The Challenges of Clinical Laboratories in Developing Countries

Achieving and maintaining quality is arguably one of the most critical tasks in clinical laboratories. Without a proper quality, clinical laboratories are essentially unsafe for patients. Poor quality results can cause mistrust between laboratories and end users, and therefore, endangers the practice of evidence-based medicine and precludes viable engagements between clinicians and laboratorians. Furthermore, poor quality clinical laboratories can hinder global efforts to fight infectious diseases and outbreaks (1).

Ensuring quality is a journey without a destination. It demands constant attention and continuous active participation of all involved in the testing processes. For example, the majority of testing transactions are mediated by clinicians. Their direct involvement in the testing processes makes them inevitable partners in ensuring quality. Thus, close cooperation and constructive engagement with clinicians is critical for laboratorians to provide sustainable quality service. However, ensuring quality can be laborious as it includes coordination with multiple bodies that are not conventional members of clinical laboratories.

The quality of most clinical laboratories in most developing countries is poor.  For example, most clinical laboratories in Africa do not meet international standards (2, 3). Why? There are several factors that contribute to this occurrence but the answer distills into the following: Lack of adequate resources, proper regulations, and supportive health care system.

Lack of adequate resources

The contributions of laboratorians in the diagnosis and management of diseases are generally under-recognized. Laboratorians in developing countries are no exception, if not worse. The lack of recognition compounded by inadequate compensation often leads to job dissatisfaction, negligence, lack of interest, and as a result, departure from the profession. The worst consequence of this phenomenon is over time depletion of qualified personnel, seeking for better opportunities elsewhere. While it is indisputable that developing countries face acute resource limitations, it is not necessarily due to lack of funding but also due to resource misappropriation, improper governance, and rampant corruption.

Lack of proper regulations

The notion that no result is better than poor quality result underscores the critical importance of quality in clinical laboratories. However, it is usually difficult to maintain quality without imposing proper regulatory requirements and enforcing strict regulations. For example, a survey conducted in clinical laboratories in Kampala, Uganda, reveals that most clinical laboratories do not meet international standards (1). Most clinical laboratories in Africa are not accredited (2). Most of the laboratories are not enrolled in external assurance programs; those enrolled do not necessarily adhere to strict follow-ups. These kinds of problems can be averted, at least in part, by introducing stringent regulatory requirements and enforcing the regulations to the details.

Lack of adequate support

Clinical laboratories in developing countries suffer inadvertent neglect and are not well-supported to ensure accurate diagnosis. The healthcare system in developing countries perceives clinical laboratories as “tools” rather than “partners” in the disease diagnosis processes. This kind of unfortunate perception is inherently flawed because clinical laboratories are indeed critical in diagnosing diseases, curbing outbreaks, addressing growing global health concerns. In that sense, laboratories and laboratorians should be deemed and treated as partners.  This is an important distinction to make because partnership fosters collaboration, respect, and recognition, encourages horizontal communications between laboratorians and clinicians, and helps garner support from clinicians, the public, and policymakers.

In summary, the majority of treatment decisions in developing countries are based on clinical judgment and empiric diagnosis (4). Because access to reliable diagnostic testing is limited or undervalued, misdiagnosis commonly occurs, resulting in inadequate treatment, increased mortality, and an inability to determine the true prevalence of diseases. Furthermore, mistrust is rampant due to poor quality results and consequently, viable engagements between the clinical laboratories and clinicians are often impaired.

Laboratorians in developing countries should set up efficient professional societies, enhance communication and diplomacy with clinicians and policymakers, and foster collaborative environment towards achieving continuous quality improvement. Strong and viable societies should then advocate for the wellbeing of clinical laboratories and laboratorians in developing countries. Furthermore, any effort from the global health community should first be directed to identifying and targeting fundamental problems in partnership with local professionals and authorities.

References

  1. Berkelman R, Cassell G, Specter S, Hamburg M, Klugman K. The “Achilles heel” Of global efforts to combat infectious diseases. Clin infect dis, Vol. 42. United States, 2006:1503-4.
  2. Schroeder LF, Amukele T. Medical laboratories in sub-saharan africa that meet international quality standards. Am J Clin Pathol 2014;141:791-5.
  3. Elbireer AM, Jackson JB, Sendagire H, Opio A, Bagenda D, Amukele TK. The good, the bad, and the unknown: Quality of clinical laboratories in kampala, uganda. PLoS One 2013;8:e64661.
  4. Petti CA, Polage CR, Quinn TC, Ronald AR, Sande MA. Laboratory medicine in africa: A barrier to effective health care. Clin Infect Dis 2006;42:377-82.

