A New MLS Graduate’s Experience

I wrote last as a student in the medical technologist program at NorthShore University Healthcare System in Evanston. Now, as my first post as a certified medical technologist, I wanted to share what the journey was like becoming certified, finding a job, and transitioning into the professional arena.

Throughout the program, I felt relatively confident in the material and what we were learning and applying in rotations. We took about 1000 tests over the course of the program – at least that’s what it felt like. When the ASCP BOC exam began peaking its head, I wasn’t too intimidated. To me, it was just another test.

The first step was registering for the exam. My intention was to take the exam the day after I graduated, but I was bad and waited one month prior to graduation to register (it can take up to 45 business days to process). Don’t do as I did! Thankfully, the process was quicker than expected and I was only delayed one week after graduation.

The last four weeks of my program were intimidating to say the least! We had cumulative finals in addition to simulated board exams. Therefore, my BOC exam studying began through preparing for these. One of the most valuable resources that I cannot recommend enough is LabCE by MediaLab. I first discovered LabCE through their manual UA and differential simulators, but then discovered that they have testing simulators which our program director used to create practice exams for subjects and for the BOC exam. Their questions range in difficulty and each one has an explanation, which presents a great way to study (at least for me). It helped me develop study guides on material I consistently got wrong or completely forgot.

Two weeks before my exam, I discovered the BOC CLS study guide. I immediately paid for overnight shipping and received it the next day. This turned into my main study tool – I do best quizzing myself, then reading up on topics I got wrong. I would be lying if I said I felt confident when I received that book and went through the first 50 questions. I felt incompetent. Despite my previous review and studying, I felt as if I discovered an entirely new language. The book is very detailed and covers everything from a to z for laboratory science, with some topics only being covered briefly in school. As time went on, the shock factor wore off and I continued to focus on the things I no longer remembered and believed were important.

Despite the endless hours studying, I felt that there was much left to cover and the night before my exam I remember feeling overwhelmed. There is only so much information the human brain can store without the hands-on experience that ingrains what you learn. Throughout the test I felt as if I were failing, something that seems to be common place among BOC test takers. When it was time to see my score, my hands became clammy. Despite the suspense, I passed! When I received my scores later, I did much better than expected!

So, my concluding advice while preparing for the BOC exam is to focus on summarizations of your notes and to review all your formulas throughout your program. Go through as many practice exams as possible to help you see where you’re lacking and to prepare you for the wording on the BOC exam. Throughout my program, I would type up one to two-page notes for exams for later review. These were helpful when I had to go back and review things I did not remember. Additionally, despite the amount of studying you do, there is bound to be information you will not know and that’s okay. You know more than you think you know and through review you will only increase the recoverable information that is already in your head.

Lastly, I wanted to speak about the process of a new grad finding a job and transitioning from a student to a health professional. As I went through rotations, my passion for each specialty changed. At first, I wanted to be a generalist because I wanted to be more marketable and do everything. Then it was blood bank, then micro, and then came molecular (yay!). I began my job search about 2 months before graduation, and applied for those jobs about a month and a half before graduation. Being a soon-to-be new grad, I knew that I might not end up in the exact field I desired right away (which was molecular). I applied for mostly blood bank, micro, and molecular jobs – as these were of the most interest to me.

I applied for about 6-7 jobs in total and I ended up discovering, and eventually obtaining, my current position as an HLA molecular scientist at Northwestern’s transplant lab in Chicago. Throughout the interview process, being 100% honest of what you do and don’t know is the most important advice. Most employers ask a lot of detailed questions only to gauge where they need to start in your training. A good rule of thumb to remember is that if you’re a new grad being interviewed, then the employer is already okay with the fact that you don’t have much experience or knowledge of the specialty.

Before starting, a lot of people warned me about specializing immediately after graduating. While I hear their concerns, for me I plan on staying in the molecular field for the rest of my career – there are many opportunities and molecular is only becoming more and more advanced/widespread.

