The ABCs For Designing Sustainable Public Health Initiatives: A Simple Framework For Program Planners

If there is anything the COVID-19 pandemic has taught us, it is the fact that the world is a global village with no country being completely immune from the effects of disease and pathogens. With migration across borders along with its attendant effects of disease dissemination, public health initiatives aimed at improving the health outcomes of populations must be designed with the target population in mind and long-term sustainability prioritized. The health of a community is dependent on the overall health of its people. Public health initiatives are often designed to modify health and disease patterns within groups of people. A key measure of success of any health initiative is its long-term sustainability. Therefore, a framework to guide program planners at the design stage of any public health program is critical to success. This framework can be summed up as the ABCs for designing sustainable public health initiatives.

Appraisal: Appraisal is defined as an act of assessing something or someone. It is an evaluation of a process, system, or population. An appraisal of any given situation or entity is carried out to give the full picture, without redundancy or superfluity. When a thorough appraisal is carried out, it elaborates the situation on the ground, and the best approaches to tackle any challenges. For an appraisal of a public health problem, the following key activities should be included in the program design.

  1. Root Cause Analysis: A Root Cause Analysis (RCA) is a term that describes techniques and tools used to uncover the causes of a problem or failure.1 A RCA is often carried out to get to the bottom of a problem, and not to only focus on the offshoot of the problem-the observable symptom. A thorough RCA defines the problem, answers all the ‘why’ questions, and proffers solutions that lend themselves to evaluations which address the problems.
  2. Social Determinants of health: What makes one community healthy, and the other unhealthy? What factors contribute to the well-being of communities? The social determinants of health are a consortium of factors apart from medical care that can be influenced by social policies and shape health in powerful ways.2 It is important to note that what may positively impact the health of one community, may negatively impact the health of another. Public health practitioners must be able to determine the most important influencers to health and diseases in any community, to potentiate the cost-effectiveness of any intervention. The social determinants of health can be summed up as the 3 G’s:
  3. Geography-The physical environment and all the elements of nature. These include access to clean drinking water, healthy food portions, climate change, global warming, etc.
  4. Goods-These includes the social and economic environment. People’s relationships, income levels, social status, education levels, etc.
  5. Genes-These includes a person’s genetic make-up, which has been shown to have a great impact on health and certain diseases.

Therefore, a thorough analysis and understanding by public health practitioners on the most important contributor to health, and targeting resources to such areas, will increase the likelihood of success of any health intervention or campaign.

  • Influence of Community Stakeholders: A stakeholder’s analysis is a process of systematically gathering and analyzing qualitative information to determine whose interests should be taken into account when developing and/or implementing a policy or program.3 The stakeholders in a process are actors (persons or organizations) with a vested interest in the policy or program being implemented.3 After conducting a stakeholder analysis of the key interest groups, it is imperative to determine the influence of community stakeholders on the proposed public health initiative. Community leaders have a great influence on their constituents. Therefore, the success or ultimate failure of a project depends in part on the role of these key community actors. Vital questions must be asked and answered including but not limited to: what is their interest in the project? What is their knowledge of the project? Do they have an adequate understanding of the major root causes of the problem? Do they proffer alternate ways to address the problem? What is their voting power in the decision-making process? These are some of the key factors that may be considered when trying to determine the influence of community stakeholders on the proposed health intervention.
  • The Role of health models on disease causation, interpretation, and outcomes: The role of the models of health on disease incidence and survival cannot be overlooked. At the crux of any public health problem is the answer to some ‘why’ questions. It is a well-known fact that models of health including the religious, biomedical, psychosomatic, humanistic, existential and transpersonal all have a role to play in disease incidence and survival to varying degrees.4 While one model may play a more significant role in one community, the same may not be the case in another community. For example, while infections and communicable diseases are still a huge burden in many developing countries5 due to environmental and biophysical concerns including limited access to immunizations, the same is not the case in developed countries. Developed countries tend to grapple more with chronic diseases6 such as obesity, diabetes, hypertension, cancers. It is therefore the responsibility of program planners to determine during the design stages of projects, the models with greater impacts on disease causation and outcome. This approach may increase the likelihood of success than the failure of the intervention.

Budget: A budget is a financial statement detailing the income and expenditure of an entity over a given period. Proper budgeting encompasses adequate planning, both for foreseeable and unforeseeable expenditures. A budget should also include the fixed assets and in-kind or monetary contributions of the program to the execution of any public health initiative. A comprehensive budget should take into account direct and indirect costs including but not limited to personnel costs, travel costs, equipment/supplies, consultants, printing/duplication costs, postage, staff training, rent, telephone expenses, heavy machinery, etc. A project with an insufficient budget would be more likely to encounter challenges that may pose as threats to its sustainability, than one which is adequately funded. Therefore, program planners must ensure that their budgets are sufficient enough to run through the entire lifecycle of the projects.

Community buy-in: It would be an effort in futility if after going through the planning and design phases of a project, you discover that a community is not interested in that line of intervention. This would amount to a humungous waste of time and valuable resources. Therefore, program planners must ensure during the design phase of any project, to get the community’s perspective on that particular line of program approach. This is imperative because apart from getting the community’s perspective on a particular proposal, they may also be able to provide valuable pieces of information that may enhance the sustainability of any project. Community buy-in works in tandem with the role of the community’s stakeholders. Successful programs are designed for the people and with the people. In summary, at the crux of any planned public health intervention is the issue of long-term sustainability. Program planners should become familiar with addressing fundamental elements of successful program interventions. A good place to start is ensuring

References

  1. https://www.tableau.com/learn/articles/root-cause-analysis
  2. Braveman P, Gottlieb L. The social determinants of health: it’s time to consider the causes of the causes. Public Health Rep. 2014;129 Suppl 2(Suppl 2):19-31. doi:10.1177/00333549141291S206
  3. https://www.who.int/workforcealliance/knowledge/toolkit/33.pdf
  4. Tamm ME. Models of health and disease. Br J Med Psychol. 1993;66 ( Pt 3):213-228. doi:10.1111/j.2044-8341.1993.tb01745.x
  5. Tadesse GA, Javed H, Thanh NLN, et al. Multi-Modal Diagnosis of Infectious Diseases in the Developing World. IEEE J Biomed Health Inform. 2020;24(7):2131-2141. doi:10.1109/JBHI.2019.2959839
  6. Silvaggi F, Eigenmann M, Scaratti C, et al. Employment and Chronic Diseases: Suggested Actions for The Implementation of Inclusive Policies for The Participation of People with Chronic Diseases in the Labour Market. Int J Environ Res Public Health. 2020;17(3):820. Published 2020 Jan 28. doi:10.3390/ijerph17030820

-Evi Abada, MD, MS is a Resident Physician in anatomic and clinical pathology at the Wayne State University School of Medicine/Detroit Medical Center in Michigan. She earned her Masters of Science in International Health Policy and Management from Brandeis University in Massachusetts, and is a global health advocate. Dr. Abada has been appointed to serve on the ASCP’s Resident’s Council and was named one of ASCP’S 40 under Forty honorees for the year 2020. You can follow her on twitter @EviAbadaMD.

Pathology and laboratory services in low to middle income countries: Challenges and Opportunities for Growth

Successful healthcare systems rely on strong, efficient and reliable pathology and laboratory services. In developed countries like the United States, the role of pathology and the lab in service delivery cannot be overemphasized. Through multidisciplinary tumor board conferences, the central role of pathologists in patient management has become more critical. This reality was further emphasized for me during a tumor board conference, where an oncologist wanted clarification on the difference between invasive ductal carcinoma with mucinous differentiation vs. mucinous carcinoma of the breast. I later learned that the distinction was necessary because of different prognosis and treatment. As pathologists, we work in concert with treating physicians which makes for more efficient and reliable patient care.

