Antimicrobial Stewardship Down Under

If you’re an infectious disease/antimicrobial stewardship/microbiology geek, then the Australian blog AIMED is relevant to your interests. AIMED focuses on practical antimicrobial prescribing issues of relevance to hospital and community prescribers. It is supported by a local brains trust of General Practitioners, Pharmacologists, Pharmacists, Microbiologists and Infectious Disease Physicians. It also provides internet access to key Hunter New England resources for medical staff including guides to local antibiograms, infection control resources and personnel.

For those who don’t know, AIMED is an acronym for five principles that guide patient treatment with antimicrobials:

  • Antimicrobial selection and dosage
  • Indication for antimicrobial treatment
  • Microbiological assessment
  • Evaluate patient at 48-72 hours
  • Duration should be specified

If you’d like to learn more, check out their blog.

Potential Antimicrobial Therapy Hiding in Plain Sight

Yesterday, Nature published a paper that might help in the fight against MRSA. In a nutshell, German researchers discovered that Staphylococcus lugdunensis–a common bacteria in commensal flora–produces a compound that reduces colonization with MRSA.

From the abstract:

“Notably, human nasal colonization by S. lugdunensis was associated with a significantly reduced S. aureus carriage rate, suggesting that lugdunin or lugdunin-producing commensal bacteria could be valuable for preventing staphylococcal infections.”

 

New Assay to Detect CRE Available

From the press release:

“The U.S. Food and Drug Administration today cleared for marketing the Xpert Carba-R Assay, an infection control aid that tests patient specimens to detect specific genetic markers associated with bacteria that are resistant to Carbapenem antibiotics.”

Read the Cepheid release here.

 

Carbapenem-Resistant Enterobacteriaceae Found in Rio de Janeiro’s Water

Recent studies conducted by Brazilian researchers found “super bacteria” in the waters where Olympic athletes will be competing. According to MercoPress, “The Brazilian group’s lead researcher, Renata Picao, said Rio’s “super bacteria” made its way into the city’s waterways through sewage from local hospitals, due to a lack of basic sanitation in the metropolitan area.”

A recent Lab Medicine podcast discusses laboratory testing for CRE. You can listen to it here.

Maryn McKenna writes extensively about antimicrobial resistance. You can watch to her recent TED talk (or read the transcript) to learn why the presence of CRE in Rio’s water is so concerning.

The World’s Most Ambitious Superbug

Researchers from the Walter Reed National Military Medical Center in Maryland discovered a strain of E. coli that carried 15 different genes that confer antibiotic resistance, including the resistance factor MCR, which confers resistance to colistin, a drug of last resort.

This particular E. coli was recovered from the urine of a 49-year-old woman.

The paper is currently available as an accepted manuscript posted online.

You can read Maryn McKenna’s report here.

 

An Interactive Tool to See Antibacterial Resistance Over Time

Do you need to know the percentage of Salmonella Typhi resistant to nalidixic acid in California in 2001? A resource now exists that can give you that answer.

The Centers for Disease Control (CDC) has released a tool called National Antimicrobial Resistance Monitoring System (NARMS) Now: Human Data, and it allows users to access antimicrobial resistance data based on year and geographical region. The interactive site tracks resistance for four bacteria that cause foodborne illness: Salmonella, Shigella, Campylobacter, and E. coli O157.

Using Evolution to Thwart Resistance

The very act of using antibiotics contributes to antibiotic resistance. Bacteria are exposed to an antimicrobial agent and develop genetic strategies to survive repeated exposures. But what if using antibiotics in a certain sequence could revert resistant strains to the wild type? Researchers from California and Washington DC tested that theory and discovered some promising results.

You can read the PLOS ONE study and the Scientific American article to learn more.

Livestock-Associated MRSA

Over at her new blog Germination, Maryn McKenna discusses a recent study in Clinical Infectious Diseases about livestock-associated MRSA and infections in farmers. For those clinical laboratory scientists who work in labs that serve a rural population, this is a must-read.

 

Swails

Kelly Swails, MT(ASCP), is a laboratory professional, recovering microbiologist, and web editor for Lab Medicine.

 

NIH Funds Antimicrobial Resistance Diagnostics Projects

As I mentioned in a previous post, diagnostic uncertainty drives antibiotic use, so getting answers to clinicians faster is an important piece of the antimicrobial stewardship pie. NIH is stepping up and funding several efforts around the country. From the press release:

“The National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, has awarded more than $11 million in first-year funding for nine research projects supporting enhanced diagnostics to rapidly detect antimicrobial-resistant bacteria.”

The funded researchers include a mix of companies and academic centers including BioFire Diagnostics, LLC and Brigham Young University in Provo, Utah.

Read the full press release here.

 

Swails

Kelly Swails, MT(ASCP), is a laboratory professional, recovering microbiologist, and web editor for Lab Medicine.