Antimicrobial Stewardship Down Under

If you’re an infectious disease/antimicrobial stewardship/microbiology geek, then the Australian blog AIMED is relevant to your interests. AIMED focuses on practical antimicrobial prescribing issues of relevance to hospital and community prescribers. It is supported by a local brains trust of General Practitioners, Pharmacologists, Pharmacists, Microbiologists and Infectious Disease Physicians. It also provides internet access to key Hunter New England resources for medical staff including guides to local antibiograms, infection control resources and personnel.

For those who don’t know, AIMED is an acronym for five principles that guide patient treatment with antimicrobials:

  • Antimicrobial selection and dosage
  • Indication for antimicrobial treatment
  • Microbiological assessment
  • Evaluate patient at 48-72 hours
  • Duration should be specified

If you’d like to learn more, check out their blog.

CMS Proposes Rule that Promotes Antibiotic Stewardship

In mid-June, CMS proposed a rule that, in part, will help promote antimicrobial stewardship in hospitals. The 60-day comment period is nearing its end, so if you have thoughts on this proposed rule, let them know.

CMS press release

 

Potential Antimicrobial Therapy Hiding in Plain Sight

Yesterday, Nature published a paper that might help in the fight against MRSA. In a nutshell, German researchers discovered that Staphylococcus lugdunensis–a common bacteria in commensal flora–produces a compound that reduces colonization with MRSA.

From the abstract:

“Notably, human nasal colonization by S. lugdunensis was associated with a significantly reduced S. aureus carriage rate, suggesting that lugdunin or lugdunin-producing commensal bacteria could be valuable for preventing staphylococcal infections.”

 

Carbapenem-Resistant Enterobacteriaceae Found in Rio de Janeiro’s Water

Recent studies conducted by Brazilian researchers found “super bacteria” in the waters where Olympic athletes will be competing. According to MercoPress, “The Brazilian group’s lead researcher, Renata Picao, said Rio’s “super bacteria” made its way into the city’s waterways through sewage from local hospitals, due to a lack of basic sanitation in the metropolitan area.”

A recent Lab Medicine podcast discusses laboratory testing for CRE. You can listen to it here.

Maryn McKenna writes extensively about antimicrobial resistance. You can watch to her recent TED talk (or read the transcript) to learn why the presence of CRE in Rio’s water is so concerning.

The World’s Most Ambitious Superbug

Researchers from the Walter Reed National Military Medical Center in Maryland discovered a strain of E. coli that carried 15 different genes that confer antibiotic resistance, including the resistance factor MCR, which confers resistance to colistin, a drug of last resort.

This particular E. coli was recovered from the urine of a 49-year-old woman.

The paper is currently available as an accepted manuscript posted online.

You can read Maryn McKenna’s report here.

 

Antimicrobial Testing–Are We Doing it Wrong?

Antibiotic resistance is a huge concern for microbiologists. In addition to stewardship programs and regulating agricultural use of antibiotics, is it time to re-examine clinical testing paradigms?

A recent study suggests that the typical way microbiologists test for antibiotic susceptibility–meuller-hinton plates and antibiotic disks–might be fallible. When his team tested Salmonella against polymyxin using typical methods, the organism tested sensitive; when the tested the same organism against the same antibiotic using medium that more closely resembled human cells, the organism tested resistant.

Bloomberg Business discusses the paper here. The article is worth your time, even if the info-graphic gives erroneous information (it mentions meuller-hinton broth instead of meuller-hinton agar plates).

Using Evolution to Thwart Resistance

The very act of using antibiotics contributes to antibiotic resistance. Bacteria are exposed to an antimicrobial agent and develop genetic strategies to survive repeated exposures. But what if using antibiotics in a certain sequence could revert resistant strains to the wild type? Researchers from California and Washington DC tested that theory and discovered some promising results.

You can read the PLOS ONE study and the Scientific American article to learn more.

Illinois Summit on Antibiotic Stewardship

Last week, I attended the Illinois Summit on Antimicrobial Stewardship at Northwestern Memorial Hospital. While the target audience was physicians, nurses, pharmacists, and administrators, as a clinical laboratory scientist I found the presentations (with a few caveats, which I’ll get to in a moment) quite informative.

The morning sessions covered the relationship between antibiotic use and resistance patterns; interpretations and implementation of the national guideless for stewardship; and using behavioral science to increase compliance with stewardship programs. Participants spent part of the afternoon in small groups to discuss designing and implementing a stewardship program.

A few notes:

-50% of antibiotics for upper respiratory infections aren’t needed; 50% of antibiotics for inpatients aren’t needed, either

-antibiotics are the only drug where use in one person impacts it effectiveness in another

-based on the literature, antibiotic stewardship programs have at least a transient effect on antibiotic effectiveness—eventually, resistance numbers begin to climb again

-hospital antibiograms are the most widely available measure of resistant organisms, but we aren’t using them as effectively as we could. For example, we typically report that, say, “62.5% of E. coli isolates are resistant to ciprofloxacin,” but we don’t say where those isolates come from. Are they urinary tract infections or upper respiratory infections? What’s the rate of resistance for infected wounds?