However, the situation is not the same in low to middle income countries (LMIC) where the pathology and laboratory workforce is currently suboptimal. One reason that has been attributed to this situation is a lack of awareness of the central role of pathology and lab medicine in developing countries with fragile health care systems. This has led to ineffective policy decisions and inadequate budgetary allocations to the lab, with the attendant catastrophic effects on patient care and outcomes.1

West Africa for example has seen a steady decline in healthcare delivery standards, even though diseases such as Burkitt lymphoma were first described in Africa, followed by the growth of the first human lymphoma/leukemia cell line (the Raji cell line).2 In addition, ‘Cancer in Five Continents’, a publication of the International Agency on Cancer Research, used data from Ibadan-Nigeria and Uganda cancer registries in its early years of publication. Unfortunately, during the years the countries in these regions have not been able to keep up with technologic advances that have since reshaped healthcare service delivery and research.3 Several barriers to sustainable pathology and laboratory services in LMIC have been identified including an inadequate workforce, substandard infrastructure, inadequate education and training, and quality assurance problems.1


Photo by National Cancer Institute on Unsplash

Despite these challenges, there are opportunities to improve healthcare delivery systems in LMIC through effective laboratory and pathology services. One area that needs to be prioritized is the education and training of qualified pathology and laboratory personnel. This can be achieved through cross-cultural competency training and the building of collaborative networks through short term visitor exchange programs. In addition, continuing medical education (CME) opportunities should be made available to training institutions in these countries so they can keep up with modern day standards.

Another opportunity for growth in pathology and lab services in LMIC is through the implementation of accreditation and regulatory programs. These accreditation services should set standards by which lab services operate in these countries to ensure reliable and consistent operations. Such efforts may improve health service deliveries and ultimately improve patient outcomes.

One factor that has been a huge problem in disease prevention in LMIC is lack of adequate screening programs for chronic diseases, including several cancers. In many countries, misplaced priorities, in addition to lack of adequate personnel has been the bane of the healthcare systems. Therefore, policies that promote screening programs in LMIC should be prioritized. This strategy if implemented properly could lead to significant improvements in the healthcare systems, which would ultimately have an impact on patient care.

Furthermore, collaborative healthcare should be prioritized. The care and management of patients should be done collaboratively through clinicians across different specialties with proper communication channels in place. There have been instances where a clinician treating a patient may not have access to laboratory results requested by another clinician, which ultimately impacts the outcome of patients.

The role of efficient and functional laboratory and pathology services in healthcare systems cannot be overemphasized. Systems which lack these services experience catastrophic patient outcomes and until local and international governments prioritize the labs in these low-resource settings, patient outcomes will continue to remain suboptimal.

References

  1. Sayed S, Cherniak W, Lawler M, Tan SY, El Sadr W, Wolf N, Silkensen S, Brand N, Looi LM, Pai SA, Wilson ML, Milner D, Flanigan J, Fleming KA. Improving pathology and laboratory medicine in low-income and middle-income countries: roadmap to solutions. Lancet. 2018 May 12;391(10133):1939-1952. doi: 10.1016/S0140-6736(18)30459-8. Epub 2018 Mar 15. PMID: 29550027.
  2. Pulvertaft JV. Cytology of Burkitt’s Tumour (African Lymphoma). Lancet. 1964 Feb 1;1(7327):238-40. doi: 10.1016/s0140-6736(64)92345-1. PMID: 14086209.
  3. Adeyi OA. Pathology services in developing countries-the West African experience. Arch Pathol Lab Med. 2011 Feb;135(2):183-6. doi: 10.1043/2008-0432-CCR.1. PMID: 21284434.

-Evi Abada, MD, MS is a Resident Physician in anatomic and clinical pathology at the Wayne State University School of Medicine/Detroit Medical Center in Michigan. She earned her Masters of Science in International Health Policy and Management from Brandeis University in Massachusetts, and is a global health advocate. Dr. Abada has been appointed to serve on the ASCP’s Resident’s Council and was named one of ASCP’S 40 under Forty honorees for the year 2020. You can follow her on twitter @EviAbadaMD.

The Pathology Value Chain and Global Health, part 4

In this last part of our four-part series on pathology value chain, where we are using the patient’s best outcome as the maximized value, we examine two areas: Marketing/Sales and Service. The former has inherent challenges, some of which were mentioned in the last blog on outbound logistics. The latter is becoming an increasingly important component of oncology care for which many pathology labs are grasping for solutions.

In traditional business budgeting, the first step is for the marketing and sales department of a firm to provide a projection of revenue for a given period based on their knowledge of trends, markets, prior years, competition, competitive advantage, etc. These projections are then paired with costing exercises to shoot for a margin of profit. If we are going to sell $1,000,000 in widgets and it costs us $750,000 in total to make those widgets available to our customers (including costs of goods sold, administrative expense, taxes, and interest), we would have a $250,000 profit to use as retained equity or to distribute to our shareholders. When we look at pathology services for cancer, a new laboratory with no prior history may find this process extremely challenging without an enormous amount of data. An existing laboratory with many years of work may have a much easier time and, short of drastic changes in supply prices, inflation, and taxes, could likely use a simple percentage growth approach for this calculation.

But unlike widgets or iPhones or Quarter Pounders or golf clubs, no one wants to have a tissue biopsy and certainly no one wants to have suspected cancer. If we turn to epidemiological data, we can predict (and do so below) the expected number of patients in a given population to likely have cancer in the coming year (although this is clearly not the only data point we need). For a new laboratory in a place where there are no other laboratories (e.g., a small low- to middle-income country with a new Ministry of Health mandate to fight cancer), such an estimate is important for determining both if we should even have a lab (or use a regional approach) and, if we do have a lab, what our maximum volume would be assuming 100% access. The former part has been addressed previously such that there is a threshold below which is difficult to justify a lab because of the cost per sample. The latter part, however, is crucial because a “marketing campaign” (i.e., patient education and clinician education about cancer, how to diagnosis it, and how labs are part of this process) is the only way to have any volume in this laboratory.

We would except it to start slow and build but we have a finite endpoint for cancer cases in mind. But note, importantly, that the marketing campaign described has nothing to do with the pathology laboratory itself. In an existing, highly-developed market (e.g., Boston, London, Montreal, Sydney), there is a population that we can assume represents our cancer risk pool but there are also many competing laboratories (and health systems), transient use of services (e.g., Ms. Smith from Iowa decides to go to Boston for cancer care), and levels of care (i.e., low-stage cancer care in a community setting versus later-stage cancer with comorbidities in a tertiary care setting). None of these things can a given pathology laboratory control if they are in that market, but must they use all of this information to understand the projected revenue and create their budget? Or can they just assume a percentage increase? From the patient perspective, all of this is irrelevant because patients most commonly do not choose the pathology laboratory that is going to see their biopsy as it is a function of the health system to which they subscribe for their care. In that context, marketing and sales for cancer diagnostic services is largely a negotiation between laboratories and clients (e.g., clinicians, hospitals, health plans) which is often contractual. Such contracts are difficult to negotiate, take a long time, and usually last for an extended period like 1 year or longer. This very concept is contrary to the activities of the marketing and sales department which must constantly pivot, update, and change their strategy to achieve their projected revenue. It is worth noting that in many poorly developed cancer systems, patients do directly take their samples to pathology laboratories of their choice and examples of systems with kick backs to shift these samples away from government laboratories toward private practice facilities (at a much higher cost to patients) are well documented.

In the Value Chain model, service is the after-market activities of a firm to maintain their product(s) for a customer, create customer loyalty and resales, and enhance their competitive advantage through maximized firm-customer relationships. The popularity of subscription services (e.g., Amazon Prime, Netflix, Massage Envy, car leasing) stems from the increased opportunity to interact with customers continuously in low-cost ways that enhance the customer’s experience with the firm. Although a service like rending a definitive pathological diagnosis may appear to be a one-time event, recent evolution in the practice of oncology and increasing research needs have created unique servicing opportunities for pathology laboratories. The emergence of biomarkers that dictate treatment unrelated to the diagnostic process has created gaps in quality due to inefficient systems, entry cost barriers, volume challenges, and intellectual disconnect from the traditional diagnostic process. However, streamlining the biomarker process, for example, can create a competitive advantage for a laboratory and improve client loyalty and rapport.

