Microbiology Case Study: An Unusual Morphologic Presentation of an Uncommon Dimorphic Fungi in Vermont

Clinical history

A 62 year old woman from the state of Vermont with a past medical history of anxiety, depression, and granulomatous dermatitis presented to her primary care physician for bilateral Achilles tendonitis, bilateral knee effusion, and bilateral conjunctivitis; all of which were self-limited. Additional laboratory work-up from the encounter revealed an incidental 7mm right medial lung nodule with associated unilateral hilar lymphadenopathy. The patient denied any history of using tobacco products but had a remote travel history to Arizona and seasonally visited California. An endobronchial ultrasound guided fine needle aspiration was performed and the on-site evaluation showed abundant necrosis with scattered refractile objects consistent with fungal organisms. Additional tissue was submitted for cytology and fungal cultures.

Laboratory identification

Initial review of the cytology revealed abundant alveolar macrophages and inflammatory cells in a background of necrotic debris. The modified gomori methenamine-silver nitrate(GMS) stain highlighted several variably sized 8-15um broad-based budding yeast with a double contour cell wall (Image 1). Secondary review of the slides showed additional rare large 50-70um thick-walled spherules with 2-4um endospores (Image 2). Following 10 days of incubation there was growth of a fluffy white colony of mold on both the potato flake and mycosel agar plates (Images 3-4). The lactophenol cotton blue adhesive tape preparation highlighted large thick-walled barrel shaped arthroconidia with alternating empty cells (Image 5). A nucleic acid probe definitively identified the organism as Coccidiodes posadasii/immitis.

Image 1. Modified gomori methenamine-silver nitrate (GMS) stain highlighting broad-based budding yeast with a double contour cell wall measuring 12um in greatest dimension (100x oil immersion).
Image 2. Modified gomori methenamine-silver nitrate (GMS) stain highlighting a large 70um spherule with 2-4um endospores. (100x oil immersion).
Image 3. Aerobic growth of a white fluffy mold on potato flake agar plate following 10 days of incubation.
Image 4. Aerobic growth of a white fluffy mold on mycosel agar plate following 10 days of incubation.
Image 5. Lactophenol cotton blue adhesive tape preparation highlighted large thick-walled barrel shaped arthroconidia with alternating empty cells

Discussion

Coccidiodes immitis is a dimorphic fungus commonly found in the Southwestern United States and Central/South America. Immunocompetent patients can develop a self-limited acute pneumonia (Valley Fever) and the diagnosis is frequently under recognized. Immunocompromised patients however, such as those with acquired immunodeficiency syndrome (AIDS) can develop systemic disease with fungal dissemination to the bones, lungs, and skin (1). The estimated risk of exposure in endemic regions is approximately 3% per year with the greatest risk occurring during the dry season (5). Infection typically begins with inhalation of the arthroconidia which then mature in the lungs from barrel shaped cells to enlarging spherules up to 80um in diameter. Mature spherules consist of internal septations with 2-4um endospores which subsequently rupture releasing endospores into infected tissues which can mimic Histoplasma. When large round yeast forms are observed in tissue it is important to maintain a broad differential diagnosis which includes Coccidioides, Blastomyces, Paracoccidioides and in some instances Candida species. Although 8-15um broad-based budding yeast lacking endospores are typically associated with Blastomyces this can also represent germinating Coccidiodes endospores. Within the literature there are case reports describing Coccidioidomycosis infections with unusual in vivo morphologic forms consisting of juxtaposed immature spherules without endospores and germinating endospores (2). These elements on microscopic examination can easily be mistaken for budding cells of Blastomyces. Furthermore Blastomyces can rarely exhibit “giant” multinucleated yeast cells, mimicking Coccidioides (3).  Therefore, as highlighted by our case for accurate differentiation of these two fungi correlation of the patients travel history, fungal cultures, and cytology is recommended. 

In the case of our patient, although she was a resident of Vermont, a growing endemic hotspot for Blastomyces infections, she had additional travel history to Arizona and California increasing her risk for infection with Coccidiodes. Furthermore her urine antigen test for Blastomyces was negative and her fungal culture only grew Coccidiodes as confirmed by the lactophenol cotton blue preparation and nucleic acid probe. In addition, Blastomyces typically take several weeks longer than Coccidiodes to grow on culture and microscopically present with septate hyphae with short or long conidiophores with pear-shaped conidia at the tips of conidiophores (lollipops). Collectively her clinical history and laboratory work up was most suggestive of a Coccidioidomycosis. Although rare and less likely, it is also possible that she may have had a remote or concurrent Blastomyces infection which was unable to grow on culture and could not be definitively excluded.

Typically for immunocompetent hosts, asymptomatic Coccidioidomycosis (Valley fever) infections do not need require treatment. However in the context of this patient’s history of dermatologic and rheumatologic complaints, her systemic course warranted treatment with 6 months of itraconazole (4). Of note, itraconazole is also the treatment of choice for Blastomyces ­infection but would require a shorter 3 months duration of treatment.

References

  1. Saubolle MA, Mckellar PP, Sussland D. Epidemiologic, clinical, and diagnostic aspects of coccidioidomycosis. J Clin Microbiol. 2007;45(1):26-30.
  2. Kaufman L, Valero G, Padhye AA. Misleading manifestations of Coccidioides immitis in vivo. J Clin Microbiol. 1998;36(12):3721-3.
  3. Wu SJ, Valyi-nagy T, Engelhard HH, Do MA, Janda WM. Secondary intracerebral blastomycosis with giant yeast forms. Mycopathologia. 2005;160(3):253-7.
  4. Monaco WE, Batsis JA. A case of disseminated blastomycosis in Vermont. Diagn Microbiol Infect Dis. 2013;75(4):423-5.
  5. Dodge RR, Lebowitz MD, Barbee R, Burrows B. Estimates of C. immitis infection by skin test reactivity in an endemic community. Am J Public Health. 1985;75(8):863-5.

-Noman Javed, MD is a 3rd year anatomic and clinical pathology resident at the University of Vermont Medical Center.

-Christi Wojewoda, MD, is the Director of Clinical Microbiology at the University of Vermont Medical Center and an Associate Professor at the University of Vermont.

