The Occurrence of Lewis Antibodies in Pregnancy

A 36 year old woman presented to the delivery room at a local county hospital at 39 weeks’ gestation. The doctor ordered a type and screen on the patient, the blood was drawn and sent to the Blood Bank lab. The Blood Bank tech looked up the patient’s Blood Bank history and noted that an antibody screen done at 28 weeks was positive, with an anti-Lea identified. The Blood Bank’s policy is to have 2 units of blood available for any patient with an antibody. As the Blood Bank tech was working on the sample, the physician sent a STAT order for 2 units RBCs for intrapartum hemorrhage.

Are Lewis antibodies clinically significant? AABB defines a clinically significant antibody as one that causes decreased red blood cell survival of transfused cells, one that causes hemolytic transfusion reaction or one that causes Hemolytic Disease of the Fetus and Newborn (HDFN).3 In the Blood Bank, we would always be cognizant of all three criteria, but in this case, we are particularly concerned with HDFN.

The Lewis system is of great interest in immunohematology because of its unique characteristics. The Lewis blood group system is the only one where the antigens are not produced by the red blood cell itself. We learn in immunohematology that red cell antigens are structures that are usually formed on red blood cell membranes, but Lewis stands alone in that the antigens are glycolipids that are formed in the plasma and then passively absorbed onto the red blood cell membrane. This forms a loose attachment and these antibodies can shed or elute off the RBCs in certain circumstances.

Because Lewis antigens are not formed on RBCs, Lewis antigens are not present at birth and therefore not found on cord blood cells. Cord blood and RBCs from newborns will phenotype as Le(a-b-). The saliva of these newborns will have Lea and/or Leb antigens depending on the genes inherited, but the RBCs will test negative for these antigens at birth. By about 10 days of age, the Lewis antigens can be detected in plasma, and they will shortly thereafter begin to be absorbed onto the RBCs. Yet, children do not exhibit their true Lewis phenotype until about age 6.

The development of Lewis antigens is also unique. Lewis antigens are not antithetical, as they result from the interaction of two fucosyltransferases encoded by the Le and Se genes. The Le gene is needed for the production of Lea antigen and the Se gene is needed to form Leb antigen. The three common Lewis phenotypes, Le(a+b-), Le(a-b+) and Le(a-b-) indicate the presence or absence of the Le and Se transferase enzymes.

In pregnancy a mother’s plasma volume increases, and because Lewis antigens are not an integral part of the RBC membrane, they can elute off her RBCs. This causes a decrease in Lewis antigen and some pregnant women, regardless of their true Lewis antigen type, will temporarily type as Le(a-b-). At the same time, because they are now typing Le(a-b-), pregnant women often acquire Lewis antibodies.

Anti-Lea is the most frequently found Lewis antibody, is IgM, and is usually detected at room temperature. In most cases, it is acceptable to give patients with Lewis antibodies RBC units that are crossmatch compatible at 37C without giving antigen negative units. One reason for this is that, as we saw above, Lewis antigens are merely absorbed onto RBCs and can be eluted from transfused red cells within days of transfusion. In addition, when Lewis antigen positive blood is given to Lewis-negative recipients, the Lewis substance in plasma neutralizes antibodies in the recipient. This is why it is extremely rare for anti-Leato cause hemolysis of transfused RBCs. Regardless of Lewis phenotype, RBCs would be expected to have normal in vivo survival.

For an antibody to cause HDFN it must be able to cross the placenta. The antibody must also react with antigens on the red blood cells. Because Lewis antibodies are IgM and do not cross the placenta, and because Lewis antigens are not present on fetal and neonatal erythrocytes, Lewis antibodies have not been implicated in HDFN and this baby is not at risk.

What does this all means in practice? Though the presence of anti-Lewis antibodies in pregnant women is fairly common, both anti-Leaand anti-Leb are naturally occurring IgM antibodies that are not generally considered to be clinically significant. They have low immunogenicity, they do not cause HDFN, they rarely cause hemolysis and do not cause decreased survival of transfused RBCs. This baby is not at risk for HDFN. The mother can safely be transfused with crossmatch compatible RBCs. Her Lea antibodies may be neutralized with a transfusion or will naturally disappear, and her true Lewis phenotype should return within about 6 weeks after delivery.

References

  1. Harmening DM: The Lewis System. In Harmening DM, (6th ed): Modern Blood Banking and Transfusion Practices. FA Davis, Philadelphia 2012, pp. 177-180
  2. Fung, Mark K, ed.: The Lewis System. 18th ed: AABB Technical manual, Bethesda, Md. 2014, pp 304-306
  3. Fung, Mark K, ed.: PreTransfusion testing. 18th ed: AABB Technical manual, Bethesda, Md. 2014, pp 376
  4. D. Radonjic et al, The Presence of antibodies in anti-Lewis system in our pregnant women. Giorn.It.Ost.Gin. Vol. XXXII-n.4.Luglio-Agosto 2010.

 

Socha-small

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

Blood Bank Case Study: Transfusion Transmitted Malaria

Case Study

A 26 year old African American female with sickle cell anemia presented to a New York emergency room with cough, chest pain, fever and shortness of breath. Laboratory results showed an increased white blood cell count, slightly decreased platelet count and a hemoglobin of 6.2 g/dl. Her reticulocyte count was 7%, considerably below her baseline of 13%. Consulting the patient’s medical records revealed history of stroke as a child and subsequent treatment with chronic blood transfusions. She was admitted to the hospital for acute chest syndrome and aplastic crisis and care was transferred to her hematologist. Two units of RBCs were ordered for transfusion.