Now that I am 2 months into my job, I have fallen in love with it. There is endless opportunity to continue learning and to challenge myself. Walking into this specialty, I had two HLA lectures and nothing more. While my first month and a half mostly consisted of DNA isolation and cell lineage DNA isolation for chimerism tests, I have finally started training on an assay and data analysis for engraftment monitoring (chimerism). As a new grad in such a specific specialty, I have accepted that there will be a large learning curve. My advice is to keep your mind open to learning new things and fuel your motivation to learn more and more. Never stop asking questions and never turn down resources others hand you that have helped them.

As I gain more experience in the HLA world, I plan on writing articles tailored to this field and sharing what I learn. I hope my experience as a new grad helps others approaching this new time in their lives and gives them a sense of direction/confidence.

-Ben Dahlstrom is a recent graduate of the NorthShore University HealthSystem MLS program. He currently works as a molecular technologist for Northwestern University in their transplant lab, performing HLA typing on bone marrow and solid organ transplants. His interests include microbiology, molecular, immunology, and blood bank.

A Pathology Emergency

Hi everybody! Welcome back. Thanks for following along last month’s update on Zika epidemiology and clinical lab crossovers. This time I’ve got a story to tell…

This is my last month of medical school! And, as such, I decided to go out with a bang and finish up with my last rotation in Emergency Medicine at The Brooklyn Hospital Center. It was a fantastic month! One would think that EM and Path are two very distant specialties, but they are more alike than you might realize. That could be a whole separate article but consider this: managing critical situations, ensuring fast-paced accurate response times, engaging in high-stakes algorithms, and making sure mistakes are caught early. Sounds to me like there’s lots of overlap…remember my discussion on high reliability organizations or the critical role interdisciplinary medicine plays in creating good patient outcomes? All things aside, all clinicians have a critical role to play, but what happens when you put an (almost) pathologist in an emergency room?

Basically, you get me having a fun four weeks—I used to be an EMT and help teach EMS courses, so I do like this stuff. But something else happened this month that really made this experience special…

Image 1. Typically, med students have minor roles to play in real-life critical codes, but some of our duties include managing monitor attachments for vital signs, securing peripheral IV access, obtaining emergency labs, and other supportive measures while the rest of the code team manages…well, the resuscitation efforts. Source: Life in the Fast Lane.

Saturday, July 27th. I got to sleep in because I was on the night shift for four days. No big deal. When I finally got to the hospital, there was pandemonium. Extra ambulances in the loading bay, a couple squad cars outside, a stab wound victim in the trauma bay, lots of noise and folks everywhere—what was routine hospital stuff somehow seemed like I was in the middle of filming an actual episode of ER. (I’m obviously partial to particular shows…okay, maybe Chicago Med?) When I report to my team, I learn that the computers have been down. All day. No electronic health records, no charting, no histories, no internet to look up guidelines/recommendations on UpToDate—and most tragically: no lab results.

Ok. This is it. I’m on the other (read: clinical) side of an awful downtime shift. I’ve experienced plenty of downtime in the lab, but this night I took a deep breath, reminded myself its going to be okay, and did my best to label things right. But a problem appears that’s more serious than labeling type and screens the right way without a computer: results are backlogged for hours! I’m talking no blood gases, no lactic acids, no pregnancy confirmations! I overheard senior residents and my attending that night talk about how the lab is struggling and they didn’t have enough people to figure out this downtime debacle.

This was a moment. It’s not often med students get to be literally useful in any clinical situation but after high-speed thinking about it, I interjected and made my elevator pitch:

“Dr. X, Dr. Y – I’ve got several years of hospital lab experience and lots of background in managing crises and downtime situations, if you want I’ll head over to the lab and see if I can help this situation at all, at least for the ER…”

There was a short pause. Then an enthusiastic wave of approval with hands waving me to go help out our laboratorian colleagues. Please note: the instances where tidbits of knowledge as a medical laboratory scientist prove useful as a medical student on rounds are far and few between for their ability to really captivate a group of doctors who identify themselves far from any lab medicine; so, this was a win. Explaining the importance of order of draw, or why sensitivity goes down when you don’t adequately fill blood cultures, or why peripheral smears should come with some interdisciplinary caveats aren’t quite as sexy as an emergency room, on metaphorical fire, with no one but you knowing anything about how labs work.