 

Tesfazghi_small

-Merih T Tesfazghi, PhD, is a Clinical Chemistry Fellow with the Department of Pathology and Immunology at Washington University School of Medicine in St. Louis, MO.

Logistics, Meetings, and Evacuations

Almost perfectly timed during my classroom-to-clinicals transition period from American University of the Caribbean School of Medicine (AUC), the 2017 ASCP Annual Meeting in Chicago was an excellent opportunity to get back to my lab roots. The Annual Meeting is always an excellent opportunity to expand lab-related knowledge, learn some new clinical skills, and easily network with colleagues. Professional societies like ours are highly dependent on the partnership and collaboration of our fellow scientists, sponsors, and clinicians. I have been fortunate enough to attend two of these meetings as an award recipient bookending my pre-clinical years in medical school. In 2015, I attended the ASCP Annual Meeting in Long Beach, California as a Regional Member of the Year. This year’s Annual Meeting was held in my hometown of Chicago, where I’m proud to say I attended as a 2017 ASCP Top 40 Under Forty honoree! But these meetings are more than just conferences with awards ceremonies—at every ASCP meeting I reconnected with old friends in workshops, shook hands with our great ASCP leadership, and collaborated with colleagues in roundtables or other sessions. There is a place for all of us in laboratory medicine. Our respective insights bring something valuable to the final outcomes of improved patient care. Nowhere is this more evident than the Annual Meeting.

annualmeeting1
Image 1. ASCP Annual Meeting Chicago 2017, Top 40 Under Forty, and ASCP CEO Dr. Blair Holladay

Among the endless list of educational events and sessions, I especially enjoyed being a collaborator in round table discussions including “The Benefits of Data Integration in Clinical Decisions.” I truly enjoy these roundtables and wish I could have done more of them! Topics included effective feedback, utilization and evaluations, education, and global health initiatives—all of which I’m sure I’ve written about in one way or another this past year. Seeing some of the content in my online Lab Management University (LMU) modules applied in real-life situations was reaffirming. Attending sessions and meeting renowned experts from informatics to hematopathology was exciting. The keynote speakers were captivating. Dr. Birx’s discussion on PEPFAR and global health initiatives clearly piqued my interests, and Drs. Caliguiri and Pritchard’s lectures on analytics and resources spoke directly to my work in cancer research. And don’t forget: it’s all worth continuing education credit—can’t beat that.

I would just like to simply thank ASCP again for all the work that goes into these meetings. I know from experience that planning large events involves quite a bit of logistics. And in managing these events ASCP truly provides an excellent environment to collaborate and learn. What brought this appreciation for logistics to the forefront was a disaster that had unfolded in the week prior to the meeting. On the island of Sint Maarten, the location of my medical school and my home for two years, was absolutely decimated by hurricane Irma. The school managed to withstand for the most part intact and acted as a shelter for students, faculty, and family. While being sheltered from that storm, endless homes, apartments, and business were destroyed. Taking nothing but a suitcase or two to campus ended up the only possessions many people in the AUC community had left. The school and its administration did a spectacular job creating a stable, safe, and even comfortable environment for students and their families while evacuation efforts were organized. While AUC managed to get students off the island via military assistance and/or charter flights, evacuees were taken to the Chicago suburbs. Right after the ASCP Annual Meeting I began having conversations with contacts in the Chicago Department of Public Health and Emergency Preparedness to offer assistance. I provided contact data, relayed satellite telephone numbers to the right contact points, and provided relevant information regarding demographics, health, and needs. Both my wife (a trained nursing leader) and myself were happy to be involved with connecting critical points in this process. All the students and their families were accounted for and taken care of in the Chicago suburbs, and were later moved to the new school location relatively unscathed. Logistics from a distance can be difficult, especially when it’s behind-the-scenes. A lot of lab decisions are made that way, and ultimately we do our best for our patients.

annualmeeting2
Image 2. Resort and villas halfway between my apartment and AUC campus on Sint Maarten before the hurricane.

 

annualmeeting3
Image 3. Resort and villas halfway between my apartment and AUC campus on Sint Maarten after the hurricane.

