/2018/07/the-healthcare-diagnostics-value-game.pdf
  4. Digital Pathology Market CAGR, Value Chain Study, PESTEL Analysis and SWOT Study|Omnyx LLC, 3DHISTECH Ltd, Definiens AG. https://www.pharmiweb.com/press-release/2020-06-30/digital-pathology-market-cagr-value-chain-study-pestel-analysis-and-swot-study-omnyx-llc-3dhistec
  5. Friedman B. The Three Key Components of the Diagnostic Value Chain. Lab Soft News. January 2007. https://labsoftnews.typepad.com/lab_soft_news/2007/01/the_three_eleme.html
  6. XIFIN. The Evolution of Diagnostics: Climbing the Value Chain. January 2020. https://www.xifin.com/resources/blog/202001/evolution-diagnostics-climbing-value-chain
  7. Sommer R. Profiting from Diagnostic Laboratories. November 2011. Seeking alpha. https://seekingalpha.com/article/305931-profiting-from-diagnostic-laboratories#:~:text=The%20three%20year%20average%20operating,current%20operating%20margin%20of%2012.9%25.
  8. Cancer Patients Want to Pull Back the Curtain on Pathology. M Health Lab. October 10, 2019. https://labblog.uofmhealth.org/industry-dx/cancer-patients-want-to-pull-back-curtain-on-pathology
  9. Guttman EJ. Pathologists and Patients: Can we talk?. Modern Pathology. May 2003. https://www.nature.com/articles/3880797
  10. Lapedis CJ et al. The Patient-Pathologist Consultation Program: A Mixed-Methods Study of Interest and Motivations in Cancer Patients. Arch Path Lab Med. August 20, 2019. https://meridian.allenpress.com/aplm/article/144/4/490/427452/The-Patient-Pathologist-Consultation-Program-A
milner-small


-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.

ASCP Releases Two Evidence-Based Recommendations for COVID-19 Testing

COVID-19 testing can be a bit confusing. Recently, ASCP released two recommendations for COVID-19 testing to help clinicians and laboratories sort through the noise and order the right test at the right time. In addition, ASCP has a plethora of COVID-19 resources, including Town Halls, podcasts, journal articles, and more.

A Trilogy of Food, Fun, and Facts: Musings of a Pathologist-in-Training

Pathology is a perfectly blended specialty filled with food, fun and a whole range of factual morphological descriptions!

As a pathology resident, one of the first things that got me intrigued by the specialty was its strong association with many food epithets. From the almond-shaped ovary,1 to the blueberry muffin baby,2 to the coffee bean nuclei in the thyroid,3 fried egg appearance of mast cells,4 grape-like lesions seen in molar pregnancy5 to the flat cake placenta6 and even to the strawberry cervix!7 The list is endless. I found these descriptions so interesting that I kept asking myself, “why do pathologists have to make associations with food for many normal and pathological disease processes we see around?”

Aside from the fun association with food (which I happen to like a lot), getting to learn and understand the pathology of disease processes, genetic and syndromic associations have been a fascinating, humbling, and altogether nerve-wracking experience for me.

It has been fascinating because I totally enjoy learning about the underlying processes that get some people sick while others stay healthy. At the same time, it has also been humbling, because, then I realize that so many disease processes are genetically determined and so out of our control. Along the same lines, the experience has also been neck-wracking, because of the detail and efficiency that goes into mastering different disease morphologies and preparing a comprehensive pathology report. The ability to tell the difference between two very similar disease entities but with different morphological features can drive one crazy, because, sometimes everything just seems to look the same!

I remember my early days as a resident. The first week in residency training to be precise. Then, I got reintroduced to the microscope, which is the power of the pathologist. Looking into the microscope and feigning to see what the senior residents and attendings were seeing felt like outright torture to me. You know why? It’s because everything under the microscope was either blue or pink.