Microbiology Case Study: A Novel Anaerobic Pathogen Causing Septic Arthritis

Clinical history

A 65 year old man with diabetes mellitus type 2 presented to the emergency department (ED) for left hip pain. He has a remote history of avascular necrosis of bilateral hips of unknown etiology for which he received a bilateral total hip arthroplasty and subsequent multiple revisions due to hardware failure several years ago. He initially presented to an urgent care clinic a few months prior for “noise with movement” of the left hip and mild lower back pain. Plain radiographs of the left hip in comparison to his prior imaging were unremarkable and he was subsequently discharged. Repeat imaging at a follow-up visit at the orthopedic clinic showed mild superior migration of the femoral head bilaterally secondary to periprosthetic osteolysis of the joint headliner. He was scheduled for surgery however presented to the ED prior to his scheduled appointment with severe crushing left hip pain and restricted joint mobilization. He denied fevers, chills, night sweats, or any other recent infections. The left hip was aspirated yielding 10cc of dark black fluid and a stat gram stain was ordered.

Laboratory identification

The stat gram stain showed many polymononuclear cells with moderate gram positive bacilli in a background of dark inorganic material (Image 1). Following 48 hours of incubation, there was anaerobic growth on the kanamycin and vancomycin (KV) and schaedler agar plates. A Gram stain of the broth showed gram positive bacilli arranged singly and in chains with some decolorization (Image 2). The KV and schaedler plates showed moderate growth of a single organism consisting of small glossy tan colored colonies (Images 3-4). No aerobic growth was observed on the blood, MacConkey, Columbia Naladixic Acid (CNA), or chocolate agar plates. Mass spectrometry (MALDI-TOF) identified the pathogenic organism as Clostridium innocuum.

Image 1. Synovial fluid Gram stain of the left hip showed moderate gram positive bacilli and many polymononuclear cells in a background dark inorganic debris (100x oil immersion).
Image 2. Gram stain from a positive broth culture showed gram positive bacilli arranged singly and in chains with some decolorization (100x oil immersion).
Image 3. Anaerobic growth on the schaedler agar showed growth of a single organism consisting of small round glossy tan colored colonies.
Image 4. Anaerobic growth on the kanamycin and vancomycin (KV) agar showed growth of a single organism consisting of small glossy tan colored colonies.

Discussion

Bacterial joint infections are more common in prosthetic joints as compared to native joints with a prevalence of 1-2% following hip arthroplasty (1). Most cases of bacterial septic arthritis are due to staphylococci (40 percent), streptococci (28 percent) or gram negative bacilli (19 percent) organisms (2). Joint infections secondary to anaerobes are less likely and account for 2-3% of all cases (3). A review of the literature shows less than 50 documented cases of septic arthritis due to Clostridium species. Amongst these cases Clostridium perfringens is the most commonly isolated pathogen (4). To date there are no documented cases of joint infections secondary to Clostridium innocuum species.

Clostridium innocuum is a non-motile, anaerobic, gram positive organism that reproduces by sporulation. These organisms are normally found as a part of the usual human gut flora and are rarely human pathogens. The name “innocuum” is derived from the term “innocuous” to convey the innocence of these organisms as they do not produce clostridial exotoxins. A review of the literature shows fewer than 20 reported cases of Clostridium innocuum infections with most reported cases being described in immunocompromised patients such as those with diabetes mellitus, chronic hepatitis, acquired immune deficiency syndrome (AIDS), leukemia, and organ transplantation (5-6). Clinically patients can present with a spectrum of symptoms which include fever of unknown origin, diarrhea/constipation, and non-specific respiratory symptoms. In almost all cases bacteremia ensued. Most cases were associated with a traumatic penetrating injury with few reported cases due to hematogenous spread (5-6).

Laboratory identification of Clostridium innocuum can be challenging due to its variable gram staining morphology and atypical colony morphology on differing culture media. Most traditional phenotypic methods can only reliably identify these organisms to the genus level as a Clostridium species. However, using mass spectrometry (MALDI-TOF) these organisms can be identified to the species level. Rapid identification of Clostridium innocuum from the subset of Clostridium species is clinically important as these organisms are the only known Clostridium species with intrinsic resistance to vancomycin (7). Although they do not possess clostridial exotoxins, these organisms are thought to have a lipopolysaccharide-like virulence factor and have a mortality rate comparable to toxigenic Clostridium species (7). Due to resistance to vancomycin, metronidazole, piperacillin and ampicillin-sulbactam are the alternative recommended first-line treatment options.

For this patient, following the results of the gram smear the patient was started on IV vancomycin but due to an adverse allergic reaction was switched to intravenous pencillin G and oral ciprofloxacin. He was subsequently taken to the operating room for incision and drainage and left hip revision arthroplasty with cup exchange. Blood cultures were collected post-operatively and showed no growth, possibly due earlier antibiotic administration. Susceptibility studies from Mayo Laboratories showed pan susceptibility to penicillin, piperacillin-tazobactam, ertapenem, clindamycin, and metronidazole. The patient was subsequently switched to intravenous penicillin and continued to show clinical improvement during his remaining hospital course.

References

  1. Horowitz DL, Katzap E, Horowitz S, Barilla-labarca ML. Approach to septic arthritis. Am Fam Physician. 2011;84(6):653-60.
  2. Ryan MJ, Kavanagh R, Wall PG, Hazleman BL. Bacterial joint infections in England and Wales: analysis of bacterial isolates over a four year period. Br J Rheumatol. 1997;36(3):370-3.
  3. Shah NB, Tande AJ, Patel R, Berbari EF. Anaerobic prosthetic joint infection. Anaerobe. 2015;36:1-8.
  4. Gredlein CM, Silverman ML, Downey MS. Polymicrobial septic arthritis due to Clostridium species: case report and review. Clin Infect Dis. 2000;30(3):590-4.
  5. Leal J, Gregson DB, Ross T, Church DL, Laupland KB. Epidemiology of Clostridium species bacteremia in Calgary, Canada, 2000-2006. J Infect. 2008;57(3):198-203.
  6. Lee NY, Huang YT, Hsueh PR, Ko WC. Clostridium difficile bacteremia, Taiwan. Emerging Infect Dis. 2010;16(8):1204-10.
  7. Chia JH, Feng Y, Su LH, et al. Clostridium innocuum is a significant vancomycin-resistant pathogen for extraintestinal clostridial infection. Clin Microbiol Infect. 2017;23(8):560-566.