The take home message: be flexible, be humble, and be helpful. If we want to improve patient outcomes, we need to work with evidence-based approaches matched with intelligent compassion. As laboratorians, we apply our scientific approach to critical life-saving algorithms. This was no exception. Lessons discussed at the Annual Meeting between networking colleagues and official sessions are accurate. Tap into your resources, keep an active and dynamic network, know what you can do and what you cannot, and always try to help. That’s what makes a good laboratorian, a good clinician, a good friend, and hopefully a good physician.

Thanks for reading! If you’re interested in donating to disaster relief for anyone affected by this year’s violent hurricane season in Sint Maarten, visit www.rotarysxm.org.

 

ckanakisheadshot_small

Constantine E. Kanakis MSc, MLS (ASCP)CM graduated from Loyola University Chicago with a BS in Molecular Biology and Bioethics and then Rush University with an MS in Medical Laboratory Science. He is currently a medical student at the American University of the Caribbean and actively involved with local public health.

Guest Post: Drone Transport of Specimens

On a hot afternoon in late September 2016 the Johns Hopkins Medical Drones team drove to a flight field in the Arizona desert with 40 vacutainer tubes filled with human blood obtained from volunteers. The individually wrapped tubes sat in two custom-designed white plastic cooler boxes which had wires coming out of one end, ventilation holes at the other, and ran off the drone’s battery power. We carefully placed one of the boxes on the drone, stood back, and flew the samples around for 260 kilometers in what seemed like an unending series of concentric circles. Great. But why would doctors be involved in this exercise?

For the last 3 years, the Johns Hopkins medical drones team has examined the stability of human samples transported via drone. Our approach has been similar for each study. Get two sets of samples, fly one on the drone, then take both sample sets back to laboratory for analysis to see if there are any changes. However, until this study in Arizona we had only flown these samples up to about 40km, in mild weather, and for up to 40 minutes at a time. A request to set up a drone network in a flood-prone area of a country in Southwestern Africa made us realize that we needed to repeat the stability tests in warmer weather and for longer flights. This drone network would serve clinics that were up to 50 km away from each other, therefore requiring round-trips of at least 100km. Once we received this request it became clear pretty quickly that our previous tests flying for to 40km were not good enough for an aircraft that would have to fly in a hot environment between several clinics that were each 50km away from each other.

After the 3-hour 260km flight, we took both sets of samples back to the Mayo Clinic laboratories in Scottsdale, Arizona and performed 19 different tests on the samples. Each pair of samples was compared to check for differences between the flown and not-flown sample sets. Although results from sample pairs were similar for 17 of the 19 tests, small differences were seen in Glucose and Potassium, which do also vary in other transport methods. We suspect the differences seen in this test arose because the not-flown samples were not as carefully temperature controlled as the flown samples in the temperature-controlled chamber. This study (which is the longest flight of human samples on a drone to date) shows that drones can be used for blood samples even for long flights in hot conditions. However, the temperature and other environmental variables must be well-controlled to keep the blood stable.

 

TimAmukele-small

-Dr. Timothy Amukele is an Assistant professor in the Department of Pathology at the Johns Hopkins School of Medicine and the Director of Clinical Laboratories at Johns Hopkins Bayview Hospital. He is also the Medical Director of two international research laboratories in Uganda and Malawi. He has pioneered the use of unmanned aerial systems (colloquially known as drones) to move clinical laboratory samples.

Jeff Street-small

-Jeff Street is an unmanned systems engineer and pilot at the Johns Hopkins School of Medicine with more than 10 years of experience in the development of new and innovative vehicles. He is leading the Johns Hopkins aircraft development efforts for a wide range of medical cargo applications.

 

 

 

Here’s to Fresh STARTs: Sustainable Transitions And Reachable Targets

From the title, you might be able to tell that I’ve been busy on Lab Management University (LMU). Going through the online modules and lessons in the LMU certificate program I mentioned this past May, I’ve been able to hone several skills in interpersonal communication, resource management, and project leadership. (A worthwhile investment through ASCP which I highly recommend!) Another thing that’s kept me quite busy over the last two years has been Zika-virus and mosquito-related public health initiatives both inside and outside the laboratory. In a recent blog post, I discussed the correlation between measuring success in projects like these just as one would with common lab-centric goals. And, as a conclusion to that hard work, this will be my last directly-related Zika/public health post. Transitioning to the second half of medical school, I’ll be leaving behind a true grassroots project that not only reached countless people but has the promise to be sustainable after my departure from the island of Sint Maarten back to the states.