So, I ran on over to the laboratory, fully intending to do what I could to help in my unofficial just-a-friendly-neighborhood-med student capacity. That’s when I met Jalissa Hall!

I walked into the main lab area and asked if I could talk to the supervisor, thinking I would just explain my experience and offer what I could to their staff who I’m sure were buried in downtime SOPs and make sure I got critical results back to my team in the ER—a win-win! When I asked who was in charge, a very busy Ms. Hall walked out from behind the chemistry section and said, “you can talk to me. What’s going on?” I’m sure she thought I was there to complain, seemingly like many other clinicians were, but I stopped and gave her the same elevator speech I delivered moments ago with the postscript: “what can I do for you?” I remember she stopped, thought about if for roughly 10 seconds, and presented me with her situation briefing:

  • Computers have been down since roughly 05:00 am
  • There’s a computer virus that had all servers shut down indefinitely
  • There’s no communication between the hospitals EHR and the labs LIS
  • Moreover, no patient information is coming across to the analyzers (MRNs, specimen IDs, etc.)
  • There are 4-5 critical units (ER, OR, ICU, OB, NICU) that require STAT results
  • Clinicians have been coming to the lab all day looking for informal results reporting
  • The limited lab staff has had to manually print results on paper and work to match them with barcodes, specimens, and manual requisitions before releasing results
Image 2. Jalissa Hall, MLS(ASCP) (left) and a very tired me (right) after a great night of solving lab-related communication problems! Anyone else need an emergency room pathologist? Sounds like a new clinical specialty/fellowship to me…

Deal. I know I can’t jump on the analyzers because New York is one of the states that requires clinical laboratory licensure (which I do not hold). In my informal survey I noted three medical lab scientists (including Ms. Hall), someone in specimen processing, and someone in blood bank. Basically, in order to make sure the lab could operate at peak performance with what they had, I helped alleviate the “paper problem” for them at least for the ER specimens. I matched requisitions with instrument raw data, made copies for downtime recording, delivered copied results to the ER, rinsed, lathered, and repeated—for eight hours! I obviously had to toe the line for the ER results, but there were other nurses and doctors who came in for the other areas’ results. No one worked more than the folks in that lab that night, and no one more so than Jalissa. After things cooled down a bit, I got the chance to connect with her and talk about her career and asked if she had anything to share with all of you—she definitely did.

Lablogatory family: please meet Jalissa Hall, MLS (ASCP)!
(Responses paraphrased because, honestly it was late, and downtime was busy, and we were tired, ok?)

Jalissa has been working for about five years as a generalist, with two jobs—like most of us have done. She works at The Brooklyn Hospital Center as a generalist and at NYU Hospital Lab in their hematology section. She is a graduate from the excellent MLS program at Stony Brook University in NY. She’s got ambitious career goals that are aimed at climbing as high as she can in laboratory medicine, and she’s got the enthusiasm and work ethic to match! I got the chance to ask her some real questions, during a real down-time crisis. This is what she had to say:

What made you go into laboratory medicine?

JH: I really want to help people. I love the behind-the-scenes aspect of being a medical laboratory scientist, but I think sometimes it can be too behind the scenes…

What did you think of tonight’s downtime issues?

JH: …it could have gone better. There seems to have been some panic, people kept walking in and shuffling the papers around. I tried my best to organize by floor, have two copies of each result (one for us and one to send upstairs), and requisitions match orders, but it was difficult. We have a downtime protocol, but we just couldn’t keep up with the volume and extent of how long it’s been down for. There’s really been no help outside the lab to work with us during this time so it’s a challenge.

What could have happened better?

JH: No outside help meant no room to breathe. On the inside, supervisors off duty tonight called staff in but none were available to come in. We don’t have an on-call person. We’re understaffed or short-staffed like so many labs out there; it’s problematic.