Marketing and Sales

This activity focuses on “strategies to enhance visibility and target appropriate customers.” This activity in diagnostic anatomic pathology specifically for cancer speaks to the first part of the value chain for the patient; namely, the timely presentation of a patient to the clinical system for evaluation of cancer at the earliest possible time. As such, whether a patient presents incredibly early or very late makes no difference to the pathology laboratory because the customer choosing the pathology service is either an independent clinician or a health system. Private practice pathologists may advertise or market to community hospitals or hospital systems in hopes of capturing their volume (and revenue). Marketing for second opinion review by a pathologist can also occur and may be directly to patients. This activity is challenged from the beginning, however, due to the small market. For every 1,000,000 patients in the United States, there are about 5500 cancers per year. Assuming the accuracy of a clinical decision to obtain a biopsy is around 50% (i.e., the “malignancy rate” – when a clinician decides a biopsy is needed for suspected tumor, 50% of the time it is cancer and 50% of the time it is not), that’s 11,000 suspected cancer biopsies per million per year. Extrapolating to the US population, we get 3.6 million biopsies per year. Given that there are ~10,000 anatomic pathologists, that equates to, on average, 361 biopsies per year per pathologist (or, roughly 1 per day). Since most pathologists could easily sign out 20 cases every other day working Monday – Friday with 4 weeks of vacation annually, that’s a ratio of 1:8 (average:capacity).

The point of all of this math is that the volume of pathology work in the US that is for cancer is small relative to the total biopsies performed (or capable of being performed) by the pathology community and, thus, the market for cancer diagnostic services appears saturated. We can adjust the dial of this to take the malignancy rate to 5% (i.e., massive over biopsy setting), and find that pathology would be overwhelmed at 130% capacity just for suspected cancers; however, as we move back towards 50% malignancy rate, the average capacity is around 25% for volume. If we move on the other side of 50% towards lower biopsy rates or “improved clinical acumen,” capacity quickly drops to below 9% with a great excess of pathologists. With the promise of artificial intelligence to assist pathologists in faster sign out of higher volumes, the capacity for cancer diagnosis increases possibly 10-fold. But if you ask your average pathologist if they are busy, they report that they are. This is because the pathology laboratory, as all laboratorians are aware, processes more than just suspected cancer biopsies. Medical kidney, medical dermatology, screening colonoscopy, colposcopy, breast core needles, melanotic and non-melanotic skin lesions create a huge portion of the volume that is not part of the specific calculation above that adds many millions more samples per year to the pathology revenue stream. One framing of this case pool is that cancer biopsies, because they aren’t technically elective, are cross subsidized by providing all of the other services which are equally billable. However, this large bulk of cases are still not through direct marketing to the patient but rather to providers or health systems.

As we turn this activity towards LMICs, we instantly have a problem. There is no system in most places to support routine services for medical kidney, medical dermatology, screening colonoscopy, colposcopy, breast core needles, melanotic and non-melanotic skin lesions (especially in Black patient populations for the last). Without the cross-subsidization that these billable biopsies bring in, pathology laboratories are left with the low volumes of suspected cancer cases. As mentioned above, these laboratories are often overwhelmed to begin with so the marketing and sales activity, which would theoretically increase volume, is likely not to be a priority. In these settings, however, what will increase volume and improve the quality of care for patients is large pre-analytical efforts by governments and other entities to educate the public and the general practitioner about cancer screening and diagnosis, community awareness about cancer care systems, specimen transport networks from the most rural directly to pathology laboratories, and government spending on prevention of cancer.

Service

This last set of activities are to “maintain products and enhance consumer experience.” For a diagnosis of cancer, once rendered, there are many potential touch points with both the patient and the treating clinician that can enhance the outcomes for the patient. These include maintenance of tissue in repositories for future studies, performance of future studies related to newly available treatments, access to clinical trials, and, as mentioned in the outgoing logistics, increased, and enhanced communications around the diagnosis and subsequent information. In LMICs, there is a great desire to provide such enhancements especially in settings where these activities can facilitate local research and generate much-needed local clinical trials with pharmaceutical and other industry partners. As the other steps of the value chain are improved, the continue service will come into focus and can include such activities as external quality assurance, laboratory accreditation, personnel certification, documented compliance with standards, awards, and other accolades.

To conclude, from the patient framework, the maximum value for a patient with cancer involves the earliest possible detection of the tumor and a rapid, accurate diagnostic report matched to treatment options that lead to survivorship. For a pathology laboratory, the best outcomes for patients and the best revenue model for the laboratory results from a high-volume of small samples (i.e., biopsies) reported with complete clarity. Cross subsidization of cancer diagnostic services (especially those for later staged, complex cancer patients) with other non-cancer, pathology-based reporting is crucial to create a sustainable revenue stream and ensure highest quality outcomes. Competitive advantage in pathology services specific to cancer are currently and will continued to be largely tied to the after diagnostic service and support to keep the patient on the most beneficial cancer journey.

References

  1. Porter, M. (1985). The value chain and competitive advantage, Chapter 2 in Competitive Advantage: Creating and Sustaining Superior Performance. Free Press, New York, 33-61.
  2. Histology. Wikipedia. https://en.wikipedia.org/wiki/Histology#:~:text=In%20the%2019th%20century%20histology,by%20Karl%20Meyer%20in%201819.
  3. Thorpe A et al. The healthcare diagnostics value game. KPMG International. Global Strategy Group. https://assets.kpmg/content/dam/kpmg/xx/pdf/2018/07/the-healthcare-diagnostics-value-game.pdf
  4. Digital Pathology Market CAGR, Value Chain Study, PESTEL Analysis and SWOT Study|Omnyx LLC, 3DHISTECH Ltd, Definiens AG. https://www.pharmiweb.com/press-release/2020-06-30/digital-pathology-market-cagr-value-chain-study-pestel-analysis-and-swot-study-omnyx-llc-3dhistec
  5. Friedman B. The Three Key Components of the Diagnostic Value Chain. Lab Soft News. January 2007. https://labsoftnews.typepad.com/lab_soft_news/2007/01/the_three_eleme.html
  6. XIFIN. The Evolution of Diagnostics: Climbing the Value Chain. January 2020. https://www.xifin.com/resources/blog/202001/evolution-diagnostics-climbing-value-chain
  7. Sommer R. Profiting from Diagnostic Laboratories. November 2011. Seeking alpha. https://seekingalpha.com/article/305931-profiting-from-diagnostic-laboratories#:~:text=The%20three%20year%20average%20operating,current%20operating%20margin%20of%2012.9%25.
milner-small


-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.

The Role of Pathology and Laboratory Services in Global Colorectal Cancer Prevention

Globally, colorectal cancer (CRC) is the third most common cancer in men and the second in women.1 It is the fourth main cause of cancer death in the world, with nearly 1.8 million new cases and 881,000 deaths in 2018.2 As alarming as these numbers, some progress has been made in terms of disease occurrence and outcome in many developed countries through the design and implementation of effective screening programs. With better access to healthcare services and overall improvements in treatment of CRC, patients in developed countries can have their pre-malignant, in-situ and minimally invasive polyps detected and removed in time through effective colonoscopy screens and disease interpretation by pathologists. Unfortunately, this progress is not uniform across the globe. Many developing countries across Latin America, Africa and Asia are experiencing increases in their CRC cases.3-5 A number of factors are responsible for this disparate reality.

With limited healthcare resources, many developing countries still struggle with efficient and effective health services. Several studies have shown the significant role of effective screening programs in detecting early colorectal adenomas. However, channeling scarce resources to support preventative health services is still a luxury many of these countries cannot afford. In addition, making sure these services actually work, would require effective laboratory services, laboratory professionals and pathologists. Unfortunately, due to limited resources and ambiguous priorities, laboratory services in some areas are not equipped to prioritize preventive health services, with direct impacts on CRC incidence and survival.

