Boards and Wards

As a little detour before I start my medical school clerkship rotations as a 3rd year student, I’d like to take a moment to appreciate—yes appreciate—board exams. I just sat for the daunting and arduous United States Medical Licensing Exam (USMLE) called “Step 1.” It is roughly an eight-hour endeavor to prove that some of the tomes of information I was exposed to throughout my first two years of medical school made it somewhere into my hippocampus. That said, yes board exams are always daunting and yes, they can even be quite stressful. There’s a lot depending on your scores, in any field you find yourself testing in. Some are pass/fail and some provide you with a scaled score performance.

For what feels like forever ago to me now, I sat for a state licensure exam for the Illinois Department of Public Health as an Emergency Medical Technician Basic provider, or EMT-B. I absolutely failed it—missed it by a point or so. Scheduled a retake, studied hard, and passed round two. Lesson learned. That license opened many doors for me back in the day, and that’s precisely the point: professional certification, official licensures, and (often) professional society membership will bolster anyone looking to get ahead in their career.

Other times, these board exams are highly encouraged. After graduate school at Rush for my MLS degree I had to sit for the ASCP BOC Board Exam for the professional credentials of a Medical Laboratory Scientist, or MLS (ASCP). When I passed, I was able to advance in my career then and have excellent opportunities that would be unavailable otherwise. More so, certain jobs would have been completely unavailable to me without those clinical credentials! I would say that like ASCP cites 70% of patient results originate from the lab, 70% of my CV depends on those professional credentials.

aki-fig-1
Figure 1. A previously renewed ASCP BOC certificate, proudly displayed.

This brings up a somewhat related point. There is a professional debate that’s been going on for a few years: board certification vs. regulatory licensure. Organizations like ASCP and CAP have been on board with licensure for a while, citing the critical roles we play in patient care and the specialized education training required. An article from 2015 had circulated well explaining the advantages and regulatory compliance improvement offered by licensure as medical laboratory science evolved since the Clinical Laboratory Improvement Act of 1988 (known as CLIA ’88). Those authors established that virtually all laboratory professional organizations, as well as local state public health departments, favor licensure to guarantee regulatory oversight for the quality of personal and testing results (Rohde et al., 2015). With so many questions today about what qualifies laboratory personnel since the Center for Medicaid Services decision in 2016 that says a bachelor’s degree in nursing is sufficient to perform and manage laboratory moderate to complex testing, professional organizations like ASCP, CAP, and ASCLS continue to investigate what measures would maintain quality and regulations for positive patient outcomes.

aki-fig-2
Figure 2. States with licensure, and without. I was trained and practiced medical laboratory science in Chicago, Illinois, a state that does not require licensure. (Rohde et al., 2015)
aki-fig-3
Figure 3. These graphs show the number of sanctions under CLIA imposed on labs in the following states. This demonstrates the ineffectiveness of CLIA improving laboratory testing or personnel quality. (Rohde et al., 2015)

Like the EMS exam, the USMLE is absolutely mandatory if I in any capacity wish to continue my medical education, match into a residency program, and ultimately practice as a physician. So, as daunting as these tests might be, they provide a good benchmark standard for the quality of physicians from around the world who want to practice in the United States. USMLE actually has a series of four board exams I’ll be taking in the coming years—so bear with me as I try to stay positive. The Step exams check the depth and breadth of one’s understanding of medical concepts from anatomy to the minutiae of biochemistry. Like ASCP’s board exam, it was a mix of hematology, microbiology, immunology, with added clinical vignettes and patient outcomes. At the end of the test day, I didn’t have a single neuron left working at 100%, but I’ve since recovered. And now it’s onto the next chapter: clinicals. Hope to catch you all again soon, as I’ll try to write up some interesting lab-related cases I will most assuredly come across. Thanks!