As with many times in life, I would say fresh starts are a welcome chance to reflect and grow upon things you might have learned or goals you might be closer to finishing. What has been made clear to me in my time working through classrooms, cases, exams, and projects is that the “jargon” we use as laboratorians is definitely worth its weight. It isn’t full of hollow charges for metrics and goals; it’s about real data and real solutions. Having the ability to apply my prior experiences in laboratory medicine throughout medical school—both inside and outside the classroom—has been an invaluable benefit. The general principles that guided my last blog post reflected simple goals (i.e. turnaround time compared with public health metrics) which utilize fundamental models of data collection, adjustment, and success. The essential model I described a few months ago is now a mainstay of a project that will continue to improve public health statistics slowly as time goes on.

8-28-1

The model as it stands now consists of clear steps to identify problems which require interventions, highlight gaps in current practice, data collection from literature exists currently, collaboration with partners in a community of trust, and continuing those partnerships as improvements are made incrementally over time. The model has been repeated and successfully modified for these last two years from on-campus blood testing with procedural write-ups and data evaluation, to teaching school-aged children about mosquito prevention, to partnering with local government officials and having your projects adopted into their portfolio, and visiting individuals in their homes to discuss health and prevention.

To keep it brief, I’ve had an amazing experience here being able to lead and contribute to a wonderful and impactful project such as this. It has become increasingly clearer to me throughout this work that the values and skills programs like LMU teach are directly parallel with successes in various clinical settings. From the bedside to the laboratory to public health in the field, the lessons of how to effectively engage people and solve problems are critical. My time in laboratories before medical school, the daily grind of classwork here, and the projects I’ve been able to write about have all given me the space to try these skills on real situations—and hopefully that will make me the best clinician I can be after medical school is completed. Check out my “highlight reel” of partnerships, workshops, and active management in Zika prevention below.

Be sure to check back here next time, I’ll be writing from my hometown as I’ll explore ASCP’s Annual Meeting in Chicago, IL this coming September and report back on why it’s important to network and stay involved with our great professional community. Thanks for reading!

8-28-2

8-28-3

 

ckanakisheadshot_small

Constantine E. Kanakis MSc, MLS (ASCP)CM graduated from Loyola University Chicago with a BS in Molecular Biology and Bioethics and then Rush University with an MS in Medical Laboratory Science. He is currently a medical student at the American University of the Caribbean and actively involved with local public health.

 

Planning Lab Testing for Medical Missions, Part 2

Last month I blogged about key points to consider when preparing to do lab testing in the field. Here I will expand on using point of care testing in medical missions. Point of care testing is easy to use and relatively easy to access, making it very attractive for use in the field or on medical missions. In fact, it is tempting to take these tests and go rogue – it’s not uncommon for point of care diagnostics to be obtained by non-laboratory professionals and tossed in luggage to be used by short-term medical teams. However, this is not in the best interest of the patients or the community. Helping establish point of care testing for medical missions is one very important way that a laboratory professional can get involved in this kind of outreach.

Proper utilization and quality assurance practices are just as critical in the outreach situation as at home in a large lab. Perhaps even more so; for example, in areas with high disease prevalence, false positives and negatives can significantly affect patient care and population health. Under-diagnosis due to false negatives means that those who need treatment might not get it, just as over-diagnosis due to false positives may cause patients to get unnecessary treatment. Unnecessary treatment, especially for infectious diseases, harms the community by contributing to drug resistance.

Most point of care tests, especially lateral flow tests, have built-in controls which lessens the need to run QCs with patient testing. However, it is important to know the limitations of the testing. Sometimes point of care testing systems that are not available in the United States are selected for use in outreach in foreign countries. It’s more likely that an American medical team would be unfamiliar with the tests. A laboratory professional can help establish or at least verify the validity of the tests, including limits of detection and accuracy, before they are deployed. Also, it is often helpful to have the results interpreted for the end user. Little interpretation is needed for the more straightforward qualitative tests that simply give a positive or negative result. Even with these tests, the limit of detection should be available to the provider, especially if this is significantly different from that which the provider is accustomed. Tests that involve titration, such as some of the rapid typhoid and syphilis testing, benefit from having an explanation of what the titers mean clinically available to the end user.