Image 1. Hematoxylin and Eosin-stained composite image of Medullary Colon Cancer. Left side (4x magnification) shows colonic mucosa with a well-demarcated solid nest of tumor cells with conspicuous lymphoplasmacytic infiltrates. Right side (20x magnification) shows a higher magnification of the pleomorphic tumor cells with irregular nuclear membranes, vesicular chromatin, prominent nucleoli and multiple mitotic figures. Medullary colon cancers are usually right-sided and have a better prognosis compared with poorly-differentiated or undifferentiated adenocarcinoma of the colon.6 

Even though the majority of CRC occur through somatic events, some however, do progress through well-defined germline mutations including inherited cancer syndromes including Lynch syndrome (Hereditary Non-Polyposis colon cancer/HNPCC), Peutz-Jeghers syndrome and the Familial Adenomatous Polyposis (APC mutations) pathway. Unfortunately, cancer genetics and molecular diagnostics is still not mainstream in healthcare institutions in many developing countries. Therefore, patients and their families with affected mutations may find it extremely difficult getting access to the care they need in terms of diagnosis and treatment.

The rising incidence of CRC in developing countries may also be explained by the rising trends in Westernized practices which leads to several modifiable risk factors including the consumption of diets rich in saturated fats, lack of physical activity, diabetes, obesity, alcohol consumption and smoking. Preventive health services through effective public health education on the dangers and risks of these environmental practices may play a role in disease prevention and outcomes.

At the crux of CRC prevention and early detection is effective screening programs. As March marks colorectal cancer awareness month, it is imperative to emphasize that any sustainable health policy program must consider the unique role that effective pathology and laboratory services has to play. We must be invited to stakeholder discussions as the value we bring to such discussions cannot be overstated. A failure to recognize our position as central to improving patient outcomes has made many healthcare systems less effective in addressing public health challenges.

References

  1. GLOBOCAN. Estimated cancer incidence, mortality and prevalence worldwide in 2012. 2012. http://globocan.iarc.fr/Default.aspx
  2. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.
  3. Bosetti C, Malvezzi M, Chatenoud L, et al. Trends in colorectal cancer mortality in Japan, 1970‐2000. Int J Cancer 2005;113:339–41.
  4. Center MM, Jemal A, Ward E. International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev 2009;18:1688–94.
  5. Souza DL, Jerez‐Roig J, Cabral FJ, et al. Colorectal cancer mortality in Brazil: predictions until the year 2025 and cancer control implications. Dis Colon Rectum 2014;57:1082–9.
  6. Cunningham J, Kantekure K, Saif MW. Medullary carcinoma of the colon: a case series and review of the literature. In Vivo. 2014;28(3):311-314.

-Evi Abada, MD, MS is a Resident Physician in anatomic and clinical pathology at the Wayne State University School of Medicine/Detroit Medical Center in Michigan. She earned her Masters of Science in International Health Policy and Management from Brandeis University in Massachusetts, and is a global health advocate. Dr. Abada has been appointed to serve on the ASCP’s Resident’s Council and was named one of ASCP’S 40 under Forty honorees for the year 2020. You can follow her on twitter @EviAbadaMD.

The Pathology Value Chain and Global Health, Part 3

In the first two installments of this blog series, we looked at inbound logistics and operations in which we can conclude that competitive advantage may be challenging to achieve. Now we turn to outbound logistics or, in simplest terms, the pathology report.

No document can be more terrifying for a patient than a pending pathology report from a biopsy, as it may contain a benign diagnosis, a malignant diagnosis, or something entirely unexpected. These reports are so important that unsuspected (non-malignant) and malignant diagnoses are included as “critical values” requiring a call and documentation to the clinical team as soon as they are discovered. Pathology reports in HIC are often not immediately available to the patient (unlike other laboratory tests) because the reports are often complex, may contain confusing terms, and may use language that patients inappropriately react to without the guidance of their clinician for meaning in their care. For example, cytology reports may be highly informative to a clinician by simply stating, “No evidence of malignancy” but may be stressful to a patient without guidance because there is not a definitive answer to what a lesion was. Similarly, a colon resection that states, “Invasive adenocarcinoma confined to the mucosa” is good news to the clinician but the first two words (and the internet) may be disturbing for the patient. The important point here is that pathology reports are written for clinicians and not written for patients as an audience. To that end, pathology reports should be highly aligned with the clinical decision-making process, an approach which is naturally aided by standardize or synoptic reporting of cancers using guidelines such as those of the College of American Pathologists, the Royal Colleges of the UK and Australia, and/or the International Collaboration on Cancer Reporting (a consortium of CAP, RCUK, RCA, ASCP, and others). These templates for a given cancer are complex, not easily committed to memory, nuanced, and require a high degree of pathology knowledge to apply correctly from the gross to the final histology findings. Thus, the value in these templates is in use by a pathologist directly, making task-shifting in this area nearly impossible without the aid of tools such as whole slide imaging and artificial intelligence (which still require a pathologist to finalize the report). Like operations, we see that a “standard of care” or a “standardized approach” to reporting cancer reduces the variability or uniqueness that can be achieved with a pathology report, infringing on competitive advantage.

Outbound Logistics – This activity covers the distribution of the final product to the consumer. For the maximum value to the patient, a report should be organized to match the treatment plan, available immediately upon completion, and provide an unambiguous answer than can be acted on. Although the first two activities generate the most important information for the patient and do so with “standards of care”, this activity involves communicating the results to the clinical team members who will act on it and, therefore, can open opportunities for competitive advantage. A new diagnosis of cancer is considered a “critical value” and requires a communication with documentation to the clinical team. However, much of pathology’s role in cancer care includes work with existing cancer patients so rapid communication of any result (not just the first cancer diagnosis) can add value. For example, integration of the pathology laboratory information system into the electronic medical record creates immediate results to clinicians. Alert systems including text messages, instant messages, emails, faxes, etc. add value by informing the busy clinician that the result is there. Photographs of the tumor grossly, histologically, or the results of specials studies can be included in printed or digital reports. Pathologists can attend tumor boards or other in-person or virtual meetings to present the results and explain them if there are questions. The more information that is transmitted with clarity to clinicians, the higher value the patient will obtain. The challenge in this activity is that the payment for the laboratory services ends with the diagnostic report and appropriate coding and, thus, laboratories may have to upcharge for their services to add these features. These further communications, which we can see adds value to the patient, does not add value to the laboratory’s revenue model without upcharges. In fact, it likely costs more to have such active communications as it takes pathologists away from the higher volumes which do equate to higher revenue (as we saw in operations). Streamlining these types of communications with electronic systems is key in cost and time savings and is the basis for the laws and regulations, for example, in the USA which require electronic medical records including laboratories. However, as laws, regulations, and guidelines evolved, these electronic communications are becoming standard of care requiring the entire system to increase the costs to have them but eroding the competitive advantage of providing such concierge services. Consider the change COVID-19 has had on communications between patients, clinicians, and the laboratory where a multi-person discussion of a case with images and consensus opinions can be done in a few minutes over a video conference without anyone leaving their office. Has this crisis provided a new way to capture time (and therefore revenue) but still provide concierge services? Or has it (more likely) created a new normal that everyone has to adopt (eroding competitive advantage)?

When we turn to LMICs and observe the activities of the pathology laboratory, communication with clinical teams on the front or back end has been uncommon and traditionally not done. Oncological practices in HIC are filtering down to LMICs including tumor boards, frozen sections (i.e., rapid, in surgery diagnostics), etc. and being instituted with some frequency. These activities improve patient value and outcomes, educate the teams in both directions, and are clearly beneficial to the system. But they take time and effort away from already understaffed systems which detracts from the value of other patients ultimately. However, when we observe these systems, we often find that they lack electronic tools for running the laboratory internally which inhibits tools for reporting externally. Thus, the major needed solution now is that any histology laboratory anywhere in the world should be using an anatomic pathology laboratory information system as it creates internal and external tools for standardized reporting, communication, and management. Furthermore, it creates better opportunities to integrate synoptic (templated) reporting, interdisciplinary team activities, and standardization of requisitions (i.e., upon receipt of samples). Greatly increased value for patients in LMICs can be achieved with electronic APLIS.