The blood bank technologists checked the patient’s blood bank history and noted her blood type was A, Rh(D) positive, with a history of a warm autoantibody and anti-E. The current blood bank sample confirmed the patient was blood type A, RH(D) positive with a negative DAT but the antibody screen was positive. Anti-E was identified. Per request of the hematologist, phenotypically similar units were found and the patient was transfused with 2 units of A RH(negative), C/E/K negative, HgS negative, irradiated blood. The patient’s hemoglobin rose to 8g/dl and she was discharged from the hospital 3 days after transfusion.

Ten days after discharge the patient returned to the emergency room with symptoms including aching muscles, fever and chills. A delayed transfusion reaction was suspected. A type and screen was immediately sent to the blood bank. The post transfusion type and screen remained positive for anti-E, DAT was negative. No additional antibodies were identified. However, a CBC sent to the lab at the same time revealed malarial parasites on the peripheral smear. The patient was consulted for a more complete medical history and reported that she had never traveled outside of the country. A pathology review was ordered and the patient was started on treatment for Plasmodium falciparum.

plasfal1

Discussion

Red Blood cell transfusions can be life saving for patients with sickle cells anemia. These patients are frequently transfused by either simple transfusion of red cell units or by exchange transfusion. Because of this, alloimmunization is reported to occur in 20% to 40% of sickle cell patients.1 Blood bank technologists are very diligent in adhering to strict procedures and follow a standard of practice aimed to prevent transfusion reactions. While preventing immune transfusion reactions may be the most forefront in our minds when transfusing the alloimmunized patient, it is important to consider transfusion transmitted diseases as a potential complication of blood transfusions.

Malaria is caused by a red blood cell parasite of any of the Plasmodium species. Mosquito transmitted infection is transmitted to humans through the bite of an infected mosquito. Transfusion-transmitted malaria is an accidental Plasmodium infection caused by a blood transfusion from a malaria infected donor to a recipient.

Donors, especially those from malarial endemic countries who may have partial immunity, may have very low subclinical levels of Plasmodium in their blood for years. Even these very low levels of parasites are sufficient to transmit malaria to a recipient of a blood donation. Though very rare, transfusion-transmitted malaria remains a serious concern for transfusion recipients. These transfusion-transmitted malaria cases can cause high percent parisitemia because the transfused blood releases malarial parasites directly into the recipient’s blood stream.

Blood is considered a medication in the United States, and, as such, is closely regulated by the FDA. Blood banks test a sample of blood from each donation to identify any potential infectious agents. Blood donations in the US are carefully screened for 8 infectious diseases, but malaria remains one infectious disease for which there is no FDA-approved screening test available. For this reason, screening is accomplished solely by donor questioning.2 A donor is deferred from donating if they have had possible exposure to malaria or have had a malarial infection. Deferral is 12 months after travel to an endemic region, and 3 years after living in an endemic region. In addition, a donor is deferred from donating for 3 years after recovering from malaria. It is important, therefore, for careful screening to take place by questionnaire and in person, to make sure that the potential donor understands and responds appropriately to questions concerning travel and past infection.

Malaria was eliminated from the United States in the early 1950’s. Currently, about 1700 cases of malaria are reported in the US each year, almost all of them in recent travelers to endemic areas. From 1963-2015, there have been 97 cases of accidental transfusion-transmitted malaria reported in the United States. The estimated incidence of transfusion-transmitted malaria is less than 1 case in 1 million units.4 Approximately two thirds of these cases could have been prevented if the implicated donors had been deferred according to the above established guidelines.3 While the risk of catching a virus or any other blood-borne infection from a blood transfusion is very low, a blood supply with zero risk of transmitting infectious disease may be unattainable. With that being said, the blood supply in the United Sates today is the safest it has ever been and continues to become safer as screening tests are added and improved. Careful screening of donors according to the recommended exclusion guidelines remains the best way to prevent transfusion-transmitted malaria.

References

  1. LabQ, Clinical laboratory 2014 No.8, Transfusion Medicine. Jeanne E. Hendrickson, MD, Christopher Tormey, MD, Department of Laboratory Medicine, Yale University School of Medicine
  2. Technical Manual, editor Mark K. Fung-18th edition, AABB. 2014. P 201-202
  3. https://www.cdc.gov/malaria/about/facts.html. Accessed April 2018
  4. The New England Journal of Medicine. Transfusion-Transmitted Malaria in the United States from 1963 through 1999. Mary Mungai, MD, Gary Tegtmeier, Ph.D., Mary Chamberland, M.D., M.P.H., June 28, 2001. Accessed April 2018
  5. Malaria Journal. A systematic review of transfusion-transmitted malaria in non-endemic areas. 2018; 17: 36. Published online 2018 Jan 16. doi: 1186/s12936-018-2181-0. Accessed April 2018
  6. http://www.aabb.org/advocacy/regulatorygovernment/donoreligibility/malaria/Pages/default.aspx

 

Socha-small

-Becky Socha, MS, MLS(ASCP)CM BB CM graduated from Merrimack College in N. Andover, Massachusetts with a BS in Medical Technology and completed her MS in Clinical Laboratory Sciences at the University of Massachusetts, Lowell. She has worked as a Medical Technologist for over 30 years. She’s worked in all areas of the clinical laboratory, but has a special interest in Hematology and Blood Banking. When she’s not busy being a mad scientist, she can be found outside riding her bicycle.

FDA Issues Revised Recommendations for Reducing the Risk of Zika Virus Transmission through Transfusion

Today, the FDA released industry guidance for reducing the risk of Zika Virus transmission through blood products. “Revised Recommendations for Reducing the Risk of Zika Virus Transmission by Blood and Blood Components”  is for immediate implementation.