Other tests with results that are prone to confusion are point of care versions of assays more commonly performed in clinical laboratories. Difference in reference intervals for the POCT compared to a conventional test can be particularly confusing. For example, the results of a lateral flow point of care C-reactive protein assay have a different reference interval than results from high-sensitivity C-reactive protein assays used in clinical labs. Using the incorrect reference interval to determine whether a result is normal can lead to over- or under-treatment, which is contrary to the purpose of diagnostic testing. Yet, when using point of care tests in the field, there is not a neat little interpretive comment accompanying the result.

So, how can this be remedied? If the laboratory professional is also on the team, they can be available to provide information as needed. However, if the team is not so fortunate as to have their own laboratory professional, another way to provide the information is to provide a short guide to cheat sheet that briefly explains how to use test results.

Proper utility is also important, especially in areas with high burden of disease or in areas where there is no confirmatory testing. Consider rapid tests for H. pylori. These typically detect antibody to H. pylori, which can be found in up to 70% of asymptomatic populations. The rapid test is of little utility since positive results only indicate the presence of antibody and not necessarily an active infection. Consider using rapid screening tests, such as for HIV, when confirmatory testing is not available. Sometimes a second screening test that employs a different method than the first can be used as a confirmatory test if nothing else is available.

Consider environmental limitations of the testing when selecting tests for use in the field. Many tests are unreliable at extremes of temperature and humidity. This might not always be obvious even when quality controls are used properly. For example, Tang et al (1) showed that the effect of temperatures and humidity similar to what was experienced in Louisiana after Hurricane Katrina on quality control material for a POCT glucose meter system caused significantly depressed results. Also keep in mind that exposure to environmental extremes can reduce the shelf life of POCT and related reagents. If using POCT long term, it is good practice to routinely test a known standard – even on tests with built in quality controls such as the test line on lateral flow tests – to ensure there has not been degradation in quality due to the environment.

Preparing POCT for medical missions is a great way for a laboratory professional to get involved in global health and outreach. From helping to select appropriate tests, to verifying test validity, to teaching proper utilization of testing and providing interpretive guideline, the laboratory professional is a vital part of a medical mission – even if they never leave their lab!

  1. Tang CS, Ferguson WJ, Louie RF, Vy JH, Sumner SL, Kost GJ. Ensuring quality control of point-of-care technologies: effects of dynamic temperature and humidity stresses on glucose quality control solutions. Point of Care 2012;11:147-51.

 

Sarah Brown Headshot_small

Sarah Riley, PhD, DABCC, is an Assistant Professor of Pediatrics and Pathology and Immunology at Washington University in St. Louis School of Medicine. She is passionate about bringing the lab out of the basement and into the forefront of global health.  

Planning Lab Testing for Medical Missions

I am frequently asked questions about establishing clinical lab testing in the field, or how to approach bringing lab tests on medical missions. There are three key questions that I always start with when planning diagnostic lab testing for any situation, and they are 1) what is the mission? 2) what are the needs of the population? and 3) what is the environment like?

The first question – what is the mission? – sets up the framework for the project. Is the goal to provide sustainable testing or to support a short term medical mission? An examples of sustainable testing would be establishing a new assay for permanent use in a clinic or hospital, and would require a plan for identifying and training operators, ensuring reagent availability and maintenance plans in-country, and a budget. Supporting a short term mission often requires only point of care testing. For this post, I’ll focus on supporting a short term mission.

The second question –what are the needs of the population? – helps determine a test menu. As with any diagnostic lab testing, it helps to ask the question “what are you going to do with the result?” when deciding which tests to offer. It is important to know what the medical care team is equipped to treat, what treatments are available in the community, and the cost of the treatment. It is important understand the prevalent health care issues that will be encountered by the care team on the mission. For example, if the goal of the medical mission is to provide routine healthcare to a remote environment, then you would want to know of any endemic diseases that the team would be prepared to treat. However, if the mission is surgical in nature, lab testing might need to address blood typing and viral testing, or perhaps coagulation testing.