Lastly, there are incredible examples of pathologists who make time in their day to meet with patients to discuss their pathology reports. These discussions can only focus on what the reports says and what the words in the report mean, as defined not in context of that patient. Such exchanges can provide patients with helpful questions to ask their clinicians and prepare them to better understand what the clinicians suggests as next steps for treatment. Clearly valuable to the patient, these exchanges are also valued by the pathologists who enjoy the face-to-face interactions with patients that humanize the process. In rare cases (possibly a for-profit situation), these services may generate revenue but under current medical billing rules there is no standard mechanism for the pathologist to be reimbursed. If we have identified this as adding value to the patient in the pathology value chain, should we not try to find ways to build these services into the care model financially? With the ubiquitous use of video conferencing in the COVID-19 era, can this task be of minimal effort to pathologists but still add value for patients?

In our last installment, we will discuss marketing & sales and service, both of which are particularly flawed and fascinating to consider.

References

  1. Porter, M. (1985). The value chain and competitive advantage, Chapter 2 in Competitive Advantage: Creating and Sustaining Superior Performance. Free Press, New York, 33-61.
  2. Histology. Wikipedia. https://en.wikipedia.org/wiki/Histology#:~:text=In%20the%2019th%20century%20histology,by%20Karl%20Meyer%20in%201819.
  3. Thorpe A et al. The healthcare diagnostics value game. KPMG International. Global Strategy Group. https://assets.kpmg/content/dam/kpmg/xx/pdf/2018/07/the-healthcare-diagnostics-value-game.pdf
  4. Digital Pathology Market CAGR, Value Chain Study, PESTEL Analysis and SWOT Study|Omnyx LLC, 3DHISTECH Ltd, Definiens AG. https://www.pharmiweb.com/press-release/2020-06-30/digital-pathology-market-cagr-value-chain-study-pestel-analysis-and-swot-study-omnyx-llc-3dhistec
  5. Friedman B. The Three Key Components of the Diagnostic Value Chain. Lab Soft News. January 2007. https://labsoftnews.typepad.com/lab_soft_news/2007/01/the_three_eleme.html
  6. XIFIN. The Evolution of Diagnostics: Climbing the Value Chain. January 2020. https://www.xifin.com/resources/blog/202001/evolution-diagnostics-climbing-value-chain
  7. Sommer R. Profiting from Diagnostic Laboratories. November 2011. Seeking alpha. https://seekingalpha.com/article/305931-profiting-from-diagnostic-laboratories#:~:text=The%20three%20year%20average%20operating,current%20operating%20margin%20of%2012.9%25.
  8. Cancer Patients Want to Pull Back the Curtain on Pathology. M Health Lab. October 10, 2019. https://labblog.uofmhealth.org/industry-dx/cancer-patients-want-to-pull-back-curtain-on-pathology
  9. Guttman EJ. Pathologists and Patients: Can we talk?. Modern Pathology. May 2003. https://www.nature.com/articles/3880797
  10. Lapedis CJ et al. The Patient-Pathologist Consultation Program: A Mixed-Methods Study of Interest and Motivations in Cancer Patients. Arch Path Lab Med. August 20, 2019. https://meridian.allenpress.com/aplm/article/144/4/490/427452/The-Patient-Pathologist-Consultation-Program-A
milner-small


-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.

Cervical Cancer Prevention: The Disparate Reality Across the Globe

One of the most effective public health strategies to date is the development of the pap smear test and its use as a screening tool in cervical cancer prevention. Before the emergence of the pap test, cervical cancer used to be the leading cause of cancer-related deaths for women in the United States.1 However, with effective pap tests screening programs and the availability of the HPV vaccine against high-risk serotypes known to be a major cause of cervical cancer, many developed countries have been able to address this disease with its attendant catastrophic consequences including loss of lives, income and long-term disabilities.

Now, cervical cancer doesn’t even make it as one of the top 10 causes of cancer-related deaths for women in the United States.2 Unfortunately, the progress that has been made with this disease is not a universal one. While many developed countries have made giant strides in addressing this disease burden, most developing countries still grapple with significant morbidities and mortalities attributable to cervical cancer. Recent statistics show that cervical cancer is the second most commonly diagnosed cancer after breast cancer and the third leading cause of cancer death after breast and lung cancers in developing countries.3 In fact, almost 90% of cervical deaths in the world occur in developing countries, with India alone accounting for 25% of the total cases.3 Cervical cancer incidence and mortality rates are highest in sub-Saharan Africa, Central and South America, South-eastern Asia, and Central and Eastern Europe.3 A combination of factors may be responsible for these discrepant findings in developing countries.

First is the lack of effective screening programs that detect precancerous lesions before they become invasive diseases. Unfortunately, this factor is linked to lack of awareness through education and sub-optimal laboratory services that still exists in many of these countries. Laboratory services are scarce and there has been a gradual decline in laboratory professionals. Even if the supplies and equipment needed to run a lab were available, where are the laboratory professionals and pathologists that are needed to provide this critical healthcare service? In addition, a lack of regulatory oversight in some of these countries makes the replication and standardization of results increasingly challenging.

Secondly, is the role of HPV vaccinations in preventing cervical cancer. Many of these developing countries are yet to incorporate routine HPV vaccinations into their vaccination programs and access to these services are still very low. In contrast, many developed countries have made HPV vaccinations available and accessible, which is a major defense against cervical cancer.

Thirdly, is the impact of government policies on laboratory medicine. Pathology and laboratory medicine continue to face cuts in services and compensations, even in developed countries including the United States. These practices impact the ability of laboratory services to deliver optimal results, a scenario that could be even more problematic in developing nations.

As January marks cervical cancer awareness month, public health and policy professionals need to take steps to address the root causes of this problem, in order to proffer sustainable solutions, especially in developing countries. In addition to prioritizing health education and public health campaigns on cervical cancer prevention, the role of effective laboratory services in addressing these challenges also need to be emphasized.

A successful healthcare initiative requires a strong and functioning laboratory system, especially in the 21st century. Any health policy program or public health campaign that fails to recognize this fact is most likely headed for failure before it even starts off.

References

  1. https://www.cdc.gov/cancer/cervical/statistics/index.htm
  2. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020.html
  3. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer. Available from: http://globocan.iarc.fr, 2013.

-Evi Abada, MD, MS is a Resident Physician in anatomic and clinical pathology at the Wayne State University School of Medicine/Detroit Medical Center in Michigan. She earned her Masters of Science in International Health Policy and Management from Brandeis University in Massachusetts, and is a global health advocate. Dr. Abada has been appointed to serve on the ASCP’s Resident’s Council and was named one of ASCP’S 40 under Forty honorees for the year 2020. You can follow her on twitter @EviAbadaMD.

The Pathology Value Chain and Global Health

In part 1, we reviewed Michael Porter’s Value Chain and looked at inbound logistics for pathology. Now we will turn to operations, or the production of diagnostic results.

In the United States, almost all cancer diagnosis and care are in the private sector. There are very few examples of diagnostic services that are provided for free. Because laboratories derive revenue from every specimen for the most part, there is a natural desire to increase the volume in the laboratory from management because volume equals revenue. Pathology also has inherent economy of scope and scale such that a basic system that could process 1 case per day for an operating cost of $500,000 per year, could process 200 cases per day for a cost of $4,000,000 per year (a 200-fold increase in volume with only a 8-fold increase in cost). It is important to note in this comparison that in the former, the cost per case is $2000 while in the latter it is $80 (a 25-fold difference). When we consider an allocated or operating budget to run a pathology diagnostic laboratory where revenue is not reflected to laboratory management, this desire to increase volume is lacking directly by laboratory staff (more work but no additional funding) but still may be desired by higher level administration for revenues that pay for other aspects of the system (cross-subsidization). Consider a laboratory that is asked to process 25,000 samples per year, has 6 support staff and 3 pathologists. This would equate to each pathologist signing out ~50 cases per day on average, Monday – Friday, with four weeks of vacation annually. If those pathologists are the direct recipients of the profits of the laboratory, such a high case sign-out rate may be acceptable. If they only receive their allotted salary with no potential for profit sharing, they are unlikely to maintain such a high rate of production. Moreover, they will likely demand higher salary and/or additional staff and will do so much more quickly as volumes increase than would pathologists who share in profits. When we transfer this concept to a public low-resourced laboratory setting in a low- and/or middle-income country where government salaries are lower, there are far fewer skilled personnel, and budgets are smaller, there is essentially no incentive for public/government-funded laboratories to increase volume because it results in more work for the existing staff with no benefit. Yet, with the small volumes we see in LMICs currently, their costs per case are much higher than in HICs. When we turn our lens to the patient and that patient’s maximum value, the profit-sharing model is likely to yield the shortest turnaround time for a given patient. There is a trade-off in this scenario between speed of results and amount of communication/coordination between the clinician and the pathologist. Allocated budgets and public laboratories may produce slower results that are of the same technical quality and, in academic settings, may include additional communication/coordination with clinical teams. Standards exist for a maximum turnaround time goal (i.e., for the College of American Pathologists, it is 3 days). Without external regulation and accreditation, laboratories may fail to provide value to the patient by delaying diagnoses until they essentially are useless. Turnaround times in LMICs may be considered “very good” at 2-weeks, a timepoint that would not be sustainable for HICs laboratories.