How is this going to look tomorrow?

JH: It’s not looking good, haha! Morning draw is definitely going to have a hard time. Catching up with these backlogs is one thing, but if orders can’t come across the LIS we’ll have to address that problem for sure. We’ve got a great staff though, so I’m sure it’s going to be fine.

What would be your “top tips” for all our fellow laboratorians reading this?

JH: First and foremost, being driven matters. If you want to get ahead, if you want to excel and climb high within an organization or in our profession, you have to work hard and keep working toward your goals.

Pro-tip #1: One of the biggest issues is “vertical cooperation.” Basically, some call it administration-buy-in, but it means administration working with employees in the lab to make the best decisions for our patients. If employees are burned out or if there aren’t enough resources to effectively perform our responsibilities it creates risks! It all comes down to patients, and making sure we’re in the best position to deliver diagnostic data for them means considering all aspects of lab management.

Pro-tip#2: If we want to fix the workforce shortages our labs regularly experience, we have to increase our efforts in advocacy within our profession. Having programs increase awareness of this job as a profession increases the pull and interest of potential new partners to work with. My school did it, other schools do this; increasing the number of programs that expose students to career opportunities in lab medicine would address our short-staffing problems everywhere!

Pro-tip #3: TELL OTHERS ABOUT OUR PROFESSION! I talked about our role being too behind the scenes…well the way to fix that is professional PRIDE! Own our accomplishments, share our role, advocate for our recognition, celebrate our peers!

Pro-tip #4: The future is not scary. Lots of folks shy away from tech advancement, fearing that automation and other developments mean losing jobs—it doesn’t. Why can’t today’s lab scientists become tomorrows experts on automation, LIS software, and other aspects of our cutting-edge field?

It was a pleasure to meet Jalissa and even better to work alongside her and learn about her passions and goals within the field we both care about! It was particularly special for me to be able to use my knowledge and experience to really contribute to my clinical team and bring laboratory medicine to the forefront where it doesn’t often shine!

Image 3. In a fantastic book I read recently, the authors of You’re It: Crisis, Change, and How to Lead When it Matters Most talk about leadership as a moment—a moment where you step up to a situation because you have skills and experiences which make you uniquely qualified to serve in a role which aims at a positive outcome. I had a small version of that in front of my attending (important for evaluations in medical school of course), but that downtime night was Jalissa’s “you’re it” moment for sure! (Source: Google)

Signing off from any new clinical rotations because this guy’s done with his medical school clerkships! Now I’ve gotta knock out some board exams and go on some residency interviews…wish me luck! I’ll check in with you next month after the 2019 ASCP Annual Meeting in Phoenix, Arizona—hope to see some of you there!

See you all next time and thanks for reading!

–Constantine E. Kanakis MSc, MLS (ASCP)CM graduated from Loyola University Chicago with a BS in Molecular Biology and Bioethics and then Rush University with an MS in Medical Laboratory Science. He is currently a medical student actively involved in public health and laboratory medicine, conducting clinicals at Bronx-Care Hospital Center in New York City.

Slide Review and You

Welcome back everybody!

Last month, I wrote about some projects I did while rotating through the pathology program at Danbury Hospital in Connecticut. This month I’m in a more clinical setting with a hematology/oncology clerkship at Northwell’s Staten Island University Hospital. But, over the past few months of rotations (and arguably a lot longer before medical school) I’ve been noticing a part of laboratory medicine which often intersects with our clinical colleagues at the bedside. I’ve told you about the pitfalls and successes in the relationships between surgeons and anatomic pathologists before, where frozen sections are critical and time is of the essence. And we’ve all seen collaboration between the bench and bedside before—think microbiology and infectious disease, blood bank and literally everyone, etc. Still, one collaborative effort sort of happens behind the shadows, behind phone calls and lab reports, and sometimes with no communication at all! So, what kind of vigilante medicine am I talking about? Who is this Batman of medicine? It’s just our friends in hematology.