The third question – what is the environment like? – guides the selection of testing platforms. If there will be electricity and running water, you will be able to use powered devices like a Piccolo chemistry analyzer, or platforms that require refrigerated reagents. Temperature extremes, especially heat, must be kept in mind. Many instruments can’t function over a certain temperature. A battery powered point of care instrument that is very useful in the field in moderate climates might be useless in high heat. For example, the Renal Disaster Relief Task Force of the International Society of Nephrology used the Abbott iSTAT in their response to the 2010 earthquake in Haiti. They found that this device often failed due to the extreme heat (>100 degrees F) of the field hospital environment (1). Improvisation can sometimes get around these limitations; I have used ice packs in coolers or even suitcases before to keep instruments cool enough to operate while in the field. Many times, especially for remote locations, lateral flow, whole blood based, point of care testing is the best option. There are many options available that do not require any special handling like refrigeration, and the ability to use capillary blood is a huge benefit in situations where venipuncture might be difficult.

In any situation you must know the sensitivity, specificity, cross reactivity, and limit of detection of the assays selected for the mission. You should be able to communicate any limitations to any of the care providers who might use the result. If the laboratory professional is not able to go on the medical mission, then another person should be identified as responsible for oversight of the laboratory testing. Most importantly, it is important to carefully plan for lab testing on medical missions. With thoughtful planning, adequate laboratory testing can be provided to support medical missions.

Reference

  1. Vanholder R, Gibney N, Luyckx VA, Sever MS. Renal Disaster Relief Task Force in Haiti earthquake. Lancet 2010;375:1162-3.

Sarah Brown Headshot_small

Sarah Riley, PhD, DABCC, is an Assistant Professor of Pediatrics and Pathology and Immunology at Washington University in St. Louis School of Medicine. She is passionate about bringing the lab out of the basement and into the forefront of global health.  

 

 

Metrics, Goals, and Lab Leadership

In an April 2015 publication in Lab Manager, then ASCP President Dr. William Finn discussed the Lab Management University (LMU) program “designed to help pathologists and lab professionals take their laboratory management skills to the next level.” He also cited “gaps” in professional training and experience that revealed a lack of management skills in “pathologists, laboratory professionals, and pathology residents.” Utilizing advanced coursework available to them from LMU, laboratorians of various specialties would stand to benefit from this knowledge and effectively influence more positive outcomes for patients.

Within the last year, I’ve been writing about utilizing data from epidemiology, laboratory studies, and community partnerships in an integrated public health initiative combating mosquito-borne illness on the island of Sint Maarten. It is an ongoing multidisciplinary project I started which reaches various fields of study from immunological seroprevalence, to community health work, to social determinants of health, and team leadership and coordination. What started as a group of six students in the fall of 2016, has flourished into a team of now more than fifteen with partners in local government, local NGOs including the Red Cross, social and broadcast media, and our individualized message of local self-motivated disease prevention has reached well into the thousands.

Citing this experience as a process of a simple medical literacy proposal to an expansive public health initiative, I believe there are some significant advantages that being a laboratory professional can give you. Experiences during my time in clinical laboratories gave me many parallels to study as I became a leader of a dynamic and diverse program. Here is what I consider is a highly-oversimplified model for successful problem-solving, leadership, and ultimately measured success. As a common laboratory metric of efficiency/success—and something I have had experience with before—consider turn-around-time (TAT) as a problem many labs face. Compared to the problem of addressing risk reduction and source control for mosquito-borne illnesses like Zika, I found myself in the same model I had recognized many times before.

Example 1: Outside the Lab

Addressing Zika as a Public Health Concern

Example2: Inside the Lab

Addressing TAT as an Efficiency Metric

 