In my few years of training as a resident, I have come to learn that in order to be successful as a pathologist, one must be adept with every single detail. As Pathologists, we deal with the facts. We do not make things up, and strive to present the facts of every case which ultimately supports our rendered diagnoses.

Unlike when I first started my residency training, I now know that not everything under the microscope is just blue and pink, and even if they are indeed blue and pink, the degree of their “blueness” or “pinkness” varies. And the intensity of the hematoxylin and eosin (H&E)/immunohistochemical stains may sometimes tell disease entities apart from one another. So, sometimes when people ask me what type of doctor I am training to be, I tell them, “I am a doctor of colors,” which of course often leaves them confused!

I also tell people that I am training to be a doctor who works from behind the scenes, to make sure they get treated right all the time. And this realization I believe is what has created the greatest impression for me. Realizing that a patient’s choice of treatment may totally be dependent on the pronouncements I make on their disease process, is something that gets me motivated to keep putting in my best into my training in order to become one of the best in my field. Therefore, even though we operate as doctors from behind the scenes, our professional judgments often go a long way in impacting the welfare and outcomes of patients whom we never get to see, which is one of the aspects of the specialty that I truly love.

So, pathology as a specialty has given me a more robust meaning to life. I have learned to value and appreciate the time I spend with those I love, and to make special moments with them count. It has made me realize that there are certain things about life such as genetic diseases, that I have no control over and therefore should only be concerned with giving my very best all the time. Pathology has also made me more detail oriented, by learning to distinguish benign from malignant processes. It has reinforced for me, the importance of being the best person I can be to both my family, neighbors and my community in general. And I would also add that pathology has further reignited my love for good food. So, let the party begin!!!

References

  1. Ignatavicius DD, Workman ML. Medical-Surgical Nursing: Patient-centered collaborative care. Elsevier Health Sciences; 2015. 1735p.
  2. Mehta V, Balachandran C, Lonikar V. Blueberry muffin baby: a pictoral differential diagnosis. Dermatol Online J. 2008;14(2):8.
  3. Oertli D, Udelsman R. Surgery of the thyroid and parathyroid Glands. Springer Science & Business Media; 2012. p. 620.
  4. Bolognia JL, Jorizzo JL, Rapini RP. Dermatology. Gulf Professional Publishing; p. 1438.
  5. Daftary. 100+Clinical Cases In Obstetrics. Elsevier India; 2006. p. 478.
  6. Power ML, Schulkin J. The Evolution of the Human Placenta. JHU Press; 2012. p. 278.
  7. Swygard H, Seña AC, Hobbs MM, Cohen MS. Trichomoniasis: clinical manifestations, diagnosis and management. Sex Transm Infect. 2004 Apr 1;80(2):91–5.

-Evi Abada, MD, MS is a Resident Physician in anatomic and clinical pathology at the Wayne State University School of Medicine/Detroit Medical Center in Michigan. She earned her Masters of Science in International Health Policy and Management from Brandeis University in Massachusetts, and is a global health advocate. Dr. Abada has been appointed to serve on the ASCP’s Resident’s Council and was named one of ASCP’S 40 under Forty honorees for the year 2020. You can follow her on twitter @EviAbadaMD.

Patients and Patience (Part 2)

Holiday season in well behind us and, while we celebrate and coordinate getting our COVID vaccinations (side note: get yours please), I’d like to revisit a piece from a while back called “Patients and Patience.”

Then I talked about how our professionally shared spirit of camaraderie and patient advocacy go hand-in-hand with the ASCP mission. How, regardless of what role we play in patient care, we continue to give as much as we can to make the lives and hopes of patients everywhere a bit brighter. This year especially, as the pandemic continues to take over all frequencies and channels (including this blog, I’m sorry), I think it’s especially poignant to remember how life can be both grand and fragile. You’ve read my musings on how doctors can be patients too, and how we can all be stretch so thin it can affect our health. When you think the experiences of anyone in healthcare this past year you can’t help but reflect on how burnout and compassion really both know no bounds.