When you’re working the hematology bench in the lab, it’s pretty commonplace for a physician on a hematology service to call and ask for a peripheral smear to review. Many times, it’s for the purpose of teaching residents, fellows, or medical students but more often than not it’s a confirmatory exercise. See, when that hematologist asks to review a slide, she’s probably coming down to the lab to look at the morphology of red cells and white cells to help in their differential diagnosis. They might have a patient with a suspected thalassemia or hemoglobinopathy and, before starting the full work up of lab tests, just want to see if there are any RBC morphology traits or target cells that stand out. Thrombocytopenia? Let’s make sure there’s no platelet clumping. Maybe they’ve got a patient with some kind of liver or kidney pathology and are on the hunt for acantho- or echinocytes. Or better yet, someone went hiking, there’s an infectious etiology on their differential—let’s go hunting for babesia, malaria, oh or even erlichia!

Image 1. Here’s a few examples of three parts of a patient’s smear that are contributory to a particular pathology in vivo. Think you know what it is? I bet you’d be surprised…not all that hyper-segments is a B12/Folate deficiency. But technically it is; read about cobalamin and homocysteine pathology in a neonatal patient here: http://www.bloodjournal.org/content/128/21/2584 (Source: Blood 2016)

I know what you’re thinking. Wait—that’s our job as medical laboratory scientists; our literal job. Our instruments, that we validate, and correlate, and make sure work fantastically give us flags. We investigate those flags and look at smears ourselves! We collaborate with other lab techs, and with our pathologist colleagues and send out final lab results with all kinds of helpful information: including platelet clumping, microorganisms, RBC and WBC morphology, and loads more. What gives?

Hold on to your lab coats. I’ll get there in a minute.

Slide review and differential training in medical school and residency

[This section intentionally left blank]

Image 2. There is nothing wrong with your television set. Do not attempt to adjust the picture. You are about to experience the awe and mystery which reaches from the inner mind to… the bench tech working in hematology. The one who went to school for this? Medical school and residency are starkly devoid of any in-depth, comprehensive learning for differentials.

A Differential, Differential

So let me address the issue I brought up: why do hematologists come down to the lab to look at the slides themselves, when perfectly capable BOC certified, degree-holding medical laboratory scientists and pathologists sign out validated differentials? It might not happen this way at all hospitals, but I think the answer is a simple two-part problem.

First, as with the many things I’ve learned in medical school, one of the lab-centric pieces of information that is well understood is that, well, no one really knows what the lab does and how it operates. Virtually nobody knows the depth and breadth of the testing that pathologists manage, let alone the scientific precision and accuracy that instrument validation requires. Learning that MLS techs are certified, can hold graduate degrees, and even do their own research is often surprising to most of our clinical colleagues. And—I will tell you for a fact—that pathology and laboratory testing methodology is not covered in medical school the way you might think. Pathology is more of a class of distinguishing the identifying details of a disease, not understanding the interdisciplinary diagnostic teamwork that goes into those CBC index results on a computer screen on the clinical floors.

Second, hematologists are specialists just like any other practicing clinician. They know their stuff! They manage patient diagnosis, treatment, and follow-up with the most up to date literature, national cancer guidelines, and anything else available to better their patients’ outcomes. Despite the notes in the CBC results that there are numerous macrocytes with hypersegmented neutrophils, or 3+ schistocytes reported in a manual differential—seeing is believing. It helps to see the slide yourself and get a feel for the disease “state” with your own eyes. Moreso, it could be a learning opportunity. It’s well within a clinicians’ scope to come down and look at a peripheral smear, I actually encourage it. But it should come with a few caveats…I’ll get to those too…

I-CARE

One of the places I was proud to hang my lab coat was actually my first job as an assistant lab technician in the blood bank at Rush University Medical Center in Chicago. Before I got my MLS and way before grad school or med school, I was a blood bank “expediter.” Super fancy title, but all I did was make sure specimens were logged in and blood products were up to par with labels on their way out. Clerical but critical! (Let me have this, please…haha) Anyway, part of the culture at that hospital has stayed with me all these years. I’ve talked before about culture and the way it permeates an institution’s practice like at the Mayo Clinic, but for my first foray into clinical work their acronym was clutch: I CARE.