 

aki-fig-4
Figure 4. One of many medical students’ bibles. (Stock photo from Amazon.com)

References

Rohde, R., Falleur, D. Ellis, J. (2015) “Almost anyone can perform your medical laboratory tests – wait, what?” Elsevier.com March 10th, 2015; retrieved from: https://www.elsevier.com/connect/almost-anyone-can-perform-your-medical-laboratory-tests-wait-what

 

Centers for Medicaid and Medicare Services (2016) Personnel Policies for Individuals Directing or Performing Non-waived Tests, Revised due to typographical error under citation of §493.1443(b)(3). Center for Clinical Standards and Quality/Survey & Certification Group. April 1, 2016; retrieved from: https://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/SurveyCertificationGenInfo/Downloads/Survey-and-Cert-Letter-16-18.pdf

 

ckanakisheadshot_small

Constantine E. Kanakis MSc, MLS (ASCP)CM graduated from Loyola University Chicago with a BS in Molecular Biology and Bioethics and then Rush University with an MS in Medical Laboratory Science. He is currently a medical student at the American University of the Caribbean and actively involved with local public health.

Components of an Online CLS Course

When interviewing prospective candidates for Mayo Clinic’s program in medical laboratory science (MLS), I provide an overview of one of our blended courses and compare and contrast it to one of our more traditionally taught (lecture-based) courses. This gives me the opportunity to emphasize expectations and recommended study habits based on some of the “best practices” we’ve learned from our students.

Our online MLS courses include the following components:

  • Syllabus
  • Weekly calendar
  • Online lessons
  • Homework assignments
  • Discussion boards
  • Study guides
  • Self-assessments
  • Practice exams
  • Resources (links to related online resources)

Our students are expected to review each online lesson before coming to class as preparation for their laboratory session. Since we teach “immersion style” courses, two at a time (where a typical four-credit course is condensed into six weeks), we recommended that our students plan to study a minimum of 4 to 6 hours per day.

Each lesson is presented in a written format, following instructional-design recommendations for online learning that includes “chunking” of the content—using bullets to convey information instead of complete sentences (where appropriate) along with concisely written text that emphasizes “key concepts,” graphics, and images. The lessons are straightforward and present basic knowledge, and the higher learning concepts are integrated into the discussion-board assignments.

Each online course is easy to navigate and is presented in such a way that it’s intuitive and requires little “outside” instruction. All the courses in our program follow the same format, so once the students become familiar with navigation of their first course, they do not have to re-learn the lesson format each time they start a new course.

We provide a study guide of objectives for every written examination. Our students are encouraged to create a learning document from the study guide that they can use for review over the duration of the program and to prepare for their national certification examination in medical laboratory science offered through the American Society for Clinical Pathology.

To give you an idea of how our online courses are designed in Blackboard Learn, I have taken a series of screen shots demonstrating the layout of a course and lesson plan (shown below).

When our students log into Blackboard Learn and open a course, they land on the home page, which includes a navigation menu and links to the syllabus and introductory discussion boards. The home page discussion boards include “student introductions,” “faculty expectations,” “updates and handouts,” “ask your instructor or classmates,” and an “MLS Café” (for social interactions).

1_Welcome

From the menu, our students can open the course content. The first page opens to the weekly course calendars. At a glance, our students can examine the week’s activities.

2_Weekly Calendar

Clicking the “Course Week” link opens the week’s lesson plans.

3_Lesson Plan_Week 2 List of Lessons

Each lesson is formatted the same way and begins with a brief description, overview (goals or learning objectives), author, and references.

4_Lesson Plan_Overview

The second page is a table of “steps to completion” so that our students know exactly what is required of them.

5_Lesson Plan_ Steps to Completion

The lesson is presented in a written format. A table of contents allows the students to navigate the pages of the lesson.

 

 

6_Lesson Plan Introduction

The lesson concludes with a self-assessment. The self-assessment is embedded in the lesson, includes feedback loops, and is also linked to the home page menu. The students are able to take the self-assessments as often as they’d like, and the course grade book is set to record their highest score.

7_Example of Self Assessment

In this course, there is a weekly discussion board. The students are directed to work as a team in assigned groups to answer the questions in the discussion. Credit for this discussion is based on participation in the thread and “substantive” contributions to the dialogue. Students are encouraged to build upon one another’s commentary, generating comprehensive answers to the questions. Each group member must contribute at least two to three substantive answers to receive credit for the assignment. One group member is designated to post a summary of the discussion on behalf of the group.

8_Example of Discussion Board

There are 15 didactic courses in our MLS curriculum. All of our courses have an online component with approximately one-third of the courses applying the “reverse-lecture-homework” paradigm, one-third are lecture based (traditional), and one-third are a combination of both.