This month, I’m dedicating this piece to one of Loyola’s faculty who sadly and unexpectedly passed away just before the New Year, Dr. Stefan Pambuccian. In a caustic reminder of life’s grand fragility, he was an archetype of what it meant to be an accomplished and respected pathologist, physician, teacher, and friend. While he and other faculty here push all of us resident/trainees or fellows to be better, and research, publish, learn, share, and grow, people like Dr. Pambuccian set the tone with years of experience, an open door, and an uncanny ability to give you a differential diagnosis from only peeking at a slide from across the room at 1x—not a typo.

Image 1. You can barely find any posters on our walls (of which there are many) that don’t in some way bear the name or relate to the work or Dr. Pambuccian here at Loyola. His office and door continue to receive new messages of loss, praise, thanks, and sentiment. Losses like these are never easy, but no one here went through this alone.

While the residents were having a great uplifting secret santa exchange a few days after Christmas, we went around praising our anonymous gift recipients and shared some laughs amidst a new warm holiday memory. The same joy that filled our workroom vanished after everyone had heard the awful news, taking time to process and simply be with each other that afternoon and the weeks that followed. That’s exactly the message I think rings true this time around: in order to care for patients, and ourselves, our friends, and our colleagues, we should always have reserves of patience, compassion, and humanity. While there are great wellness programs, and tips and tricks to avoid burnout, that’s for other blogs; sometimes what one really needs is other people. Peers. Friends. Family. I’m relatively new here in this program, but what I could see that day was an immediate working shift from signing out cases to taking the time to make sure everyone was okay—whatever that meant for them. You can promote wellness all day, but you can’t (ethically) pose any actual testing of resilience. The loss of Dr. Pambuccian not only demonstrated the camaraderie and compassion at Loyola Pathology, but made sure we all learned what it means to be a great pathologist.

Image 2. A fun yet fleeting secret Santa. Despite the mood of this day being changed by the news, happy memories are still just as important. Both the sad and happy parts of this day brought us all closer, and stronger, together.

Like I said, my interactions with him were brief at best but he gave the morning didactic at my very first residency interview here and I learned all about his bottomless sense of humor and wit. Since starting, he was always there running the Thursday unknown sessions, where I felt empowered to participate alongside his openness for learners at all levels. I even remember I was on-call one night with him on service, and after checking in with other residents, I gave him a call to say there was nothing much happening tonight—I barely made it past my hello, before he told me to have  good night because he already checked the surgery schedule and was just waiting on me to call. Thanks. I could never do justice in telling stories about him when compared to literally anyone else in my department. There were countless more stories, and tons of experiences my fellow senior residents and faculty all shared about their working with him. I just feel lucky enough to have known him.

Image 3. I volunteered along with one of our fellows to take new faculty and resident photographs for our new website. My cloud photo storage is full of 3-4 similarly posed faces of everyone I work with…except Dr. Pambuccian. He wanted to make this fun, much like everything else he did.

I find myself in the same position as the last time I talked on this topic: at a new chapter in life to start becoming the doctor I set off on this journey to become many years ago. With the addition of excellent faculty mentors, friends and colleagues, and an ongoing, renewed sense of purpose, I’ll keep you all posted.

To read more about Dr. Pambuccian’s life, his love of art and cats, his numerous publications which will undoubtedly crash your computer, please click this link to Loyola Pathology’s in memoriam.

Thank you for reading and letting me take this aside to say, as I have before, that we deserve the same compassion and patience as we extend to our patients and that the values that inspire us to do our best to improve healthcare at large are the same values that can help us build strong, caring relationships with our families, friends, and colleagues.

Take care of yourselves and those around you. Thanks for reading! See you next time!

(And look into how and where to get your COVID vaccine!)

