Errors can occur at any point in the preanalytical process: during patient preparation; the ordering process; sample collection; sample transportation, preparation, and storage. Some common errors include wrong test orders, missing specimens, improper mixing, and specimens contaminated with line fluid. Use of laboratory automation has reduced preanalytical errors within the laboratory, but what about those errors made outside of the laboratory’s four walls?
One way to decrease errors would be to implement computerized physician order entry. Due to the increased number and complexity of lab tests along with minimal training in medical schools, improper testing ordering is not uncommon. It would be wise for the core laboratory to provide adequate technical information on those commonly misunderstood tests by clinicians that could be accessed readily, such as an intranet website. Placing additional guards on high-priced molecular testing (such as requiring additional information at order entry) would be prudent. Making pathologists and laboratory professionals available to consult with clinicians about test ordering is also one way to reduce this sort of error.
As more facilities centralize their laboratory operations as a way to cut costs, preanalytical errors due to specimen transportation issues could be rise. Currently, there are no specific regulatory constraints on monitoring temperature and/ or humidity during sample transportation; however, studies show that depending upon the length of time and pressure and humidity involved, these external environment could influence the integrity, and therefore the result accuracy, of transported samples. Inaccurate test results could lead to delay in treatment or treatment errors that might harm patients, which also increase the organization’s liability and threaten the medical licensure and/ or the organization livelihood.
Quality Improvement or Performance Improvement program addressing these pre-analytical errors combined with appropriate training and tools to mitigate the errors by tracking the time points related to the sample transportation would improve patient care quality and safety. As part of a good quality management system, laboratories should track the preanalytical errors made each month and categorize them to make designing improvement efforts easier.
Suggested reading:
Felder, R. A. (2011). Preanalytical errors introduced by sample-transportation systems: A means to assess them. Clinical Chemistry, 57(10):1349-1350.
Plebani, M., & Piva, E. (2010). Medical errors: Pre-analytical issue in patient safety. Journal of Medical Biochemistry, 29(4):310.
Carraro, P., Zago, T., & Plebani, M. (2012). Exploring the initial steps of the testing process: Frequency and nature of pre-preanalytic errors. Clinical Chemistry, 58(3):638-42.
Plebani, M. (2012). Pre-analytical errors and patient safety. Journal of Medical Biochemistry, 31(4):265.
Tiwari AK, Pandey P, Dixit S, Raina V (2011). Speed of sample transportation by a pneumatic tube system can influence the degree of hemolysis. Clin Chem Lab Med. Nov 10;50(3):471-4.
Zaninotto, M (2012) Effect of Sample Transportation on Commonly Requested Laboratory Tests. Clinical Chemistry and Laboratory Medicine, 50(10):1755-1760
Information on policies or practices are solely from my personal experience ONLY and have NO relation to my affiliation with any regulatory or government agency.
-Caroline Satyadi, MT(ASCP), SM, DLM, SLS, MBA, MS, CQA (ASQ) has been a laboratory management professional for over 25 years. She has worked with several different medical industries for CLIA/CMS, FDA/ICH/ISO, TJC/CAP/COLA/HFAP accreditation survey readiness.