Operations – This activity “includes procedures for converting raw materials into a finished product or service”. For the lens of maximum value to the patient, from the moment a biopsy is received in the laboratory to the moment a final report is generated should be minimized and the report itself should adhere to quality standards internally and externally. Once all reagents and supplies are obtained and specimens are received, the operations process can be engaged which includes grossing, processing, embedding, microtomy, staining, special stains, immunohistochemistry, case professional review, and report production. In each step of this stepwise process, specific skilled personnel are needed, matched with specific reagents and supplies to complete the step. Laboratory efficiency and product quality can be dually achieved with highly trained personnel, functioning, well-maintained equipment, optimized workflow, continuous communication and data collection, and highly skilled management to control the process wholly and in parts. One of the challenges for HIC pathology laboratories or health systems are large resections (i.e., mastectomies, colectomies, etc.) and autopsies. The former is integral to cancer care for mid-stage cancers to inform margins and guide treatment; however, they require more personnel time to gross, process, and read, more physical resources to dissect and sample, and may have a series of challenges related to “what’s left in the bucket?” that do not occur when a small biopsy is entirely submitted (although standardization of grossing and reporting can often ameliorate this issue). For the latter (i.e., autopsies), the costs of these procedures are extremely high across the board and there is, to date, no reimbursement or payment for this final procedure in a patient’s medical journey. The value of the autopsy has been explained elsewhere but such value to healthcare systems and to individual and groups of patients is often not delineated enough to make these services a priority, unfortunately. Stepping back from operations, what is commonplace in HICs is that large academic center pathology laboratories most often associated with comprehensive cancer centers are evaluating major cancer surgery specimens as well as autopsies while their private practice and community hospitals focus on small biopsies. There are certainly private practice and community hospitals that evaluate large specimens, but they do so in the context of large biopsy volumes (i.e., cross-subsidization). Tertiary care center pathology laboratories receive referrals (secondary review of biopsies) and surgical samples without the large volumes of primary biopsies to provide off setting revenue. Without high volumes of biopsies to subsidize the costs of large resections, value chain for laboratories becomes quickly degraded and laboratories may even become cost centers, especially if complex immunohistochemical works ups are considered. For patients, care at academic centers and comprehensive cancer centers is viewed as superior with access to clinical trials, multidisciplinary teams, advanced technology, and highly complex diagnosis of rare entities; however, the bulk of pathology services provided, being standardized, are essentially task-shifted from for-profit high volume laboratories that could subsidize the costs to large health systems that cost more to run often without the benefit of the primary diagnostic biopsy material revenue flow.

It is quite easy to see how this part of the value chain can fail in an LMIC because pathology operations are large, complex, and interlocking. For example, if the single embedding center goes offline, manual processes, which are slower and produce poorer quality blocks must be used and efficiency is lost. If the tissue processor goes offline, the entire process is stopped until it is restarted. If there is one pathologist and they go on vacation or immigrate to another country offering better salary, the process is stopped indefinitely. As mentioned above, for a laboratory with a low volume and limited staff, increases in volume are a considered negative because incentivization is lacking. Because these laboratories are often the “only game in town”, they must deal with small biopsies, large resections, and autopsies but without the revenue streams seen in HICs to offset costs or create cross-subsidization (i.e., reimbursement, private pay, etc). This is due to limited access for patients and biopsy rates for the population that may be less than 20% (i.e., of all people that NEED a biopsy, less than 20% receive a biopsy due to access issues). There is a great need to achieve balance in this problem between the minimal volume a lab should process and adequate compensation for laboratory staff to achieve this volume. Modelling and projections expected for a given population can be used to inform governments and market makers about what number of services are needed and, subsequently, public-private partnerships become a primary tool to achieve the balance. For individual gaps such as lack of staff, the value of the operations can be improved with training, telepathology support, visiting pathologists, and management training and improve the overall value improved for the patient.

To summarize this piece, operations for diagnostic pathology has an inherent economy of scope and scale such that an optimal case mix exists which creates maximum value for the patient—shortest turnaround time with most accurate results—and creates a sustainable revenue stream for the laboratory operations (mix of biopsies and resections). Competitive advantage is complex in this space because speed and volume are contrasted with specimen complexity, all of which should be performed through a standard of care.

In the next part, we will look at outbound logistics or the outgoing report to the clinical team.

References

  1. Porter, M. (1985). The value chain and competitive advantage, Chapter 2 in Competitive Advantage: Creating and Sustaining Superior Performance. Free Press, New York, 33-61.
  2. Histology. Wikipedia. https://en.wikipedia.org/wiki/Histology#:~:text=In%20the%2019th%20century%20histology,by%20Karl%20Meyer%20in%201819.
  3. Thorpe A et al. The healthcare diagnostics value game. KPMG International. Global Strategy Group. https://assets.kpmg/content/dam/kpmg/xx/pdf/2018/07/the-healthcare-diagnostics-value-game.pdf
  4. Digital Pathology Market CAGR, Value Chain Study, PESTEL Analysis and SWOT Study|Omnyx LLC, 3DHISTECH Ltd, Definiens AG. https://www.pharmiweb.com/press-release/2020-06-30/digital-pathology-market-cagr-value-chain-study-pestel-analysis-and-swot-study-omnyx-llc-3dhistec
  5. Friedman B. The Three Key Components of the Diagnostic Value Chain. Lab Soft News. January 2007. https://labsoftnews.typepad.com/lab_soft_news/2007/01/the_three_eleme.html
  6. XIFIN. The Evolution of Diagnostics: Climbing the Value Chain. January 2020. https://www.xifin.com/resources/blog/202001/evolution-diagnostics-climbing-value-chain
  7. Sommer R. Profiting from Diagnostic Laboratories. November 2011. Seeking alpha. https://seekingalpha.com/article/305931-profiting-from-diagnostic-laboratories#:~:text=The%20three%20year%20average%20operating,current%20operating%20margin%20of%2012.9%25.
milner-small


-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.