  • I for innovation
  • C for collaboration
  • A for accountability
  • R for respect and
  • E for excellence

Why am I telling you this? No, there are no royalties. I just think it’s an easy way to remind ourselves about the meaning of interdisciplinary medicine and they way we should work together across specialties, and from bench to bedside. When we incorporate those values into our work for the purpose of improving patient care and outcomes, everyone wins. In this case, effective utilization of resources tells us that peripheral slide review means different things to different people. In the setting of hematologic work-ups, flags and review at the bench can signal something to the clinician which could spark a conversation with the pathologist. All parts contributing to a whole of patient care. Vigilante medicine is bad news. Collaboration is key.

One place I was lucky enough to be a part of this interdisciplinary collaboration was Swedish Covenant Hospital. One of the hematology physicians would routinely call me and ask to look as peripheral smears down in the lab, often as a group with med students, residents, and fellows. I’d throw the image of his patients’ slides on a large flat screen and go over what certain traits meant with regard to morphology and identification from the lab setting. Dr. Cilley would add what this all meant clinically and discuss treatment algorithms and next steps. That was collaboration at it’s finest: lab tech working with pathologists, clinicians working with the lab, and patient’s benefiting from all of it.

Video 1. ASCP’s 2015 Membership Video. I was super thrilled to be part of this video back in 2015 after winning the Midwest regional ASCP member of the year. If you’re bored enough to make it about 40 seconds into the video, that was my actual desk where Dr. Cilley and his residents would come to discuss patient slides. I would talk to them about morphology and hematologic clues with digital hardware and software to make it clear in group settings, rather than taking turns at the scope. Good times. (Source: https://www.youtube.com/watch?v=86fBRXGrZFo)
Video 2. Dr. Jeffrey Cilley talks about treating cancer as a “team approach” and he’s right. Hematology/Oncology to patient. Lab to clinician. Bench to bedside. (Source: https://www.youtube.com/watch?v=q0waKLyT1Dg)

Teamwork makes the dream work

About those caveats for collaboration I mentioned earlier… Let me put it briefly: it’s well within the scope of a clinician to come over to the laboratory and get some information on their patient’s lab results/testing. But why not consider the following:

  • If a physician calls to review a smear, offer to go over it with them. Likewise, to our clinical friends: if you go to the lab for a slide don’t be batman—ask the tech what they think!

Experienced techs are one of the hospital’s most valuable resources. Some folks I’ve worked with have been looking at slides longer than I’ve been using my eyes at all! They’ll save you and your residents the time when those terrifying intracellular microorganisms are really just overlying platelets. I mean, they’ve got a cute halo.

  • If you need help, just ask. This applies to everyone.

Talking with the tech about the slide is great start, but there’s more resources in the lab than most people know what to do with! Clinical physicians: check the shelves around the hematology microscope. Stuck on something? Find a CAP atlas or a proficiency survey booklet guide. Easy to read. Techs and pathologists: have someone who constantly comes down for slide review despite your immaculate and detailed SOPs on CBC results reporting? Have a quick chat about the work that goes into resulting those diffs—you might even improve your heme TAT, who knows?

  • If it’s well within the right of a physician to leave the unit and see a patient’s slide, logic says that maybe, just maybe, it should be okay for a pathologist to leave the lab and see a patient at the bedside!

Hospitals are full of never-ending rounding white coats, all asking patients questions, and all contributing specialty notes to their charts. But its not only to prevent patients from getting a decent nap. We’re all parts of a large interdisciplinary patient team. A recent Medscape survey found that somewhere around 3% of pathologists see patients, routinely! Got an interesting case in the lab, someone who’s part of lots of tumor boards, someone with an interesting case to write up, or even someone who nobody knows exactly what’s going on with? Try walking over to 4 south and have a conversation with Mr. Jones; it might help. At least he’ll know how many people are working on his care team!