Constantine E. Kanakis MD, MSc, MLS(ASCP)CM is a first-year resident physician in the Pathology and Laboratory Medicine Department at Loyola University Medical Center in Chicago with interests in hematopathology, transfusion medicine, bioethics, public health, and graphic medicine. He is a certified CAP inspector, holds an ASCP LMU certificate, and xxx. He was named on the 2017 ASCP Forty Under 40 list, The Pathologist magazine’s 2020 Power List and serves on ASCP’s Commission for Continuing Professional Development, Social Media Committee, and Patient Champions Advisory Board. He was featured in several online forums during the peak of the COVID pandemic discussing laboratory-related testing considerations, delivered a TEDx talk called “Unrecognizable Medicine,” and sits on the Auxiliary Board of the American Red Cross in Illinois. Dr. Kanakis is active on social media; follow him at @CEKanakisMD.

Truth or Consequences: The Wrong Question

It was with sadness that I watched the episode of Jeopardy! which featured Alex Trebek’s final appearance. While I hadn’t watched the game show consistently since 1984 when he first began to host, Alex had certainly become an icon in U.S pop culture and I had enjoyed watching him often. The quiz show has always been different than most- the answer must be given in the form of a question, and it must be the correct question in order to score points. As with most games, contestants don’t always ask the right question. That can happen with lab safety, as well.

I was performing an audit in a laboratory when the manager was bringing a new employee through during her orientation. I was introduced as the Lab Safety Officer, and I described some of my duties like auditing and safety compliance monitoring. The new employee immediately asked, “What happens if you catch someone not doing what they should?” That was the wrong question.

As an experienced lab safety professional, I often see people fail to follow certain lab safety regulations. Unfortunately, you do not have to look far to find lapses in lab safety practices. Vendors and service representatives and other visitors walk into labs across the country and lab staff ignore them. The visitors are not given information about the hazards in the department and they are not offered PPE. A look on social media will reveal multiple pictures of lab workers not wearing PPE as well. Oh- and they are taking those pictures with cell phones they shouldn’t be using (sometimes the hand holding the phone is gloved, other times it is not). While I am concerned about these unsafe behaviors, I am equally concerned about those that witness them and say nothing.

The COVID-19 pandemic has raised the public awareness of an important aspect of personal safety: the unsafe behavior of others can have a direct affect on your own safety. People who refuse to wear masks or who are sick and do not isolate themselves may create situations where the virus is spread to others. In the past year, many people have realized this and have felt empowered to say something to those who are not exhibiting safe behaviors. That realization that they may be in danger has made people feel comfortable speaking up for their safety and that of others around them. Perhaps that is what is needed in the lab setting as well.

Unsafe behaviors in the laboratory can easily have consequences that may affect many in the department. Spills and exposures are just some incidents that may occur. Messy lab areas can create trips or falls, and improper storage of chemicals or hazardous wastes can be dangerous as well. Perhaps laboratory staff don’t think enough about the dangerous consequences because there isn’t enough training about them. Perhaps they don’t think about the potential consequences to others because they haven’t been told about the possible physical, environmental, or financial consequences. When the new lab employee asked the question, “What happens if you catch someone not doing what they should,” I should have had an immediate answer. I should have said that she asked the wrong question. The real question is, “More importantly, what happens to you if you’re not doing what you should?” Teaching staff about the consequences of unsafe lab practices is something that should start on day one, and the awareness of these issues should be raised often and continuously. The truth is, it is important to correct your own unsafe behaviors, but it is also important to feel empowered to correct unsafe issues that are witnessed. The truth is, we all have a responsibility for our safety and that of everyone else who may be in the laboratory. If we own that responsibility, then no one’s safety has to be in…jeopardy.

Dan Scungio, MT(ASCP), SLS, CQA (ASQ) has over 25 years experience as a certified medical technologist. Today he is the Laboratory Safety Officer for Sentara Healthcare, a system of seven hospitals and over 20 laboratories and draw sites in the Tidewater area of Virginia. He is also known as Dan the Lab Safety Man, a lab safety consultant, educator, and trainer.