-Noman Javed, MD is a 3rd year anatomic and clinical pathology resident at the University of Vermont Medical Center.

-Christi Wojewoda, MD, is the Director of Clinical Microbiology at the University of Vermont Medical Center and an Associate Professor at the University of Vermont.

Microbiology Case Study: A Man with History of ALL Presents with Fever and Diarrhea

Clinical History

A man in his 40’s with a past medical history of acute lymphoblastic leukemia/lymphoma (in remission), multiple infections including bacteremia and pulmonary aspergillosis, presented to the hospital with fever and diarrhea. Over the course of his stay, he had worsening renal function and developed profound hypotension and shock, which prompted initiation of two vasopressors and high-dose steroids. Eventually he developed acute hypoxic respiratory failure, requiring intubation. Complete blood count demonstrated an absolute eosinophilia of 8.58 x109/L (reference range 0.04-0.62 x109/L). Imaging revealed bilateral pulmonary infiltrates and a pleural effusion. Respiratory culture with gram stain was ordered for his tracheal aspirate, which revealed few polymorphonuclear cells, many gram-negative rods, yeast, and larvae of Strongyloides stercoralis (Image 1A). Wet mounts of the tracheal aspirate revealed numerous larvae and a few eggs of S. stercoralis (Image 1B-C); many of the larvae were motile (Movie 1). Stool examination of ova and parasites (O & P) were positive for larvae. Given the burden of organisms and prior administration of steroids, he was diagnosed with severe strongyloidiasis, consistent with hyperinfection. Concurrent blood cultures grew Enterococcus faecalis and Stenotrophomonas maltophilia; the respiratory culture also grew S. maltophilia, and tracks from the migrating larvae were observed on respiratory culture bacterial media (Image 1D).

Image 1. Tracheal aspirate Gram stain with S. stercoralis larvae, 100x objective magnification (A). Wet mount of tracheal aspirate revealing larvae (B) and eggs (C), 40x objective magnification. Blood agar plate growing S. maltophilia in an abnormal pattern, indicating motile larvae tracking through the agar (D).

Discussion

Strongyloidiasis is a spectrum of clinical disease caused by the nematode Strongyloides stercoralis.1,2 Descriptions of acute infection have been described in other Lablogatory entries here,3,4 and the full lifecycle is described in detail on the CDC DPDx website.5

Severe strongyloidiasis includes the syndromes of hyperinfection and disseminated disease. Hyperinfection is when there is an elevated burden of the typical autoinfection cycle involving the lungs and GI-tract. Usually there is an antecedent immunosuppressive event, such as administration of corticosteroids. Within the GI-tract lumen, increased numbers of rhabditiform larvae transform into the infective filariform larvae, which traverse the GI mucosa, migrate to the lungs via bloodstream/lymphatics where they enter alveolar air spaces, then ascend the respiratory tract, and are coughed up by the host and swallowed to re-enter the GI tract. In the GI tract adult females lay eggs through parthenogenesis, which give rise to further rhabditiform larvae. In extreme cases of hyperinfection, adults can be found in the lungs, where they may also lay eggs. Finding eggs in respiratory specimens is unusual, and may be related to the burden of disease.6

Disseminated disease is when larvae can be found in any additional organs/organ systems, such as the central nervous system, kidneys, liver, adrenals, etc. Invasive sampling is not typically performed, and larvae can be observed at autopsy.

Laboratory diagnosis of S. stercoralis involves identification of rhabditiform larvae in stool O &P exam; the presence of adults or eggs in stool is rare. Rhabditiform larvae have short buccal cavities and an ovoid genital primordium structure midway through the body (Movie 2). O&P exams can be performed on other body fluids, such as sputum and CSF. Serology can be useful to identify past exposure, especially prior to initiating immunosuppressive therapeutics such as corticosteroids. A nonspecific finding can be observed, as in this case, in the complete blood cell count and differential. Relative and absolute eosinophilia can be found in patients with parasitic infections; therefore, it is reasonable to rule out parasitic infection in this subset of patients. In the case presented here, the absolute eosinophilia was likely due to a persistent S. stercoralis infection, since these nematodes can live in the human host for decades.

The treatment of choice for severe strongyloidiasis is oral ivermectin, though albendazole is an alternative therapy. In some instances, subcutaneous ivermectin administration may be used.7

Follow-up

Oral ivermectin was administered to treat the strongyloidiasis and antibiotics were administered to treat the bacterial infections. Over the coming days, serial tracheal aspirates continued to reveal many larvae and eggs, so therapy was escalated to subcutaneous ivermectin. Over the course of therapy, the patient developed a fungemia with Candida guilliermondii. Despite aggressive antimicrobial therapy and intensive care, the patient remained hypoxemic and hypotensive. The family decided to transition to comfort measures and the patient passed away.

References

  1. Maguire JH. Intestinal Nematodes (Roundworms), in Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, B. Mandell, Dolin, Editor. 2010, Elsevier: Philadelphia, PA. p. 3577-3586.
  2. Parasitology, in Koneman’s Color Atlas and Textbook of Diagnostic Microbiology, Procop et al., Editors. 2017, Lippincott Williams & Wilkins: China. p. 1452-1454.
  3. Kaur J, Stempak L. An 81 Year Old Female with Persistent Fevers. Lablogatory 2019 [cited 2019 11/5/2019]; Available from: https://labmedicineblog.com/2019/04/23/microbiology-case-study-an-81-year-old-female-with-persistent-fevers/.
  4. Mohammed M, Wojewoda C. A 47 Year Old Male with Abdominal Pain and Diarrhea. Lablogatory 2016 [cited 2019 11/5/2019]; Available from: https://labmedicineblog.com/2016/05/16/microbiology-case-study-a-47-year-old-male-with-abdominal-pain-and-diarrhea/.
  5. Centers for Disease Control. Strongyloidiasis. DPDx 2019 [cited 2019 11/5/2019]; Available from: https://www.cdc.gov/dpdx/strongyloidiasis/index.html.
  6. Keiser PB and Nutman TB. Strongyloides stercoralis in the Immunocompromised Population. Clin Microbiol Rev, 2004. 17(1): p. 208-17.
  7. Hurlimann E and Keiser J, A single dose of ivermectin is sufficient for strongyloidiasis. Lancet Infect Dis, 2019. 19(11): p. 1150-1151.