This variation in presentation of content provides our students a mixed learning experience, and the online format allows for us to map everything out for them. Additionally, the curricular model itself lends to the formation of study groups, which in turn helps our students build upon their teamwork and communication skills.

Since our program was instituted 10 years ago, we have seen excellent outcomes, with 100% graduation rates, 100% employment of our graduates, and 96% first-time pass rates on the national certification examination (based on a three-year average). Notably, the breakdown of the certification results by category demonstrates that overall student performance in content areas of the curricula that apply the reverse-lecture-homework paradigm are, on average, higher than those categories following a traditional course format (i.e, lecture-based).

 

Lehman_small

-Susan M. Lehman, MA, MT(ASCP)SM graduated from the University of Wisconsin-Madison in 1983 with a BS in medical technology. She is program director for the Medical Laboratory Science Program and course director for Clinical Microbiology I and II; her areas of interest include distance education and education methodology.

 

Applying the Flipped Classroom to Medical Laboratory Science

Our Medical Laboratory Science (MLS) program curricular model applies the “reverse-lecture-homework-paradigm” (more commonly known as “flipping the classroom”) to the majority of our didactic courses. For our MLS program, this model works best for those MLS courses that we are able to provide strong hands-on laboratory lessons in our classroom setting. For those courses that are not amenable to this (like clinical chemistry where the laboratory procedures are highly automated), we provide the learning content in a traditional lecture-based format with supplemental laboratory lessons. This combination of approaches to instruction and learning—whereby we provide both traditionally designed courses (live, synchronous, “face-to-face” learning) and online courses (virtual, asynchronous, distance learning)—ends up supporting all of our students’ varied learning styles.

As an example, in our course in bacteriology, we can teach hands-on laboratory lessons using manual procedures for identifying bacteria that can be readily instituted in our program classroom/teaching laboratory. Because we can easily reproduce these techniques for our students, we use the flipped-classroom approach in this course and provide all of the lecture material as online learning lessons that our students complete as homework before the next day’s laboratory session. By having our students complete the lecture material as homework, we can dedicate more classroom time to learning laboratory techniques that are more closely anchored in what our students are going to do for a living.

From the standpoint of education theory and Bloom’s cognitive domain of learning, lesson content that requires basic recall of information (knowledge and comprehension) is presented as homework in the online lesson. In the hands-on laboratories, more of the higher level cognitive domains of interpretation and problem solving are applied, and the lab techniques are performed in the presence of the instructor, allowing for greater instructor-student interaction, questions, and joint problem solving.

The instructor role radically changes in this model, and he/she is no longer put in the position of “expert at the lecture podium,” allowing for greater opportunity to partner with the students in the classroom as a facilitator or guide in their learning. The literature commonly refers to the redefining of the instructor’s role in educating the student as moving away from being the “sage on stage” to that of facilitator or “guide on the side.” Our instructors have more time to help the students hone their laboratory techniques and apply the learning material in context and also answer questions.

Our instructors have found the experience rewarding, and they have been very successful using this format. They are able to partner with our students more collaboratively, and they can assume more of a mentorship role. It should be noted that there is a substantial amount of front-end time required to build the courses. Each lesson plan includes learning objectives, an online lesson, a hands-on lab, and a self-assessment. Our courses also include online discussion boards, homework assignments, and study guides for exam preparation (both written tests and laboratory practicals). Once an online course is built, however, we have found that it is easier to update and maintain versus a lecture-based course that may need redevelopment when instructors change.

The students’ role in the classroom also changes. When they are presented with the lecture material as online homework, they gain a newfound control over the material that doesn’t exist in a face-to-face traditional lecture format. They have control over when they study the learning content and the length of time they study. They can go in and out of the online lecture content as often as they want. The lesson material can include links to additional resources that they can delve further into if they desire. This format places each student in the “driver’s seat,” and the student moves from being a passive learner to active.

As for our students, they consistently come to class prepared for each hands-on activity, ask questions, and perform well on their written and practical examinations. Our students tend to form study groups outside of the classroom, and they review and process the online content with their peers, which results in a classroom environment that is collegial, team-oriented, and mutually supportive.