The bottom line: we’re in this together, and like the flag on the ASCP ship says, we’re Stronger Together. Innovation, collaboration, accountability, respect, and excellence are—and should be—simple cornerstones of clinical medicine that translate across every discipline. When we share information and expertise, everyone gets better at what they do.

Bonus Image. This was a hard picture to take. Usually, a quick hematologist just comes down to see if there are any real schistocytes. But, after reading a draft of this post, BatDoc’s cool with chatting about red cell indices and automated flow cytometry methods in auto-diff validation. That’s the hero we deserve, and the one healthcare needs! (Source: https://gunaxin.com/batman-doesnt-police-stop-visiting-children-hospital)

Thanks for reading!

See you next time!

–Constantine E. Kanakis MSc, MLS (ASCP)CM graduated from Loyola University Chicago with a BS in Molecular Biology and Bioethics and then Rush University with an MS in Medical Laboratory Science. He is currently a medical student actively involved in public health and laboratory medicine, conducting clinicals at Bronx-Care Hospital Center in New York City.

Components of an Online CLS Course

When interviewing prospective candidates for Mayo Clinic’s program in medical laboratory science (MLS), I provide an overview of one of our blended courses and compare and contrast it to one of our more traditionally taught (lecture-based) courses. This gives me the opportunity to emphasize expectations and recommended study habits based on some of the “best practices” we’ve learned from our students.

Our online MLS courses include the following components:

  • Syllabus
  • Weekly calendar
  • Online lessons
  • Homework assignments
  • Discussion boards
  • Study guides
  • Self-assessments
  • Practice exams
  • Resources (links to related online resources)

Our students are expected to review each online lesson before coming to class as preparation for their laboratory session. Since we teach “immersion style” courses, two at a time (where a typical four-credit course is condensed into six weeks), we recommended that our students plan to study a minimum of 4 to 6 hours per day.

Each lesson is presented in a written format, following instructional-design recommendations for online learning that includes “chunking” of the content—using bullets to convey information instead of complete sentences (where appropriate) along with concisely written text that emphasizes “key concepts,” graphics, and images. The lessons are straightforward and present basic knowledge, and the higher learning concepts are integrated into the discussion-board assignments.

Each online course is easy to navigate and is presented in such a way that it’s intuitive and requires little “outside” instruction. All the courses in our program follow the same format, so once the students become familiar with navigation of their first course, they do not have to re-learn the lesson format each time they start a new course.

We provide a study guide of objectives for every written examination. Our students are encouraged to create a learning document from the study guide that they can use for review over the duration of the program and to prepare for their national certification examination in medical laboratory science offered through the American Society for Clinical Pathology.

To give you an idea of how our online courses are designed in Blackboard Learn, I have taken a series of screen shots demonstrating the layout of a course and lesson plan (shown below).

When our students log into Blackboard Learn and open a course, they land on the home page, which includes a navigation menu and links to the syllabus and introductory discussion boards. The home page discussion boards include “student introductions,” “faculty expectations,” “updates and handouts,” “ask your instructor or classmates,” and an “MLS Café” (for social interactions).

1_Welcome

From the menu, our students can open the course content. The first page opens to the weekly course calendars. At a glance, our students can examine the week’s activities.

2_Weekly Calendar

Clicking the “Course Week” link opens the week’s lesson plans.

3_Lesson Plan_Week 2 List of Lessons

Each lesson is formatted the same way and begins with a brief description, overview (goals or learning objectives), author, and references.

4_Lesson Plan_Overview

The second page is a table of “steps to completion” so that our students know exactly what is required of them.

5_Lesson Plan_ Steps to Completion

The lesson is presented in a written format. A table of contents allows the students to navigate the pages of the lesson.

 

 

6_Lesson Plan Introduction

The lesson concludes with a self-assessment. The self-assessment is embedded in the lesson, includes feedback loops, and is also linked to the home page menu. The students are able to take the self-assessments as often as they’d like, and the course grade book is set to record their highest score.