-IJ Frame, MD, PhD, Microbiology Fellow, University of Texas Southwestern Dallas, Texas

-Clare McCormick-Baw, MD, PhD is an Assistant Professor of Clinical Microbiology at UT Southwestern in Dallas, Texas. She has a passion for teaching about laboratory medicine in general and the best uses of the microbiology lab in particular.

Microbiology Case Study: 77 Year Old Man With History of Travel to India

Case Report

A 77 year old male presented to the hospital with chest pain, lightheadedness, burning urination for the past few weeks. He has blood in his urine due to a previously diagnosed neoplasm. The patient moved from India to the United States in February, with a diagnosis of bladder cancer and a history of hypertension, congestive heart failure, coronary artery disease, and atrial fibrillation. In the hospital, abscesses on both right and left kidneys were found, and patient had nephrostomy tubes placed. Purulent discharge confirmed he had a severe urinary tract infection.

Laboratory Identification

The patient’s urine culture grew >100,000 colony forming units/milliliter (CFU/ml) of an oxidase-positive, non-lactose fermenting Gram-negative rod. On the blood agar plate, large gray, smooth, flat, mucoid, β-hemolytic colonies were found. Although bacteria growing on solid media should not be actively smelled, the organism emitted a grape or tortilla smell from the plate. The organism was identified as Pseudomonas aeruginosa by MALDI-TOF mass spectrometry. The isolate was plated onto Mueller Hinton agar for Kirby-Bauer disc diffusion antibiotic susceptibility testing (Image 1). A fluorescent green lawn of bacteria grew up to the edge of all discs, indicating high-level resistance to all antibiotics tested (Table 1). Modified carbapenem inactivation method (mCIM) testing was positive and Cepheid GeneXpert CarbaR PCR testing revealed that this P. aeruginosa isolate carried the New Delhi metallo-β-lactamase-1 carbapenemase (NDM-1).

Image 1. Kirby-Bauer disc diffusion was used for antimicrobial susceptibility testing. Note no zones around any of the antibiotic discs, indicating resistance to all antimicrobials tested.
Table 1. Antimicrobial susceptibility testing interpretations. All drugs tested were resistant to this P. aeruginosa isolate.

Discussion

The issue of super bugs is on the rise, with the fear of antibiotic resistance disseminating through more bacterial populations and species. Carbapenems are drugs that are very powerful broad-spectrum antibiotics, usually reserved as a last resort treatment for serious and resistant infections.1 β-lactamases are divided into four Ambler classes: A, B, C, and D. Class B differs from the others because it utilizes zinc as a metal cofactor for its catalytic activity. The others use a serine residue for their catalytic activity.2

NDM-1 is a class B β-lactamase. It was named after New Delhi, India when a Swedish resident presented with an extremely resistant infection after a trip to India in 2008. NDM-1 bacteria can now be found with high prevalence in India and China, and increasingly in other countries such as the UK and US.3,4 While the origination of the gene may not have been India, many of these infections are from people who have traveled to India or other Asian continents.5 Concerns about overprescribing and misuse of antibiotics in India are rising, where India is one of the biggest consumers of antibiotics in the world. One study even found striking evidence of this misuse, demonstrating that 2 out of 3 adults under 20 presented antibiotic resistance isolates to fluoroquinolones and/or cephalosporins.6,7,8

Image depicting the NDM-1 protein anchored in the outer membrane of the bacterium. (Taken from Bahr, Guillermo, et al. “Clinical Evolution of New Delhi Metallo-β-Lactamase (NDM) Optimizes Resistance under Zn(II) Deprivation.” Antimicrobial Agents and Chemotherapy, vol. 62, no. 1, 2017, doi:10.1128/aac.01849-17.)

The gene for NDM-1 is blaNDM-1 and has been found on both plasmid and chromosomal components of different bacteria. Due to its presence on plasmids, the gene can easily spread through bacterial populations and other bacterial species – as has already been documented in Enterobacteriaceae and A. baumannii.3 The β-lactamase that it codes for is a lipoprotein that is anchored in the outer membrane of the gram negative bacteria. Other metalo-β-lactamases (MBLs) are periplasmic proteins, which are more affected by changes in essential metal cofactors in their enzymatic function. Thus far, it has been found that there are 16 discovered variants of NDM. Some variants being more fit than NDM-1. It is hypothesized that these variants are being selected for in the clinical setting, with the protein being more stable and demonstrating higher affinities for zinc during time of metal-chelating (a process the immune system adapts to combat infections).9 Unfortunately, NDM-1 and its variants are resistant to almost all antibiotics. Usually the only option is colistin and tigecycline.3

The disturbing issue, and the big picture, is the capability of MDR organisms and their genes of disseminating. As previously mentioned, NDM-1 is capable of spreading to other species and within its population. Yet, a terrifying report has demonstrated blaNDM-1 detection in artic soil samples from 2013, 4 years after the first detection of the gene.10 This demonstrates the ability for antibiotic resistance to spread on a global scale, and how serious this battle truly is.