-a weighted antibiogram might make empirical treatments for effective. For example, “what % of urinary tract infections are resistant to ciprofloxacin?”

-it’s important to note that the IT department, hospital information systems, and laboratory information systems play a huge role in stewardship programs

-stewardship programs depend on the “5 D’s” Diagnosis, drug selection, dose, duration, and de-escalation of use

-diagnostic uncertainty—driven by lack of early organism identification—drives a significant amount of antibiotic use

-when combined with stewardship, rapid bacterial identification methods such as MALDI-ToF platforms decrease parameters such as length of patient say, time to treatment, etc.

-we can use peer pressure to drive improvements. No one wants to perform worse than the doctor next door

-our efforts might be moot, anyway; other countries take a much laxer stance on antibiotic use

While the laboratory in general and clinical microbiology departments specifically were mentioned during the presentations, I must say they were only mentioned in the context of how little perceived impact we have on stewardship. (“Well, we know the laboratory isn’t going to give us any useful information for another three days…”) It wasn’t until I participated in the small group sessions in the afternoon that attendees at my table admitted that the laboratory is an important piece of the stewardship puzzle. We have mountains of data we can assimilate (antibiogram creation, anyone?). We can bring in new technologies to make identifications faster. We can work closely with the infectious disease doctors to help guide treatment. That brings up a good point—if microbiology labs aren’t in-house, then creating an antibiotic stewardship program becomes that much harder because results can be delayed.

If you’d like to see the powerpoints from the presentations, you can do so by clicking the “downloadable content” tab at Northwestern Memorial Hospital’s antibiotic stewardship page.

Swails

Kelly Swails, MT(ASCP), is a laboratory professional, recovering microbiologist, and web editor for Lab Medicine.

CLSI and APHL to Co-Host 12th Annual AST Update Webinars

From the press release:

The Clinical and Laboratory Standards Institute (CLSI) and the Association of Public Health Laboratories (APHL) will co-host the 12th annual educational update webinars for antimicrobial susceptibility testing (AST).

Each January, CLSI updates standards for AST. It is important for clinical laboratories to incorporate the new recommendations into routine practice to optimize detection and reporting of antimicrobial resistance. In January 2015, the annual update of the M100 AST tables (CLSI document M100-S25) was published. In addition, the standards that describe performance of disk diffusion and minimal inhibitory concentration tests in versions M02-A12 and M07-A10, respectively, were updated. Some highlights for 2015 include introduction of the Carba NP test for carbapenemases and expanded recommendations for quality control testing.
These changes and several other new recommendations found in M100-S25, M02-A12, and M07-A10 will be discussed during the webinar. In addition to the webinar, an optional postprogram self-assessment will be provided that will allow individuals to assess their knowledge regarding the most important AST and reporting issues for 2015. Laboratories can use this feature to augment competency assessment requirements for their staff.
The webinar will be led by Janet A. Hindler, MCLS, MT(ASCP), Senior Specialist, Clinical Microbiology, at the UCLA Health System in Los Angeles, California, USA.
Webinar information is as follows:
CLSI 2015 AST Update
February 4, 2015 • 1:00–2:30 PM Eastern (US) Time
February 5, 2015 • 3:00–4:30 PM Eastern (US) Time (repeat session)
Learner Level: This intermediate-level program is appropriate for laboratory professionals working in clinical and academic settings.
At the conclusion of this program, participants will be able to:
    • Identify the major changes found in the new CLSI document M100-S25.
    • Design a strategy for implementing the new practice guidelines into their laboratory practices.
    • Develop a communication strategy for informing clinical staff of significant AST and reporting changes.

Register for the upcoming webinars at www.aphl.org/clsi.

Go Outside And Play in the Dirt

Researchers may have made some headway in the fight against antimicrobial resistance. A paper published online in Nature today (abstract only unless you’re a subscriber) discusses a new method to grow bacteria that have previously been uncultivable. In doing so, researchers have discovered a new antibiotic they’re calling teixobactin that is active against gram-positive organisms (specifically, a precursor of peptidoglycan present in the cell wall). Initial tests suggest bacteria can’t form a resistance to this mode of action.

Maybe there’s something to the expression “throw some dirt on it and get back in the game” after all.

NPR and the Washington Post discuss this paper and its findings today, as well. It’s too soon to be excited, but I admit I’m cautiously optimistic.

Swails

Kelly Swails, MT(ASCP), is a laboratory professional, recovering microbiologist, and web editor for Lab Medicine.