7_Example of Self Assessment

In this course, there is a weekly discussion board. The students are directed to work as a team in assigned groups to answer the questions in the discussion. Credit for this discussion is based on participation in the thread and “substantive” contributions to the dialogue. Students are encouraged to build upon one another’s commentary, generating comprehensive answers to the questions. Each group member must contribute at least two to three substantive answers to receive credit for the assignment. One group member is designated to post a summary of the discussion on behalf of the group.

8_Example of Discussion Board

There are 15 didactic courses in our MLS curriculum. All of our courses have an online component with approximately one-third of the courses applying the “reverse-lecture-homework” paradigm, one-third are lecture based (traditional), and one-third are a combination of both.

This variation in presentation of content provides our students a mixed learning experience, and the online format allows for us to map everything out for them. Additionally, the curricular model itself lends to the formation of study groups, which in turn helps our students build upon their teamwork and communication skills.

Since our program was instituted 10 years ago, we have seen excellent outcomes, with 100% graduation rates, 100% employment of our graduates, and 96% first-time pass rates on the national certification examination (based on a three-year average). Notably, the breakdown of the certification results by category demonstrates that overall student performance in content areas of the curricula that apply the reverse-lecture-homework paradigm are, on average, higher than those categories following a traditional course format (i.e, lecture-based).

 

Lehman_small

-Susan M. Lehman, MA, MT(ASCP)SM graduated from the University of Wisconsin-Madison in 1983 with a BS in medical technology. She is program director for the Medical Laboratory Science Program and course director for Clinical Microbiology I and II; her areas of interest include distance education and education methodology.

 

The Unsung Heroes

I have been very pleased to see our professional societies, such as ASCP, become truly active and engaged in bringing attention to the field of pathology, reminding our clinical colleagues that we are in no way the “Doctors-of-the-Lesser-God.” We certainly represent a valuable part of the healthcare team even if our care is provided in a more indirect than direct fashion.

Indeed, I applaud this effort, however, there seems to me to be another missing element that we pathologists, not just our professional society, should embrace. I would hope that we look to expand this to acknowledge the significant role our laboratory staff plays each day on behalf of patient care. The laboratory staff, whether certified MTs, MLTs, phlebotomists, or administrative personnel are the unsung heroes, often forgotten or neglected and without recognition for their much-needed skills and responsibilities. Our laboratory staff represents the legs upon which we stand.

Sadly enough, in my many years in private practice and subsequent consulting, it is apparent to me that pathologists often have very limited interaction with the staff outside of the Histology/Surgical Pathology suite. This is unfortunate as it limits us both professionally and personally. Some of my favorite memories and shining moments from my practice were those that involved getting to know and being a part of the lab team. There is nothing more rewarding than feeling you have learned and participated alongside these co-workers! And there is nothing sadder to me than hearing laboratory staff members say that they have not laid eyes upon a pathologist in weeks or see their physicians only if they seek them out.

Pathologists should be actively interacting with staff in all areas of the laboratory, whether Surgical or Clinical, fostering good relationships and also acting as ambassadors for these staff and their services. We should encourage our clinical colleagues to understand the importance of this group and utilize their expertise as part of the medical team. This helps us all to grow and learn via sometimes differing perspectives which work together to bring quality patient care.

So, while we are utilizing our professional society to grow our own outreach and highlight the important role of pathologists, let us not forget to include our laboratory staff members and what they bring to the table. Make every day the day to support one another and put our cumulative best efforts to quality safe laboratory practice and patient care.

Burns

-Dr. Burns was a private practice pathologist, and Medical Director for the Jewish Hospital Healthcare System in Louisville, KY. for 20 years. She has practiced both surgical and clinical pathology and has been an Assistant Clinical Professor at the University of Louisville. She is currently available for consulting in Patient Blood Management and Transfusion Medicine. You can reach her at cburnspbm@gmail.com.