References

  1. “Carbapenem-Resistant Enterobacteriaceae (CRE) Infection.” Centers for Disease Control and Prevention, Centers for Disease Control and Prevention, 23 Feb. 2015, http://www.cdc.gov/hai/organisms/cre/cre-patientfaq.html.
  2. Walther-Rasmussen, Jan, and Niels Høiby. “Class A Carbapenemases.” Journal of Antimicrobial Chemotherapy, vol. 60, no. 3, 2007, pp. 470–482., doi:10.1093/jac/dkm226.
  3. Khan, Asad U., et al. “Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-Lactamase (NDM): a Threat to Public Health.” BMC Microbiology, vol. 17, no. 1, 2017, doi:10.1186/s12866-017-1012-8.
  4. Mohapatra P. R. (2013). Metallo-β-lactamase 1–why blame New Delhi & India?. The Indian journal of medical research137(1), 213–215.
  5. Roos, Robert. “Canada Finds More Infections with NDM-1 Resistance Factor.” University of Minnesota, Center for Infectious Disease Research and Policy, 11 Nov. 2010, http://www.cidrap.umn.edu/news-perspective/2010/11/canada-finds-more-infections-ndm-1-resistance-factor.
  6. Gupta, M., Didwal, G., Bansal, S., Kaushal, K., Batra, N., Gautam, V., & Ray, P. (2019). Antibiotic-resistant Enterobacteriaceae in healthy gut flora: A report from north Indian semiurban community. The Indian journal of medical research, 149(2), 276–280. doi:10.4103/ijmr.IJMR_207_18
  7. Kotwani, Anita, and Kathleen Holloway. “Access to Antibiotics in New Delhi, India: Implications for Antibiotic Policy.” Journal of Pharmaceutical Policy and Practice, vol. 6, no. 1, 2013, doi:10.1186/2052-3211-6-6.
  8. Kotwani, Anita, et al. “Antibiotic-Prescribing Practices of Primary Care Prescribers for Acute Diarrhea in New Delhi, India.” Value in Health, vol. 15, no. 1, 2012, doi:10.1016/j.jval.2011.11.008.
  9. Bahr, Guillermo, et al. “Clinical Evolution of New Delhi Metallo-β-Lactamase (NDM) Optimizes Resistance under Zn(II) Deprivation.” Antimicrobial Agents and Chemotherapy, vol. 62, no. 1, 2017, doi:10.1128/aac.01849-17.
  10. Mccann, Clare M., et al. “Understanding Drivers of Antibiotic Resistance Genes in High Arctic Soil Ecosystems.” Environment International, vol. 125, 2019, pp. 497–504., doi:10.1016/j.envint.2019.01.034.

-Ben Dahlstrom is a recent graduate of the NorthShore University HealthSystem MLS program. He currently works as a molecular technologist for Northwestern University in their transplant lab, performing HLA typing on bone marrow and solid organ transplants. He graduated with a bachelors in Biology at the University of Illinois at Chicago (UIC) and concurrently from the UIC Honors College. He discovered his passion for the lab through his experience in healthcare. His interests include microbiology, molecular, immunology, and blood bank.

-Erin McElvania, PhD, D(ABMM), is the Director of Clinical Microbiology NorthShore University Health System in Evanston, Illinois. Follow Dr. McElvania on twitter @E-McElvania. 

A 66 Year Old Male with Diarrhea, Weight Loss, and Night Sweats

Case History

A 66 year old man with past medical history of recently diagnosed Clostridioides difficile colitis presented to emergency department with diarrhea, weight loss of 52 pounds in 4 months, and occasional night sweats. CT imaging revealed dilation of small bowel with thickened mucosal folds. The duodenum was subsequently biopsied to reveal diffuse intestinal lymphangiectasia containing PAS positive and Congo red negative eosinophilic material and lamina propria foamy macrophages. Laboratory investigations revealed normocytic anemia, proteinuria, and peripheral IgM kappa monoclonal gammopathy.

Biopsy Findings

Image 1. Aspirate.
Image 2. Core biopsy.
Image 3. CD138.
Image 4. Kappa ISH.
Image 5. Lambda ISH.

Bone marrow aspirate shows increased plasma cells and mast cells. H&E stained sections demonstrate a normocellular bone marrow with trilineage hematopoiesis and involvement by 35% plasma cells. By immunohistochemistry, CD138 highlights clusters of plasma cells that predominantly express kappa light chain restriction.

FISH and Mutation Analysis

FISH demonstrated loss of chromosome 11 and gain of chromosome 15, which was consistent with plasma cell dyscrasia. MYD88 mutation analysis did not detect the mutation.

Diagnosis

The findings of the patient’s normocytic anemia, IgM monoclonal gammopathy, and intestinal lymphangectasia with an associated plasma cell dyscrasia involving the bone marrow favor a lymphoplasmacytic lymphoma/Waldenström macroglobulinemia.

Discussion

Waldenstrom macroglobulinemia (WM) is a malignant B-cell lymphoproliferative disorder characterized by lymphoplasmacytic infiltration of the bone marrow and peripheral IgM monoclonal gammopathy.1 It is rare with an overall incidence of 3 per million persons per year, accounting for 1-2% of hematologic cancers.1 It occurs predominantly in Caucasian males, with a median age of 63-68 years old at diagnosis.1-3

Patient may be asymptomatic for years and require observation or experience a broad spectrum of signs and symptoms. These symptoms may be attributable to the tumor infiltration of the bone marrow and lymphoid tissues, IgM circulating in the blood, and IgM depositing into tissues. The most common clinical presentation of WM is fatigue and nonspecific constitutional symptoms, such as fever, night sweats, and weight loss, due to normochromic, normocytic anemia. 20-30% of patients may exhibit lymphadenopathy and hepatosplenomegaly due to infiltration of peripheral tissues. High concentration of IgM in the circulation may lead to hyperviscosity, resulting in oronasal bleeding, gingival bleeding, blurred vision due to retinal hemorrhages, and neurological symptoms, including headache, ataxia, light-headedness, dizziness, and rarely, stroke.2-3 The gastrointestinal manifestations are rare; however, IgM monoclonal protein may deposit into the lamina propria of the GI tract, causing diarrhea, steatorrhea, and GI bleeding.4 Other IgM-related manifestations include cold agglutinin hemolytic anemia, cryoglobulin, and amyloid deposition in tissues.3

Diagnosis of WM includes evidence of IgM monoclonal gammopathy and at least 10% of bone marrow infiltration by lymphoplasmacytic cells.5 Monoclonal gammopathy can be detected by the monoclonal spike, or M-spike, on serum protein electrophoresis.3 Serum immunofixation may be performed to identify the type of monoclonal protein and the type of light chain involved.3 In terms of immunophenotype, neoplastic cells express surface IgM, cytoplasmic Igs, CD38, CD79a, and pan B-cell markers (CD19, CD20, and CD22). CD10 and CD23 are absent. Expression of CD5 occurs in approximately 5-20% of cases.6 Recent studies have reported two most common somatic mutations in WM, which are MYD88 L265P mutations (90-95% of cases) and CXCR4 (30–40% of cases).7 Absence of these mutations, however, do not completely exclude the diagnosis of WM.