The Pathology Value Chain and Global Health

When Michael Porter conceptualized the Value Chain in 1985, histology as an idea was at least 184 years old and the use of a microtome to cut sections was 155 years old. Now 35 years into value chain as an established lens for markets and firms to approach those markets, numerous publications and reports discuss the value chain of diagnostics, of digital pathology, and of laboratories as profit centers from a variety of sources and as a profitable business model. With the core tool—histology—being such an old technology, easily duplicated, and standardized for skill, quality, and output, can it create competitive advantage or be part of a firm’s value chain? The framework of diagnostic anatomic pathology services (for example, a histology diagnosis for cancer) as a profit model creates ethical questions around what the true value of these services are when the tool is so common. No one chooses to have cancer. Therefore, no one chooses to have a diagnostic procedure for cancer. Stated another way, the consumer’s choice for the product is a potential matter of life and death—that is not true of breakfast cereal. One of the most important features of a capital market is free choice by consumers to choose or not choose products and services. Today, there are people that get by with a flip phone that only makes phone calls and perhaps sends text messages while other people choose essentially supercomputers to carry around in their pocket; however, no one is going to die if they don’t have a telephone on their person. Without a diagnostic procedure for cancer—with histology serving as the primary tool—patients will commonly die from that disease; but with a diagnosis they have a chance of cure, a chance which increases greatly the more rapidly and the earlier in the course of disease the diagnosis is made. One paradigm of healthcare that differs from actual business sectors is an inverse relationship of cost to supply. As competition increases in business, prices are driven downward and reach a level barely above margin which sustains the supply of the goods but often requires the business to diversify or innovate to reach higher margins. In healthcare, costs for the same procedures which are standard of care have gone up, year over year, even while new innovations emerge at higher costs. From a business perspective, creating a feasible value chain around healthcare and, specifically histology, seems unlikely to be sustainable in the long run. However, patients are the center of healthcare and there is high value to patients in having services that meet their medical needs. In applying the concept of “value” and established value chain concepts to anatomic pathology, we shall assume that the maximum value the system can achieve is the shortest time interval from development of cancer in the patient to cure. Fortunately, this value lens mirrors the most efficient pathology laboratory system which would process and sign out large volumes of small biopsies. Coincidentally, that is also the best profit model.

Many countries and large segments of the population in general do not have access to diagnostic histology services due to a range of barriers and challenges that are specific to each site. In some instances, these systems simply do not exist, for example, on many island nations and some nations that are less than 2 million people. The reason for this absence in such settings is due to a massive cost of such services because economies of scope and scale cannot be achieved without a particular threshold of case volume which results in excessively expensive—and thus, unsustainable–services. In larger yet low-resourced countries, private diagnostic histology services with variable quality exist with the main barriers being the out-of-pocket costs of those services to patients although quality could be considered the more important barrier. In high income countries, impoverished patients and patients with insufficient insurance coverage may never be able to access services while others who can access services initially may be inundated with bills related to cancer care that lead to financial disaster. However, all of these “gloom-and-doom” anecdotal observations are not solving the large range of problems that can be found across the patient’s pathology value chain. In order to approach this in the spirit with which Michael Porter intended but framed for a patient, let’s look at the pathology value chain with our value being maximum benefit to the patient, frame it in the context of global health, and assign solutions based on the original Porter activities. This is part 1 of a 4-part series dissecting value chain and pathology in global health. The activities are inbound logistics, operations, outbound logistics, marketing & sales, and service. Let us look at inbound logistics in this part.

Inbound Logistics – This activity encompasses the “receiving, warehousing, and inventory control of a company’s raw materials.” For the lens of maximum value to the patient, from the moment a biopsy is taken until delivery to the laboratory should be minimized and, when the sample arrives, it should be able to be processed immediately with all reagents available. For anatomic pathology, this portion of the value chain includes controlled and uncontrolled raw materials. The controlled raw materials are all of the purchased reagents, supplies, and other consumables that are used in the process of histology and include hazardous materials, flammable materials, and bulky materials such that inventory control should be optimized for both maximum efficiency and value but also maximum safety of staff. “Stock outs”, which are relatively rare in high-income settings, on the laboratory side can include lack of any of the essential reagents and tools to process samples including formalin, alcohol, xylene, paraffin, glass slides, cassettes, etc. Stock outs are the most common challenge in LMICs followed by complete lack of supply chain or lost supply chain. In HIC, bulk purchases, long-term contracts, and volume pricing reduce the cost of the controlled raw materials and can create slight competitive advantage.

Uncontrolled raw materials are the inbound patient tissue samples which can range from minute to whole bodies (in the special case of autopsy) and may be “packaged” by a diverse set of suppliers (i.e., clinical teams) with variable resources. These materials are also “precious” in that they are unique to each customer, cannot be easily reobtained, do not have a fiscal loss value that is easily quantifiable, and may have a large impact on the patient from which they are derived. These materials are also “flawed” because the pre-analytic collection of them by individuals that are not part of the laboratory may create inadequate, insufficient, inappropriate, or damaged materials. In HIC, considerable effort goes into educating clinical teams on collection, creating referral networks, providing collection vessels, etc.; yet laboratories still receive inadequate or insufficient samples. When we consider low- and middle-income countries, observed delays/deficiencies in this part of the value chain are quite common. “Stock outs” on the clinical side can include lack of supplies of clinicians for obtaining biopsies from a specific patient such as sterile biopsy tools, surgical services, and adequate formalin. “Skill lacks” include insufficient training or understanding of the laboratory operations by the clinical team to obtain a biopsy from a patient or properly prepare it for delivery to the laboratory. “System lacks” include an absent or poorly functioning specimen transportation and/or communication system which delays or prevents samples from reaching a laboratory. For a given patient or even population of patients that are to be served by a clinical health system feeding to a specific laboratory, the value chain can be massively depreciated if these inbound logistics are not rectified. When encountered and depending on the specific gap in controlled or uncontrolled raw materials, the solutions can include training of clinical staff; local production of reagents; supplier contract negotiations; bulk ordering; collaborative ordering; cost cross-subsidization; public-private partnerships; capital investment in transportation; and coordination with other convenient transportation networks.

To summarize this part, inbound logistics for a pathology laboratory include controlled and uncontrolled raw materials that have variable costs, safety, inherent value, and flaws that must be considered when planning laboratory operations. With rare exception, these inbound logistics are standardized which leaves little opportunity for major competitive advantage. In LMICs, stock outs (complete or delayed) can invalidate the work of a pathology laboratory by creating significant time delays in diagnosis which make the final diagnosis useless to the individual patient and erode the clinical confidence in the overall system.

In part 2, we will look at operations.

References:

Porter, M. (1985). The value chain and competitive advantage, Chapter 2 in Competitive Advantage: Creating and Sustaining Superior Performance. Free Press, New York, 33-61.

Histology. Wikipedia. https://en.wikipedia.org/wiki/Histology#:~:text=In%20the%2019th%20century%20histology,by%20Karl%20Meyer%20in%201819.

Thorpe A et al. The healthcare diagnostics value game. KPMG International. Global Strategy Group. https://assets.kpmg/content/dam/kpmg/xx/pdf/2018/07/the-healthcare-diagnostics-value-game.pdf

Digital Pathology Market CAGR, Value Chain Study, PESTEL Analysis and SWOT Study|Omnyx LLC, 3DHISTECH Ltd, Definiens AG. https://www.pharmiweb.com/press-release/2020-06-30/digital-pathology-market-cagr-value-chain-study-pestel-analysis-and-swot-study-omnyx-llc-3dhistec

Friedman B. The Three Key Components of the Diagnostic Value Chain. Lab Soft News. January 2007. https://labsoftnews.typepad.com/lab_soft_news/2007/01/the_three_eleme.html

XIFIN. The Evolution of Diagnostics: Climbing the Value Chain. January 2020. https://www.xifin.com/resources/blog/202001/evolution-diagnostics-climbing-value-chain

Sommer R. Profiting from Diagnostic Laboratories. November 2011. Seeking alpha. https://seekingalpha.com/article/305931-profiting-from-diagnostic-laboratories#:~:text=The%20three%20year%20average%20operating,current%20operating%20margin%20of%2012.9%25.

milner-small


-Dan Milner, MD, MSc, spent 10 years at Harvard where he taught pathology, microbiology, and infectious disease. He began working in Africa in 1997 as a medical student and has built an international reputation as an expert in cerebral malaria. In his current role as Chief Medical officer of ASCP, he leads all PEPFAR activities as well as the Partners for Cancer Diagnosis and Treatment in Africa Initiative.

Strategies for Building Successful Global Public Health Partnerships

There is a global shortage of pathology and laboratory professionals, and this phenomenon is especially worse in developing countries.1 Central to combating public and global health emergencies is a functional healthcare system, and at the fulcrum of that is pathology and laboratory services. According to Dr. David Madziwa of the Zimbabwe Association of Pathologists, “the issue is in the tissue.” To effectively address global healthcare challenges like the one currently experienced with the COVID-19 pandemic, Pathologists and laboratory science professionals are needed to develop effective testing and reporting strategies for optimal patient care. One way to address this problem is the development of effective global partnerships across healthcare systems.