Reference

Bloom, Benjamin S., (Ed.), Taxonomy of Education Objectives: Handbook I: Cognitive Domain, N.Y., David McKay Company, Inc. 1956.

 

Lehman_small

-Susan M. Lehman, MA, MT(ASCP)SM graduated from the University of Wisconsin-Madison in 1983 with a BS in medical technology. She is program director for the Medical Laboratory Science Program and course director for Clinical Microbiology I and II; her areas of interest include distance education and education methodology.

The Learner Experience in a Blended Model of Curriculum Delivery

Key to successful delivery of an online course (or as in our case, a blended model of online and traditional), along with achievement of the learning objectives, is the learner experience. I’ll never forget the feelings of trepidation I had on our first day with our inaugural class, piloting this new model of curriculum delivery with our bacteriology course.

Our lesson plan requires that the students prepare for class by studying the online lecture material as homework, prior to the next day’s laboratory section. Our students were excited about starting our program and eager to learn, yet some were hesitant. I remember one student stating that they “might not be so sure about this new format.” After all, we hadn’t tried it before, and to be frank, it was scary. I remember thinking to myself, “What are we going to do if they do not study the online content? What if they do not prepare for class? What if they dislike this format? What will we do if they flunk their first exam?
Fortunately that was not the case, and our student’s performance in our program has been and continues to be highly successful.

Alex, a student in our current class put it this way:

“It is worth noting that this is not your typical college course. The program here really emphasizes the “reverse classroom” technique. For those unfamiliar, this term means that one will read about the lesson the night before and come to class the next day and perform a laboratory assignment based on that reading.

I came into the program experiencing nothing like this before, so I wasn’t sure how this learning strategy would work for me. After completing our didactic schedule, many of my peers would agree with me that this learning technique is fantastic and is very beneficial to the overall learning experience.

However, to maximize this benefit, time management is vital. Simply reading the lesson at the last minute does not cut it. Whether it helps you to take notes as you go, doing a re-read, or fill out a study guide, this style of learning is a classic example of getting out what you put into it.”

I loved hearing our student reflect that “you get out of it what you put into it.” To me, that is the ultimate goal of education, to prepare our students to be able to think critically and self-direct their learning. In this regard, our inaugural class was a success.

 

Lehman_small

-Susan M. Lehman, MA, MT(ASCP)SM graduated from the University of Wisconsin-Madison in 1983 with a BS in medical technology. She is program director for the Medical Laboratory Science Program and course director for Clinical Microbiology I and II; her areas of interest include distance education and education methodology.

Laying a Foundation for a Blended Curriculum Model

In the late 1990s—early 2000s—we were faced with a critical shortage of graduates in clinical/medical laboratory science, and we started evaluating the benefits of having our own program. Once we made the decision to seriously consider implementing our own program, I pitched a proposal for a blended model of curriculum delivery. My proposal was accepted by the Mayo Clinic School of Health Sciences as a pilot program to be supported by our newly created education technology center. Since our program and the education technology center were both new, we certainly experienced some growing pains. Also, had I known we’d have to reconstruct major elements of our online content every time we upgraded our content management system, I might have thought twice about it!

In the end, it was all worth it because today, we have an outstanding program built upon a solid foundation of both traditional and online content delivery that leverages our staff infrastructure and can be effectively managed and maintained over time.

In the curricular model developed for our academic program in Medical Laboratory Science (MLS), the didactic component is provided in an e-learning platform (Blackboard Learn) and is underscored by Transactional Distance Theory (Moore, 1991), in which the three modalities of learner interaction with content, instructor, and fellow students are integrated into the online module. Each lesson plan includes a laboratory module taught by traditional methods of interaction between the instructor and student in a classroom setting. A constructivist learning environment is facilitated, and each lesson plan is closely anchored in the context of the work the student will perform upon employment.

Here is a simple diagram of our curricular model:

mls-curricular-model_simple-diagram_1

The following learning theories define our program curricular model:

  1. Transactional Distance Theory (e-learning theory): The online lesson plan includes learner-content interaction, learner-learner interaction, and learner-instructor interaction.
  2. Constructivism: The roles of both the teacher and student are redefined in this educational model. The teacher moves away from the traditional role of “sage on stage” to that of a “facilitator” of the student’s acquisition of knowledge. The student becomes a more active learner in this model, moving away from the traditional role of passive learner.
  3. Anchored Learning:
  • Information is taught in the context of how the learner will apply it once he or she is working.
  • The online homework lesson correlates with a hands-on laboratory lesson designed to reinforce the e-learning content.
  1. Reversing the Lecture-Homework Paradigm (Moses, 2002): The traditionally taught lecture is provided as an online homework assignment.