The International Staging System for WM identifies five factors associated with adverse prognosis, including age older than 65, hemoglobin < 11.5g/dL, platelet count < 100K/μL, beta-2-microglobulin > 3mg/L, and monoclonal IgM concentration > 7g/L.3 Patients younger than the age of 65 years with 0 or 1 of these factors are in the low-risk category with a median survival of 12 years.3 In contrast, patients with 2 or more risk factors are in the intermediate- and high-risk categories and have a median survival of almost 4 years. 3

Management of WM depends on the patient’s clinical manifestations.Furthermore, patients with minimal symptoms should be managed with rituximab, whereas patients with severe symptoms related to WM should receive more aggressive treatment, including dexamethasone, rituximab and cyclophosphamide. Hyperviscosity syndrome is an oncologic emergency that requires removal of excess IgM from the circulation via plasmapheresis.8

References

  1. Neparidze N, Dhodapkar MV. Waldenstrom’s Macroglobulinemia: Recent advances in biology and therapy. Clin Adv Hematol Onco. 2009 Oct;7(10): 677-690.
  2. Leleu X, Roccaro AM, Moreau AS, Dupire S, Robu D, et al. Waldenstrom Macroglobulinemia. Cancer Lett. 2008 Oct;270(1):095-107.
  3. Tran T. Waldenstrom’s macroglobulinemia: a review of laboratory findings and clinical aspects. Laboratory Medicine. 2013 May;44(2):e19-e21.
  4. Kantamaneni V, Gurram K, Khehra R, Koneru G, Kulkarni A. Distal illeal ulcers as gastrointestinal manifestation of Waldenstrom Macroglbulinemia. 2019 Apr; 6(4):pe00058.
  5. Grunenberg A, Buske C. Monoclonal IgM gammopathy and Waldenstrom’s macroglobulinemia. Dtsch Arztebl Int. 2017 Nov;114(44):745-751.
  6. Bhawna S, Butola KS, Kumar Y. A diagnostic dilemma: Waldenstrom’s macroglobulinemia/plasma cell leukemia. Case Rep Pathol. 2012;2012:271407.
  7. Varettoni M, Zibellini S, Defrancesco I, Ferretti VV, Rizzo E, et all. Pattern of somatic mutations in patients with Waldenstrom macroglobulinemia or IgM monoclonal gammopathy of undetermined significance.
  8. Oza A, Rajkumar SV. Waldenstrom macroglobulinemia: prognosis and management. Blood Cancer Journal. 2015;5:e394.

-Jasmine Saleh, MD MPH is a pathology resident at Loyola University Medical Center with an interest in dermatopathology and hematopathology. Follow Dr. Saleh on Twitter @JasmineSaleh.

–Kamran M. Mirza, MD, PhD, MLS(ASCP)CM is an Assistant Professor of Pathology and Laboratory Medicine, Medical Education and Applied Health Sciences at Loyola University Chicago Stritch School of Medicine and Parkinson School for Health Sciences and Public Health. A past top 5 honoree in ASCP’s Forty Under 40, Dr. Mirza was named to The Pathologist’s Power List of 2018 and placed #5 in the #PathPower List 2019. Follow him on twitter @kmirza.

Microbiology Case Study: A 50 Year Old Male with Fevers

Case History

The patient is a 50 year old male who presented to urgent care with 5 days of fevers, chills, and myalgias. He reports no known tick bites, or prior treatment for tickborne illness, he travels frequently for work and has been in Pittsburgh, Omaha, Philadelphia, Charlotte, and Long Island over the past 3 months and is frequently outside golfing in Vermont and while traveling. At urgent care he had a CBC, CMP and urinalysis. His CBC was remarkable for leukopenia with absolute neutropenia (WBC count 2,790; Absolute neutrophil count 390) and thrombocytopenia (platelet count 26,000/cmm). His CMP was remarkable for a mildly elevated AST (66U/L) and total bilirubin (2.4mg/dL). A peripheral blood smear was made which revealed ring forms in his red blood cells. BINAX testing for malaria was negative. The next day he presented to the emergency department with left upper quadrant abdominal pain, night sweats, fatigue, fever, and blood in his urine where is was informed of his CBC results and was immediately started on azithromycin and atovaquone. Given the severity of his presentation a co-infection with Anaplasma phagocytophilum (Anaplasmosis) was suspected though the PCR testing was negative.

Laboratory Identification

Image 1. Giemsa stain of thin blood smears showing intracellular (left) and extracellular (right) ring-form organisms.

Thick and thin blood smears (recommended) were prepared which showed both intra and extracellular organisms with in normal sized red blood cells. BINAX testing for malaria was negative. Given the appearance and presence both within and outside the cell a diagnosis of Babesiosis was made.

Discussion

Babesiosis in the United States is caused by the microscopic parasite Babesia microti. Occasional cases caused by other species of Babesia have been detected (1). Babesia microti is spread by Ixodes scapularis ticks (also called blacklegged ticks or deer ticks) (1,2). Transmission mainly occurs in parts of the Northeast and upper Midwest; and it usually peaks during the warm months (1). Because Babesia shares a vector and geographic distribution with Borrelia burgdorferi (Lyme disease) coinfection of ticks with these two organisms can be seen in up to 40% of ticks and though the incidence of Babesiosis is much lower; up to 10% of Connecticut patients with seropositivity for Lyme disease are also seropositive for Babesia (2).

Most infections are probably asymptomatic. Manifestations of disease include fever, chills, sweating, myalgias, fatigue, hepatosplenomegaly, and hemolytic anemia. Symptoms typically occur after an incubation period of 1 to 4 weeks, and can last several weeks. The disease is more severe in patients who are immunosuppressed, splenectomized, and/or elderly (1,3).