START: Clearly and Specifically Define the Problem or Need to be Addressed
With the advent of a local outbreak and information from local government regarding the increase of epidemiologic cases, behavioral change for risk reduction was highlighted as a major obstacle in improving public health outcomes. Creating self-sufficiency in the community would not only improve health but create sustainability. As a laboratory potentially signs on new clinics or accounts because of local changes in hospital structures, efficiency is being examined as workflow is slated to increase. Staffing, instrumentation, LIS/LAS, and other tools are being considered to reduce TAT and improve overall patient outcomes and strengthen quality control and quality assurance metrics.
Locate Potential Helpful Partners, Staff, or Tools that Can Assist Your Cause
To gain access to resources otherwise unavailable, it is imperative to collaborate with partners in the Ministry of Health as well as NGOs like the Red Cross. To reach communities most affected by the problem at hand, it is necessary to implement cultural liaisons to act as intercessors preserving the autonomy of individuals while creating a safe environment to communicate an effective public health message. As part of initial assessments to discover a clear problem, vendors may offer instrumentation or technology that would improve the conditions affecting the TAT. It would be highly prudent to reach out to the new accounts or clinical sites to determine if TAT is affected by workflow, personnel, communication, or procedural faults. Assessing the staffs’ skills and competency are also crucial for implementing corrective action.
Implement Initial Intervention, Paying Attention to Results Before/After
In the case of Zika virus education and prevention, initial interventions include utilizing community partners as liaisons to introduce us to targeted audiences/communities. Results should focus on the pre-and-post-survey data collected, referenced in earlier articles regarding engagement, knowledge, and behavior. In the case of TAT efficiency/improvement, initial interventions should include collecting data points regarding how specimen-to-result turnover is affected at every checkpoint while implementing changes as necessary. Data should indicate success in particular measures which improve TAT incrementally.
Take Measures to Make Further Interventions More Successful Along the Way
Educating communities about the risks associated with standing water and the spread of arboviral infections with clear demonstrations/examples of how to enact improvements. Distribution of educational or advertising materials throughout targeted areas will bolster an effective message. When staff or other changes effectively improve the streamlining process, they should be recognized and praised. Moreover, clients should be consulted in both inpatient and outpatient settings to inform procedural change and deter further external compromise of TAT.
Implement Follow-Up Intervention, Paying Attention to Results Before/After
Like before, interventions with Zika virus education include community partner meetings to hold engaging discussions about health promoting behavior. Similar surveys collect data before and after the presentation and are correlated with the previous meeting, however, with the addition of data regarding the effectiveness of secondary measures (i.e. advertising and educational materials). With the implantation of various measures to improve turnaround, assessments of protocol, instrument utility, effective transport, and other previously mentioned aspects would indicate successful outcomes. Combined with the supplemental consultation to steps both inside and outside of the laboratory, an comprehensive conclusion can be established to indicate a permanent solution via these metrics.
Conduct More Comprehensive/Translational Analysis of Intervention Effectiveness
Correlating the primary intervention with follow-up measures can indicate possible opportunities for further improvement. It can also highlight areas of significant success where interventions had the greatest impact. If significant enough, these results should promote the process and further the original cause set forth early on. Continuous metrics which analyze the TAT as a marker for productivity and efficiency before, during, and after interventions can offer insight into effective changes. Extrapolating this data can improve processes across departments and models made from this process can improve TAT and other metrics in a laboratory.
Share Significant Successes and Challenges with Partners/Staff and Share the Success
Based on standards in current literature, community partners benefit significantly from both repeat-visits as well as becoming involved and informed participants for positive change. As laboratories face staff shortages and personnel challenges, sharing the success and making sure the rewards are collectively appreciated can improve workplace dynamics.
Create a New Protocol, SOP, or Publication to Influence a New Standard
As with any successful public health interventions, shared information can lead to future improvements elsewhere. Publications often cite the process of creating a platform and approach to tackling social health concerns and highlights emphasize these positive outcomes. Many productivity projects in clinical settings are difficult, successes should be shared between departments and outside the laboratory. Ultimately, publication might present an ample opportunity for improving standings for overall hospital metrics and larger outcomes.
FINAL: Implement the Same Model Outlined Here for Potential Future Challenges

Obviously, this is a crude and generalized model for how to approach leadership both inside and outside the laboratory, but some of the key aspects of clear goals, interdisciplinary teamwork, resource management, and creativity are paramount. Having my laboratory experience was critical for finding success with my team here with our public health work. Laboratory professionals have strong skills and unique insights for a variety of important fields. Having that experience has truly enabled me to contribute in a meaningful way as I pursue my medical career. As you can clearly see, there are so many useful tools that apply across disciplines. Furthermore, the most important part of managing a project aimed at a positive outcome is answering the simple question: how do I utilize and interpret the data I collect along the way?

And here’s another question: who does data analysis better than us laboratory folks?

Thanks for reading, until next time…

ckanakisheadshot_small

Constantine E. Kanakis MSc, MLS (ASCP)CM graduated from Loyola University Chicago with a BS in Molecular Biology and Bioethics and then Rush University with an MS in Medical Laboratory Science. He is currently a medical student at the American University of the Caribbean and actively involved with local public health.