However, developing such partnerships requires effective communication and strategies. There are documented instances where attempted efforts by public health professionals from developed nations have been futile in developing countries, because of conflicting priorities and ambiguous goal setting.2 Many public health interventions do not usually involve pathology and laboratory professionals in their planning and execution. And in doing this, they fail to understand the critical role of the lab in any successful healthcare system.

Building successful global health partnerships through effective laboratory services begins with a clear understanding of the healthcare systems in the region of interest.3 Critical questions that need to be answered include, what kind of healthcare model thrives? Is the focus more on preventive or corrective medicine? How important are healthcare issues prioritized in terms of budgetary allocations and other resources?

The purpose of such partnerships should also be well articulated. Partnerships must be guided by a shared vision and purpose that builds trust and recognizes the value and contribution of all members.4 Each partner must understand and accept the importance of the agreed-upon goals. This leads to improved coordination of policies, programs, and service delivery. Shared and transparent decision-making processes are also essential as partners work towards their common purpose.

Successful partnerships depend on shared values, mutual understanding and acceptance of differences-cultural norms, knowledge and ways of thinking or doing things, between both parties.4 When partners respect each other’s contributions and regard each other as equals, then the likelihood for shared goals to be achieved significantly increases.

Functional laboratory services are fundamental to effective healthcare systems. Laboratory professionals can play a huge role in addressing the global burden of disease by partnering with local, national and international communities in addressing the challenges associated with ineffective and sub-standard diagnostic services.

For example, one major factor that has been a huge barrier to effectively addressing the rising scourge of cervical cancer for women in developing countries is ineffective screening programs and the dearth of trained laboratory personnel and pathologists.5 To address this problem, global partnerships can be established in regions with limited resources to provide personnel training in the evaluation and interpretation of cervical pap smears. Mortality from cervical carcinoma will continue to remain a huge public health crisis in these regions if the gap created by a shortage of trained laboratory personnel is not addressed. And as pathologists, we can close this gap by stepping up to the rising health challenges of the 21st Century by becoming more visible and vocal in the global communities that we serve through effective partnerships.

References

1. Fleming K. Pathology and cancer in Africa. Ecancermedicalscience. 2019;13:945. Published 2019 Jul 25. doi:10.3332/ecancer.2019.945

2. Brooks, A., Smith, T.A., de Savigny, D. et al. Implementing new health interventions in developing countries: why do we lose a decade or more?. BMC Public Health 12, 683 (2012). https://doi.org/10.1186/1471-2458-12-683

3. Toth F. Classification of healthcare systems: Can we go further? Health Policy. 2016 May;120(5):535-43. doi: 10.1016/j.healthpol.2016.03.011. Epub 2016 Mar 28. PMID: 27041537.

4. John, C.C., Ayodo, G., Musoke, P. Successful Global Health Research Partnerships: What Makes Them Work? Am. J. Trop. Med. Hyg., 94(1), 2016, pp. 5–7 doi:10.4269/ajtmh.15-0611

5. Catarino R, Petignat P, Dongui G, Vassilakos P. Cervical cancer screening in developing countries at a crossroad: Emerging technologies and policy choices. World J Clin Oncol. 2015;6(6):281-290. doi:10.5306/wjco.v6.i6.281

-Evi Abada, MD, MS is a Resident Physician in anatomic and clinical pathology at the Wayne State University School of Medicine/Detroit Medical Center in Michigan. She earned her Masters of Science in International Health Policy and Management from Brandeis University in Massachusetts, and is a global health advocate. Dr. Abada has been appointed to serve on the ASCP’s Resident’s Council and was named one of ASCP’S 40 under Forty honorees for the year 2020. You can follow her on twitter @EviAbadaMD.

Pathology and Global Public Health

Recently, I interviewed for a subspecialty surgical pathology fellowship, and one of my interviewers posed a question to me: “What has pathology got to do with global health?” She asked me that question because  my resume highlights some of my global health-related activities and interests.

Pathology1 is the foundation upon which other specialties in medicine are situated. However, pathology as a specialty is seldom talked about or even referenced by other colleagues in other clinical specialties. One possible reason for this is that pathologists are often out of the perceptions of other clinicians.

That’s unfortunate, because the roles of pathologists in patient care cannot be overemphasized. Pathologists have a solid understanding of the pathophysiology of various diseases. We can identify when tissues are diseased or free from disease, and can also differentiate between various disease processes. We are also versed in the molecular and genetic basis of diseases. We also develop biomarkers to identify different disease processes. Through the assessment of various histopathologic, immunohistochemical analyses and morphologic features, we can also prognosticate various disease processes, a process that has become more effective with advances in molecular pathology. In addition, through our expertise, we serve as consultants to clinical teams to guide patient management.

However, beyond playing the above critical roles, pathologists can exert their influences by getting involved in public health and global health discussions, to influence policies that ultimately impact the outcome of patients. During the COVID-19 pandemic, the role of pathologists and laboratory professionals has become more critical in healthcare delivery.2 We play a huge role in the development of rapid and effective diagnostic assays, as well as influence the interpretation and delivery of timely test results.  In addition, through the conduct of autopsies on deceased patients, we have been able to describe some of the clinical and morphologic alterations associated with the SARS-CoV-2 (coronavirus).3

In spite of our important roles in the practice and delivery of medical services, it’s not common practice to have pathologists sit on major hospital boards, or participate in policy discussions that impact healthcare delivery. In addition, many low resource settings outside the United States still experience a shortage of effective laboratory services, with its attendant catastrophic effects on patient care.4 And even in the United States, the pathology workforce is gradually shrinking which could portend dire consequences for effective patient care delivery.5 In order to gain more traction to our specialty, it’s time for pathologists, to step out of our comfort zones and become more visible in the communities that we serve.

Pathology and laboratory services in many developing countries are currently suboptimal from a combination of scarcity of trained pathologists to sub-standard laboratory operations. Pathologists can step in to close this gap by developing collaborations that could foster partnerships in care delivery, training and research opportunities. I want to highly commend healthcare institutions that currently have dedicated pathology global health programs.6

This is a call to action for our specialty. If we really want to become more visible, relevant and attract some of the best talents to our specialty, then we should be ready to show that we bring so much more to the table than just peering into the microscope. The value of our pathology reports in the management of patients cannot be over emphasized. However, we must exert our relevance and expertise in healthcare discussions by stepping out into the communities that need us the most. A great place to start is getting involved with local public/global health-related work, including exploring opportunities, offered by the American Society for Clinical Pathology (ASCP) Center for Global Health.7

References

  1. https://www.rcpath.org/discover-pathology/what-is-pathology.html#:~:text=Doctors%20and%20scientists%20working%20in,patients%20with%20life%2Dthreatening%20conditions.
  2. https://www.uab.edu/news/health/item/11259-working-behind-the-scenes-uab-pathologists-play-key-role-in-fighting-coronavirus-pandemic
  3. Calabrese F, Pezzuto F, Fortarezza F, et al. Pulmonary pathology and COVID-19: lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Arch. 2020;477(3):359-372. doi:10.1007/s00428-020-02886-6
  4. Sayed S, Lukande R, Fleming KA. Providing Pathology Support in Low-Income Countries. J Glob Oncol. 2015;1(1):3-6. doi:10.1200/JGO.2015.000943
  5. Lundberg GD. How Many Pathologists Does the United States Need? JAMA Netw Open. 2019;2(5):e194308. doi:10.1001/jamanetworkopen.2019.4308
  6. https://www.massgeneral.org/pathology/global-health
  7. https://www.ascp.org/content/get-involved/center-for-global-health


-Evi Abada, MD, MS is a Resident Physician in anatomic and clinical pathology at the Wayne State University School of Medicine/Detroit Medical Center in Michigan. She earned her Masters of Science in International Health Policy and Management from Brandeis University in Massachusetts, and is a global health advocate. Dr. Abada has been appointed to serve on the ASCP’s Resident’s Council and was named one of ASCP’S 40 under Forty honorees for the year 2020. You can follow her on twitter @EviAbadaMD.