During a blood meal, a Babesia-infected tick introduces sporozoites into the human host (1,3). Sporozoites enter erythrocytes and undergo asexual replication (budding). Multiplication of the blood stage parasites is responsible for the clinical manifestations of the disease (1). Humans are dead-end hosts and there is probably little, if any, subsequent transmission that occurs from ticks feeding on infected persons (1). However, human to human transmission is well recognized to occur through blood transfusions (1). Diagnosis is often rendered by direct visualization on thick and thin blood smears. Because the percent parasitemia is often low, the organisms can be easily missed, especially by automated hematology analyzers (3). Molecular methods such as PCR can be performed (3), but are not recommended as the first line test as the blood parasite exam with thick and thin blood smears are clinically sensitive in patients with symptomatic disease.

Most mild cases of Babesiosis will resolve spontaneously without treatment, especially in patient with a spleen (1,3). Treatment for more severe disease includes either azithromycin and atovaquone or clindamycin and quinine (1,3). If patients are severely immunocompromised and/or splenectomized can be treated with exchange transfusion in addition to antimicrobials (3).

References

  1. Centers of Disease Control and Prevention: Babesiosis. https://www.cdc.gov/parasites/babesiosis/
  2. Procop, Gary W., et al. Konemans Color Atlas and Textbook of Diagnostic Microbiology. 7th ed., Wolters Kluwer Health, 2017.
  3. Tille, Patricia M. Bailey & Scotts Diagnostic Microbiology. 13th ed., Elsevier, 2014.

-Casey Rankins, DO, is a 3rd year Anatomic and Clinical Pathology resident at the University of Vermont Medical Center.

-Christi Wojewoda, MD, is the Director of Clinical Microbiology at the University of Vermont Medical Center and an Associate Professor at the University of Vermont.

Surgical Pathology Case Study: An Elderly Patient with Unexplained Pain, an Unremarkable CT Scan, and Enlarged Rugal Folds on EGD

Case History

The patient is a 72 year old woman who presented to her physician’s office with postprandial pain and unintentional weight loss. A CT scan was performed that showed no obvious abnormality or cause for the patient’s abdominal pain. The patient subsequently underwent an EGD and EUS which revealed enlarged gastric folds without hemorrhage. In addition, there was wall thickening seen in the body of the stomach within the luminal interface, superficial mucosa, deep mucosa and submucosa consistent with possible gastritis versus an infiltrative process. The remainder of the EGD and EUS was grossly unremarkable. These findings were concerning for possible linitis plastica. Pathology on the samples taken from the EGD were consistent with poorly differentiated adenocarcinoma that was invasive in both the gastric fundus and gastric body. The patient was initially taken to the operating room for a staging laparoscopy to ensure that there was no metastatic disease before beginning a preoperative chemotherapy regimen. The staging laparoscopy revealed a thickened gastric wall from the fundus to the antrum, consistent with linitis plastica, and no obvious evidence of metastatic disease. The patient then underwent peritoneal washings which showed no evidence of positive cytology. Based on these findings, the patient was started on a chemotherapy regimen of epirubicin, cisplatin and fluorouracil (5-FU), which she tolerated well. The patient was then taken to the operating room for a total gastrectomy procedure with Roux-en-Y esophagojejunostomy.

Diagnosis

Received fresh for intraoperative consultation is a total gastrectomy specimen with a black stitch designating the proximal side. It was requested by the surgical team to have the proximal esophageal margin frozen to ensure that esophageal tissue was indeed present, as well as to exclude the presence of any carcinoma. The proximal margin was negative for carcinoma with squamous mucosa present. The stomach measures 17.0 cm in length with an internal circumference ranging from 14.7 cm proximally to 9.0 cm distally. There is a 1.0 cm long portion of attached duodenum with an internal circumference of 5.8 cm. The serosal surface of the stomach is glistening, pink-tan and smooth with a scant amount of attached yellow, lobulated adipose tissue and omentum along the length of one entire edge measuring 26.0 x 13.0 x 1.0 cm. The stomach is opened to reveal glistening, tan mucosa with irregular rugal folds which are diffusely nodular, predominantly in the body of the stomach. There is a 6.5 x 5.0 cm are of flattened mucosa in the pyloric region (Image 1). The wall thickness measures 0.5 cm throughout. There are no grossly identifiable masses or nodules. Gross images are taken and the serosal surface is inked entirely in black. The adipose tissue is examined for candidate lymph nodes. Representative sections are submitted as follows:

B1 FS: Frozen section remnants

B2-B6:     multiple representative sections from the cardia

B7-B10:   multiple representative sections from the body

B11-B12:   multiple representative sections from the pylorus

B13:     representative perpendicular section through the distal resection margin

B14:     seven putative lymph nodes

B15:     five putative lymph nodes

B16:     three putative lymph nodes

B17:     seven putative lymph nodes

B18:     six putative lymph nodes

B19:     three putative lymph nodes

B20:     six putative lymph nodes

Histologically, the specimen consisted of diffuse, poorly differentiated, discohesive cells throughout all the layers of the stomach, penetrating into the serosa, with fibrosis, inflammation and signet ring cells present. In addition, angiolymphatic invasion was present. Based on the gross presentation and histologic appearance, the specimen was signed out as a diffuse gastric adenocarcinoma with a stage of T3.

Image 1.

Discussion

As of 2018, gastric cancer is the sixth most common cancer with approximately 1.03 million cases, and the third leading cause of cancer deaths worldwide, resulting in 783,000 deaths. Due to a better understanding of epidemiology, pathology, and molecular testing, as well as advances in new forms of treatments, the incidence and mortality in gastric cancer has been declining over the years. Of the gastric cancer types, rates of intestinal type carcinoma have been decreasing, however, the incidence of poorly cohesive gastric carcinoma (PCGC) and signet ring cell carcinoma (SRC) has increased. In order to accurately discuss PCGC, there must first be a discussion about the standardization of gastric cancer subtype definitions. Poorly cohesive, signet ring cell, and diffuse gastric carcinomas have commonly been used interchangeably. In 2010, the World Health Organization defined poorly cohesive gastric carcinoma as being composed of isolated or small groups of tumor cells. If there was a predominance of signet ring cells, then it would be termed a signet ring cell carcinoma. Mariette et al. proposed that a PCGC composed of 90% or more signet ring cells should be classified as SRC. The term “diffuse” corresponds to the same term “poorly cohesive”, and because of this, I will be using the term “poorly cohesive” solely going forward. In addition to this, the term “linitis plastica” would commonly be used interchangeably, but is best used as a term to describe the macroscopic appearance of PCGC or SRC.