Embracing technology has provided a means by which we can improve our teaching methods and promote change in our education infrastructure. More than half of our didactic courses in our MLS Program apply the new education strategy I learned about as “reversing the lecture-homework paradigm” (more commonly known as “flipping the classroom”). Instead of going to lecture, our students complete web-supported didactic modules asynchronously as “homework” assignments, allowing more classroom time for laboratory instruction.

By providing more hands-on laboratory lessons, we are giving our students the opportunity to practice laboratory procedures and apply new learning material in a way that corresponds more closely with what they will do for a living after they graduate. Instead of giving the typical “one-directional lecture” with limited opportunity for dialogue, our instructors are able to spend more time with our students, teaching practical applications of the content, answering questions, and helping problem-solve.

References

  1. Moore, M. G. (1991). Editorial: Distance education theory. American Journal of Distance Education, 5(3), 1-6.
  2. Moses, G. A. (2002). e-Technology must enable big education goals. Proceedings of the 2002 e-Technologies in Engineering Education (eTEE) Conference, Switzerland, Vol. P01, Article 20, 142-145.

Lehman_small

-Susan M. Lehman, MA, MT(ASCP)SM graduated from the University of Wisconsin-Madison in 1983 with a BS in medical technology. She is program director for the Medical Laboratory Science Program and course director for Clinical Microbiology I and II; her areas of interest include distance education and education methodology.

Online Learning for Clinical Laboratory Science Programs

What does “Reversing the Lecture Homework Paradigm,” “Transactional Distance Theory,” and constructivism have to do with teaching? Everything! These are all education theories that can provide a road map for creating a solid learning strategy in the online world of distance and blended education.

In 2008, when our first class of medical laboratory science students came to class, there was no lecture, nor furious note taking. Instead, when these 24 students met face-to-face, they came to our new teaching laboratory at Mayo with their first lesson already under their belts and finished assignments in hand. My intent for this blog post (and those to follow) is to talk about the strategies we implemented to bring up our 43-credit medical laboratory science curriculum as a blended learning model, incorporating both online and traditional methods, and I will also share our experiences.

We can all relate to the desire to have the latest and greatest online lessons that entertain like movie trailers and infomercials, but medical laboratory science faculty often work within the constraints of a budget that translates into a “DIY” model. Knowledge of related education theories is important because it helps us prioritize and understand what really makes for effective online learning experiences. It turns out that it’s not necessarily the “bells and whistles” within a lesson plan but the quality of the actual written content, how it’s formatted, and how readily the learner can navigate the online software platform.

If you are at all like me, you probably took on educational responsibilities because you have a passion for teaching and learning and a desire to utilize your creative side. I began this journey back in 1998 when my employer partnered with another academic center to offer a degree in medical laboratory science for our employees through distance learning. I quickly realized that I knew very little about online learning theory and enrolled in a distance education certificate program at the University of Wisconsin – Madison, my alma mater.  The experience and success of our partnership delivering a distance education program for our employees gave us the confidence to bring up our own accredited program utilizing a blended model of curriculum delivery. In the upcoming months, I will outline our specific online learning strategies, discuss our experiences and highlight our successes and challenges.

 

Lehman_small

-Susan M. Lehman, M.A., MT(ASCP)SM graduated from the University of Wisconsin-Madison in 1983 with a BS in medical technology. She is program director for the Medical Laboratory Science Program and course director for Clinical Microbiology I and II; her areas of interest include distance education and education methodology.

Education Proposals for ASCP’s 2016 Annual Meeting

Are you interested in presenting an education course at ASCP’s 2016 Annual Meeting? If so, the call for proposals is now out. You can find it at the direct link below.

ASCP’s 2016 Annual Meeting will be held at the Mandalay Bay Hotel & Casino in Las Vegas, NV on September 14-16, 2016.

Click here to access the 2016 Call for Proposals submission site