Gastric carcinoma is classified as either early or advanced stage to help determine the appropriate type of intervention. Early gastric carcinoma is defined as invasive carcinoma confined to the mucosa and/or submucosa, regardless of lymph node metastases or tumor size. These tumors are generally smaller, measuring less than 5 cm in size, and found most commonly on the lesser curvature of the stomach at the angularis. Histologically, early gastric carcinoma will commonly present as well differentiated, mostly with tubular and papillary architecture. If the biopsies are composed of only mucosa, then distinguishing between well-differentiated carcinoma and carcinoma in situ or high grade dysplasia can be difficult. The presence of stromal desmoplasia in invasive carcinoma can help differentiate it from intramucosal invasion, which can contain single tumor cells within the lamina propria. This is an important distinction to make as intramucosal carcinoma does metastasize. Advanced gastric carcinomas will present grossly as either exophytic, ulcerated, or infiltrative tumors. Histologically, advanced gastric carcinomas will invade the muscularis propria and demonstrate cytologic and architectural heterogeneity, with a combination of patterns.

The 2010 World Health Organization classification determined four major histologic patterns of gastric cancer, which will often present with a combination of elements from the other patterns:

  1. Tubular: Most common pattern in early gastric carcinoma, with branching, distended or fused tubules containing intraluminal mucus, and nuclear and inflammatory debris
  2. Papillary: Most common in the proximal stomach with epithelial projections containing an underlying fibrovascular core. Also, it is frequently associated with liver metastases and an increased risk of lymph node involvement.
  3. Mucinous: Extracellular mucin makes up at least 50% of the tumor volume
  4. Poorly cohesive (including SRC): Mixture of signet ring and non-signet ring cells. Signet ring cells will have mucin pushing the nucleus to the periphery of the cell.

Helicobacter pylori (H. pylori) is a gram negative infectious bacteria that has been linked to gastric cancer. H. pylori is present in about half of the world’s population and other than gastric cancer, it is also associated with chronic gastritis, peptic ulcer disease, and gastric lymphomas. The bacteria is typically acquired during infancy and will remain for life if left untreated, with reactive oxygen species being generated that are capable of causing DNA damage due to the chronic infection. In addition, H. pylori can induce hypermethylation, resulting in the inactivation of tumor suppressor genes. Although H. pylori infection is considered a strong risk factor for developing gastric cancer, more commonly in intestinal type than diffuse type gastric cancer, only a small portion of those infected with the bacteria actually develop the malignancy. It is believed that approximately 80% of distal gastric cancers are due to a H. pylori infection, whereas there is little association between H. pylori and cardia gastric cancers.

In PCGC, such as this case, it is generally diagnosed in younger patients without a gender bias. Although PCGC can be associated with an H. pylori infection, it is more commonly related to a mutation in the tumor suppressor gene epithelial cadherin, also known as E-cadherin and CDH1. PCGC presents as an infiltrative growth of poorly differentiated, discohesive malignant cells that appear to arise from the middle layer of the mucosa. These cells can infiltrate as individual cells or as small clusters, but usually do not form glands (Image 2). If the gastric wall becomes extensively infiltrated by malignancy, the wall can be thickened and rigid, a macroscopic presentation termed as linitis plastica, which can lead to pyloric obstruction. Within PCGC, numerous signet ring cells can be present, leading to SRC. There is also a hereditary form of poorly cohesive gastric cancer referred to as hereditary diffuse gastric carcinoma, with an autosomal dominant pattern of inheritance. Histologically, it will include hyperchromatic nuclei, occasional mitoses, patchy intramucosal signet ring cells in the lamina propria, and carcinoma in situ associated with pagetoid spread of tumor cells along the preserved basement membrane. Hereditary diffuse gastric carcinoma will present with multifocal tumors under an intact mucosal surface, making diagnosis difficult. In patients with a CDH1 mutation and a family history of gastric carcinoma, a prophylactic gastrectomy is often the recommended treatment option.

Image 2.

References

  1. Adachi Y, Yasuda K, Inomata M, et al. Pathology and prognosis of gastric carcinoma well versus poorly differentiated type. Cancer. 2000;89(7)1218-24.
  2. Cancer. World Health Organization. Who.int. https://www.who.int/news-room/fact-sheets/detail/cancer. Published September 20, 2018. Accessed September 18, 2019.
  3. Carcas LP. Gastric cancer review. J Carcinog. 2014;13:14. Published 2014 Dec 19. doi:10.4103/1477-3163.146506
  4. Hu B, El Hajj N, Sittler S, Lammert N, Barnes R, Meloni-Ehrig A. Gastric cancer: Classification, histology and application of molecular pathology. J Gastrointest Oncol. 2012;3(3):251–261. doi:10.3978/j.issn.2078-6891.2012.021
  5. Mariette C, Carneiro F, Grabsch HI, et al. Consensus on the pathological definition and classification of poorly cohesive gastric carcinoma. Gastric Cancer. 2019;22(1):1-9 https://doi.org/10.1007/s10120-018-0868-0-
  6. Pernot S, Voron T, Perkins G, Lagorce-Pages C, Berger A, Taieb J. Signet-ring cell carcinoma of the stomach: Impact on prognosis and specific therapeutic challenge. World J Gastroenterol. 2015;21(40):11428–11438. doi:10.3748/wjg.v21.i40.11428
  7. Van Cutsem E, Sagaert X, Topal B, et al. Gastric Cancer. Lancet. 2016;388(10060):2654-64. https://doi.org/10.1016/S0140-6736(16)30354-3
  8. Weisenberg E. Diffuse (poorly cohesive) type carcinoma. Pathology Outlines. http://www.pathologyoutlines.com/topic/stomachdiffuse.html. Revised August 22, 2019. Accessed September 18, 2019

-Cory Nash is a board certified Pathologists’ Assistant, specializing in surgical and gross pathology. He currently works as a Pathologists’ Assistant at the University of Chicago Medical Center. His job involves the macroscopic examination, dissection and tissue submission of surgical specimens, ranging from biopsies to multi-organ resections. Cory has a special interest in head and neck pathology, as well as bone and soft tissue pathology. Cory can be followed on twitter at @iplaywithorgans.